
1

Incentive Resource Distribution in P2P Networks
Richard T. B. Ma

�
Sam C. M. Lee

�
John C. S. Lui

�
David K. Y. Yau

�

Abstract— The current peer-to-peer (P2P) information sharing
paradigm does not provide incentive and service differentiation
for users. Since there is no motivation to share information or
resources, this leads to the “free-riding” and the “tragedy of the
commons” problems. In this paper, we address how one can incor-
porate incentive into the P2P information sharing paradigm so as
to encourage users to share information and resources. Our mech-
anism (or protocol) provides service differentiation to users with
different contribution values and connection types. The mecha-
nism also has some desirable properties: (1) conservation of cu-
mulative contribution and social utility in the P2P community, (2)
maximization of social utility if all requesting clients have the same
contribution value, and (3) incentive-based resource distribution.
The resource distribution algorithm and the contribution update
algorithm are computationally efficient and can be easily imple-
mented. We discuss how one can provide the truth revealing prop-
erty so that nodes have no motivation to misrepresent their contri-
bution values and connection types. In addition, the mechanism is
invulnerable to various malicious actions of users. Experimental
results illustrate the efficiency and fairness of our algorithms.

I. Introduction

The rapid growth of decentralized and structured or unstruc-
tured peer-to-peer (P2P) networks [17], [14], [12] holds great
potential for efficient information exchange in the Internet. A
P2P network may exhibit a power-law topology [13] such that
it can propagate queries quickly and, if implemented efficiently
[17], it can locate objects in �������
	�� time, where 	 is the number
of nodes in the network. However, there are remaining prob-
lems in the P2P information sharing paradigm which compli-
cate its deployment. Free-riding and the tragedy of the com-
mons are two major problems. As reported in [3], nearly 70%
of Gnutella users do not share any file with others in a P2P com-
munity and nearly 50% of all search responses come from the
top 1% of content sharing nodes. Therefore, nodes that share
information and resources are prone to congestion, leading to
the tragedy of the commons [9]. Another problem is that many
users intentionally misrepresent their connection speeds so as to
discourage others from going to their nodes for file download.
Worse yet, Gnutella-like systems give no service differentiation
between users who do not share any information with or make
any contribution to the P2P community.

The objective of this paper is to design and analyze a proto-
col that provides incentives for users to share information and
offers preferential service to users who contribute to the P2P
community. We address the following issues:
1) How to utilize transfer bandwidth resources efficiently?

Department of Computer Science & Engineering, The Chi-

nese University of Hong Kong, Shatin, N.T. Hong Kong;�
tbma,cmlee,cslui � @cse.cuhk.edu.hk.�

Department of Computer Science, Purdue University, West Lafayette, IN;
yau@cs.purdue.edu.

2) How to fairly serve different nodes which have different con-
nection types and contributions in a P2P community?
3) How to avoid problems of free-riding and the tragedy of the
commons?
4) How to provide the truth revealing property so that nodes
have no motivation to misrepresent their connection types or
contributions and, at the same time, avoid various malicious
attempts by users to gain better services?

Many current P2P systems use the first-come-first-served
policy in providing file transfer services [2]. This may cause
large response time or even starvation for requests queued after
other long running requests. Alternatively, round robin schedul-
ing can be used. However, evenly distributing the transfer band-
width between requesting users may not be suitable. First, this
may not be an efficient choice for the P2P network since dif-
ferent nodes may have different connection types (e.g., modem,
LAN, ADSL) and speeds, and they may achieve different util-
ities even if given the same amount of transfer bandwidth re-
source. Instead, one should consider the problem of distributing
the transfer bandwidth resource so as to maximize the aggregate
utility. Second, it may not be fair since some requesting nodes
may have contributed a lot more than other requesting nodes.
These considerations lead us to propose a scheduling policy
which is based on the aggregate utility, the connection types
and contribution values of individual requesting nodes. Such a
policy gives a rational user incentive to share information and
contribute service to a P2P community.

The balance of the paper is organized as follows. In Sec-
tion II, we introduce the notations and model of our incentive
P2P network. In Section III, we present the algorithms for re-
source distribution. In Section IV, we present an algorithm for
computing the contribution values of all participating nodes. In
Section V, we discuss how to avoid various malicious actions
by users and enforce the truth revealing property: users have
to reveal their true contribution value, connection types, and
upload bandwidth. In Section VI, we report experimental re-
sults to illustrate the dynamics between the contribution values
of participating nodes and their received bandwidth. Related
work is discussed in Section VII. Section VIII concludes.

II. Incentive P2P Networks

In this section, we first present a model of the Gnutella proto-
col – a common P2P network protocol – and some of its inher-
ent problems. Although we compare and contrast our work with
Gnutella, the proposed mechanism in this paper can be used to
give incentive in more recent P2P protocols, such as [17]. We
then present the notations in our design of an incentive-based
protocol, and state some of the protocol’s desirable properties.

2

A. The Gnutella protocol and its inherent problems

Gnutella [1], an open P2P protocol for connection man-
agement and distributed search, represents a class of decen-
tralized unstructured P2P networks. In a Gnutella-like net-
work, each node (also called a servent) plays the role of both
a client and a server. The Gnutella protocol specifies rules for
sending/answering queries and maintaining the connectivity be-
tween different servents. Each servent joins a P2P network by
connecting to some existing servents in the network. A servent,
say � , performs file searching by sending queries to its neigh-
bors, which can in turn forward the query to their own neigh-
bors. Once the file is located in a set of servents, say � , servent
� can request a file transfer from any servent ����� .

To formally describe the logical and physical views of the
file transfer process, we define the following notations:�

: A set of all servents in a P2P system with � � �	��
 .� �� ����� ��������� , where ����� � represents the average file transfer
request rate from servent � to servent � .� � �����! ��#"$ �%�%&%' (� � � , where � � , �)� � , represents the max-
imal upload bandwidth (in Mbps) of servent � .* � �,+-�. �+	"$ &%�%�%� �+ � � , where + � , �/� � , represents the maxi-
mal download bandwidth (in Mbps) of servent � .0�1

: The set of servents which may request file download
from servent 2 ; i.e., any servent � for which �3��� 15476

.

k

1 2

3 4

λ1k

λ3k

λ2k

λ4k

k
uk

(a) (b)

1

2

3

4

d1

d2

d3

d4

Fig. 1. (a) logical and (b) physical views of file transfers in a P2P network.

Figure 1 illustrates the logical and physical views of the file
transfer process. Figure 1(a) depicts the query/search process.
Servents 8$:9; �< , and = have found that servent 2 has the file that
they are searching for, and they decide to request the file from
servent 2 . Servent 2 has a physical download bandwidth of + 1
and an upload bandwidth of � 1 (both in Mbps). Typically, we
have + 15> � 1 . For example, for an ADSL connection, we have
+ 1?4 � 1 . But for other full-duplex network technologies (e.g,
Ethernet and ATM), we have + 1 �@� 1 . Therefore, to transfer
the requested files, servents 8$ A9B :< , and = have to share the up-
load bandwidth � 1 of servent 2 . This is illustrated in Figure
1(b).

In this paper, we assume that there are
 servents in the P2P
network. We define

�
to be an
7CD
 matrix with �#�E� � denoting

the average file transfer request rate from servent � to servent � .
A servent, who shares certain contents in a P2P community, re-
ceives different rates of request from other servents. In general,
the request rates depend on (1) the popularity of the contents

offered by the target servent, and (2) the target servent’s upload
bandwidth capacity.

The Gnutella protocol specifies that the file transfer is to be
carried out over HTTP. Most Gnutella client implementations
maintain multiple HTTP connections, but limit the maximum
number of such concurrent HTTP transfers at any given time.
For example, LimeWare [2] uses upload slots to limit the num-
ber of HTTP connections. When the upload slots are used up,
new file transfer requests are queued and LimeWare uses the
FCFS scheduling policy to process the waiting requests. With
FCFS, requests may experience a long waiting time. For exam-
ple, if the active HTTP sessions are being occupied with large
file transfers, requests in the queue will have to wait for a long
time before receiving service.

To reduce the waiting time, an alternative solution is to use
some form of processor-sharing discipline in scheduling the file
transfer requests. However, such an approach has its own prob-
lems. First, the simple strategy of giving an equal share of the
transfer capacity to each requesting node can be inefficient, be-
cause the download capacity of some of the requesting nodes
may be smaller than their allocated capacity share. Second,
even if all the requesting servents can fully utilize their band-
width share, the equal resource allocations ignore the more rel-
evant issue of end user’s satisfaction. For example, different
requesting servents may have different utility functions, which
quantify the servents’ “degree of happiness” when they receive
different amounts of the transfer bandwidth resource. Lastly, an
equal allocation strategy obviously gives no incentive for ser-
vents to contribute to their peers.

B. Incentive protocol: notations & desirable properties

Lack of incentive for sharing leads to the undesirable situa-
tion in which a servent behaves like a client most of the time
[16]. The design of an incentive protocol for P2P networks is
imperative. In such a protocol, the proper allocation of transfer
bandwidth to requesting servents should be based on the ser-
vents’ connection type, utility function, and contribution to the
P2P community. Before we present our incentive protocol, we
give the necessary notations:F � �EG � (G " &%�%&%� (G.� � : A vector which represents the connec-

tion type (i.e., the upload and download capacities) of all
the servents in the P2P network. In particular, G � �IH is
the connection type of servent � , which is a function of
� ’s declared upload bandwidth �/� and download band-
width + � . The set H represents all the possible connec-
tion types.J � ��K � represents the cumulative contribution of servent � at
time K , where

J � ��K �L�NM!O PRQ�S 6BT
.U � ��K � represents the bandwidth allocated to servent � when �

requests a file transfer. The bandwidth assignment is
based on our incentive protocol.V � �EG.�(U � � : A non-negative function which represents the util-
ity of servent � when it declares its connection type to be
G.� and receives a file transfer service rate of U � .

Each servent in the system, say � , has a cumulative contri-
bution value

J � �EK � at time K . The value of
J � �EK � will increase

3

if servent � provides service to the community (e.g., by trans-
ferring files for other requesting servents). It may decrease if
servent � requests some service from the community (e.g., re-
questing file transfers from other servents).

We now state some desirable properties of an incentive pro-
tocol. In later sections, we will prove that our proposed algo-
rithms achieve these properties.
(1) Conservation of the cumulative contribution and social
utility: The aggregate contribution of all servents at any time
K 476

is equal to the aggregate cumulative utility of all servents
from time

6
up to time K . Formally,

��
��� � J � �EK � �

��
��� �

���� V � ��G.�� U � ��� � � +	�
#K 476 % (1)

Remark: This property implies that the contribution by any
servent in a P2P network via file transfer service is translated
into utilities within the P2P community.
(2) Maximization of social welfare through resource allo-
cation: Given a servent 2 and all the requesting clients in0 1

, if
J � ��K � � J ���EK � for all �A ��� 0 1

, an incentive proto-
col should allocate the transfer bandwidth resource of servent
2 so as to maximize the social welfare. Formally, maximizing
the social welfare implies finding a transfer bandwidth vector� �EK � � U � ��K �' ����� U � ��K � � such that

� ��K ������� ��������� �������� V � ��G.�� U � ��K � � � s.t.
�
������� U � �EK �! � 1 % (2)

Remark: This property implies that the incentive protocol
should maximize the aggregate utility (or “happiness”) of all
the requesting servents in

0 1
.

(3) Incentive-based resource distribution: The protocol
should provide incentive to rational users. Given a servent 2
and all the requesting clients in

0 1
, we have two cases:" No Congestion: If the aggregate download bandwidth at time

K of all the requesting servents in
0 1

is less than or equal to � 1 ,
the upload bandwidth of servent 2 , then all servents in

0?1
will

receive a transfer bandwidth equal to their respective maximal
download bandwidth such that they will achieve equal utility.
Formally, if # ������� + � � 1 , then

U � ��K � � + �V � ��G � U � �EK � � � V � ��G � U � ��K � �
 �A � � 0�1 % (3)

Remark: This property implies that whenever servent 2 has
sufficient resources, all the requesting servents should receive
their maximal download bandwidth such that they are “equally
happy”." Congestion: When there is a congestion for servent 2 (i.e.,# ������� + � 4 � 1 � , the transfer bandwidth allocation should be
a function of the contribution and download bandwidth of all
the requesting servents in

0 1
. Formally, for any two servents

�A � � 0�1
, if the ratio of contribution to download bandwidth

of � is greater than or equal to that of � , servent 2 will distribute
the transfer bandwidth resource such that the utility of servent �

is greater than or equal to that of servent � . Formally,
J � �EK �
+ �

> J � �EK �
+ � �%$ V � ��G � U � ��K � � > V � �EG � U � �EK � �'% (4)

Remark: This property implies that the incentive protocol
should provide higher utilities to servents who have higher con-
tributions per unit data request.

In the following, we present the operational setting of our
incentive protocol.

C. Operational setting of incentive P2P protocol

The general setting in which our incentive protocol operates
is as follows:" Each servent has to declare its connection type to the P2P
community1, i.e., servent � has to declare its connection type of
G!� . For our incentive protocol, the connection type of servent
� depends only on the upload (� �) and download bandwidths
(+	�)." To provide fairness and incentive for a P2P community, the
utility function, say for servent � , takes on a concave, bounded,
and normalized form. The utility function of servent � , which
depends on the download bandwidth + � and the received trans-
fer bandwidth U � , takes the form:

V � ��G.�(U � � � V � �,+ �� U � �3�'& � � � �(*)+)-, 8 � if U �� 7+	�
� � � �,9�� if U � 4 + � . (5)

We take this specific form of utility function based on the fol-
lowing reasons: (a) A ����� function is a general form of concave
function which can represent a large class of elastic traffic [15]
and this fits the file transfer service; (b) The utility function has
an upper bound of � � ��� 9 � , which implies that once a servent
receives its maximum download bandwidth, they are equally
satisfied; (c) The utility function has a value of zero if the re-
ceived bandwidth U � � 6

; (d) The utility function estimates the
level of satisfaction given the ratio (�)+) , the amount of allocated
bandwidth to the servent’s maximal download bandwidth.

We adopt concepts from mechanism design [11]. Under our
incentive protocol:
(1) All servents have to declare their connection types. Hence,
servent � has a strategy . � which can declare any connection
type G � H , where H is the set of all connection types in our
incentive P2P system. For an honest servent, which can be
induced by a protocol having the truth revealing property, the
strategy of servent � should be .	�D� G.� � ��� �� �+	� � . That is, ser-
vent � declares its real connection type.
(2) We interpret

J � ��K � , the contribution of servent � , as the vir-
tual credit that servent � has at time K . The proposed protocol
will update the contributions of all the participating servents in
any file transfer activity. In particular, the incentive protocol
will increase the contribution when a servent offers file transfer
service for any requesting servent, and it may reduce the contri-
bution of a servent who requests a file download. Particularly,
the initial value of contribution is assigned to be zero which im-
plies this servent has not provided any service to others./

We will address the truth revealing property in a later section.

4

(3) The outcomes of the proposed protocol are (i) how much
transfer bandwidth is to be allocated to each requesting servent,
and (ii) the contribution updates for each participating servent.

III. Incentive Protocol for Distributing the Instantaneous
Transfer Bandwidth

In this section, we describe the incentive protocol for allo-
cating the instantaneous transfer bandwidth to requesting ser-
vents. For ease of discussion, we drop the time dependent nota-
tion; i.e., we use U � instead of U � ��K � . Our incentive protocol can
achieve efficiency for social welfare. Furthermore, it provides
fairness and incentive for sharing resources among all request-
ing servents. We first illustrate how the incentive protocol can
maximize the social welfare. Then we generalize the concept
and extend the protocol to include the contribution value of each
requesting servent.

A. Protocol to maximize the social welfare

Consider a servent 2 that is willing to offer its transfer band-
width resource for use by a set of requesting servents

0 1
. If

all the servents in
0 1

are of the same contribution (or if we
ignore the contribution factor for the time being), maximizing
the social welfare implies finding a transfer bandwidth vector� � � � ����' ���� � � � � such that:

��� �E� 1 0�1 �	� � ����� �
����� � V � ��G �
� � �

s.t.
�
����� � �$� � 1��D6 �$� +	�
 � � 0 1 % (6)

Here, �$� is the allocated transfer bandwidth for servent � in
solving the above maximization problem. For our concave and
bounded utility functions, we have the following equivalent op-
timization problem:����� �

����� � ���$� , +	� �

s.t.
�
����� � � � � 1 �D6 �� � + �
I� � 0�1 % (7)

One way to solve the optimization problem is to try to distribute
the resource � 1 such that the ��� � , + � � s are as even as possible
for all � � 0�1 . For instance, if we were without constraints, the
solution should satisfy:

� � , + � ��� � , + �
 �A � � 0�1 % (8)

We use and enhance the progressive filling algorithm [4] to
solve the above constrained optimization problem. Our pro-
gressive filling algorithm works as follows:

1) Treat a requesting client � � 0 1 as a water bucket with a
capacity equals to 9 + � and a height equals to 9$+ � .

2) Based on the values of +-� , sort all buckets in ascending
order. For bucket � , the initial water level is +B� .

3) In addition, we have � 1 amount of “water” (the resource)
to distribute to all the buckets. We distribute the water
such that the maxmin fairness property [4] holds.

Water Level

50 100 100 200
50 75 75 0

log(2) log(1.75) 0log(1.75)

y1

d1

yi

di

Ui

Uk=200
y2

d2

2d2

d3

2d3 d4

y3

2d1

Fig. 2. Example for the Progressive Filling Alg.

We use a simple example to show how the algorithm works.
Suppose there are four requesting servents competing for the
transfer bandwidth of servent 2 with � 1 � 9 6 6 . The download
capacities for the four requesting servents are + � :+ " �+��$:+���� �
 � 6 �8 6$6 �8 6 6 A9 6$6 � . Figure 2 illustrates the bandwidth alloca-
tion result by the progressive filling algorithm, which is � �
 � �
� "
���
����� � � 6 ����; ����; 6 � . The solution maximizes the
social welfare at a value equal to �������,9�� , � � � � 8 %���� � , ����� � 8 %���� � .
This example shows that the algorithm biases toward servents
with smaller download capacities. The intuition is that given the
same unit of bandwidth resource, a servent which has a smaller
capacity will reach the maximal utility of � � � �,9�� with a higher
rate than servent with a larger capacity. Therefore, by assign-
ing the bandwidth to smaller-capacity users, we can achieve a
higher social welfare value.
Theorem 1: The progressive filling (PF) algorithm finds a so-
lution to the bandwidth allocation problem which maximizes
the social welfare in Eq. (6).
Proof: Let � � � � � # ����� � V � ��G �
� � � � # ������� ���������)+) , 8 � .
Suppose the algorithm gives the solution � � . For any bucket
� such that � �� 4 6

, if �
��) Q +)"! �

�� # Q + # , we know that bucket �
has a value �$� �� , + � � and it is under the “water” level. In this
case, we have � �� � + � and we cannot allocate more resource

to bucket � . On the other hand, if �
��) Q +) 4 �

�� # Q + # , then bucket

� has value ��� �� , +.� � which is above the “water” level. � �� � 6
implies that we cannot obtain a better solution by moving any
resource from � to other buckets. So the solution of the PF
algorithm is guaranteed to be a local maximum. Lastly, since
the function � is continuous over a convex constraint set, the
local maximum solution is also a global maximum solution.

B. Incentive protocol

In the above discussion, we distribute the transfer bandwidth
� 1 among the requesting servents without considering their
contribution values. We now extend the solution to include the
contribution value of each requesting servent in order to provide
incentive for contributing to the P2P community.

In maximizing the social welfare, Equation (8) implies that
for any two requesting servents �A � � 0 1

, we distribute the
transfer bandwidth resource such that �$� � , + � ��% ��� � , + � � �
8 . To provide incentive, we distribute the transfer bandwidth
resource � 1 of servent 2 such that the transfer bandwidth vector

5� � U � ����� U � ��� � � satisfies

U � , + �U � , + � � � J �J �����
#�A � � 0 1 (9)

where � is any nonnegative real number. Clearly this is a gener-
alization of the problem of maximizing the social welfare. E.g.,
if all the requesting clients have the same contribution values
(i.e.,

J � � J � for �A � � 0 1), the above formulation is equiva-
lent to Equation (8).

Based on the progressive filling (PF) algorithm given above,
we propose an enhanced contribution dependent progressive
filling (CDPF) algorithm. In essence, the new algorithm tries
to satisfy Equation (9) among the requesting servents, if fea-
sible. In doing so, the algorithm also maintains the maxmin
fairness property. The CDPF algorithm works as follows:
(1) Treat a requesting client � � 0 1

as a water bucket with a
capacity equal to 9 +-� and a height equal to 9 +-� % � J � � � .(2) Based on the value + � % � J � � � , sort all the buckets in ascend-
ing order. For bucket � , the initial water level is +B� % � J � � � .(3) Distribute � 1 amount of water (the resource) to all the buck-
ets. To fill each unit for bucket � , we consume � J � � � amount of
water.

Water Level
uk=200

Ui

X1

d 1

(C 1
r)

d 1

(C 1
r)

2

(C 1
r) X3

d 3

(C 3
r)

d 3

(C 3
r)

2

(C 3
r)

X4

d 4

(C 4
r)

(C 4
r)

d 4

(C 4
r)

2
d 2

(C 2
r)

(C 2
r)

di 50 100 200 100
Ci 100 100 200 50
Xi 50 50 100 0

log(2) log(1.5) 0log(1.5)

(C 1
r)

(C 3
r) (C 4

r)

Fig. 3. Example for the Contribution Dependent Progressive Filling Algorithm
with ���
	 .

To illustrate the algorithm, we use the same scenario as in
the last example. The contribution values of the four requesting
servents in this case are J �. J " J � J � � � 8 6$6 � 6 �8 6$6 A9 6 6 � ,
and � � 8 . Figure 3 illustrates the bandwidth allocation result
produced by the CDPF algorithm. Observe that the height of
each bucket represents the filling range of each servent and the
width represents the unit of allocation for each servent, i.e.,

J �
for servent � in the problem formulation. The allocated trans-
fer bandwidth vector is � �@ U �! U " U � U � � �@ � 6 6 � 6 �8 6$6 � .
Note that the solution gives more of the resource to a servent
which has a higher contribution value (e.g., servent 4 in this
case). Also note that the solution does not maximize the social
welfare, but provides fairness in the form of service differentia-
tion among the servents according to their contributions. It also
provides incentive for servents to share their resources. The
incentive property can be formally stated as the following theo-
rem.
Theorem 2: For any two requesting servents �A � � 0 1

, the
CDPF algorithm distributes the transfer bandwidth resource

such that:

� J � � �+	�
> � J � � �+ � �%$ V � �EG � U � � > V � �EG � U � � %

Proof: When ��)����+) > �� # ���+ # , the stated condition in Theorem 2

is equivalent to:

+	�
� J � � �

 + �
� J � � �

% (10)

So initially, bucket � has a lower water level than bucket � .
Therefore, bucket � will hit its capacity faster than � . In the
final bandwidth distribution, we have:

U � , +	�
� J � � �

 U � , + �
� J � � �

% (11)

When Equation (11) meets the strictly less than condition, this
implies that U � � + � . In this case, bucket � is fully satisfied
and reaches its maximal utility value of

V � ��G.�(U � � � � � � 9 .
Therefore,

V � �EG � U � � > V � �EG � U � � . When Eq. (11) meets the

equality condition, we divide Equation (10) by (�) Q +)��) � � � (# Q + #�� # � � ,

which gives:

+	�U � , + � +.�U � , + � �%$ U � , + �
+ �

> U � , +.�
+ �

�%$ � � � � U � , +	�
+ � � > ����� � U � , + �

+ � �
�%$ V � �EG � U � � > V � �EG � U � �

Remark: The significance of Theorem 2 is that our incentive
protocol possesses the desired properties (2) & (3) given in Sec-
tion II-B.

The CDPF can be implemented by the following code:

CDPF (� , � 1 , all requesting servents in
0 1

)
1. if (# ����� � + �� � 1) return x=d;/*no congestion*/

2. sort M +)��) � � " +)��) � � � � � 0�1 T
in ascending order. Store

values and node index in array
�

and � respectively;
3. i=1; /*initialize index variable*/

4. level= +���� ��� ;/*initialize feasible water level*/

5. vol=
J � 8'� � � ;/*initialize resource level for all buckets*/

6. do M
7. i=i+1;
8. nextLevel=S[i];/*the next testing water level*/

9. if ((nextLevel � level) � vol
> � 1) M

/*can’t move to next level*/
10. level = level+ � 1 /vol;
11. � 1 � 6

;
12.

T
13. else M

/*move to next feasible level*/
14. � 1 = � 1 -vol*(nextLevel-level);
15. level=nextLevel;

/*adjust the unit for filling operation*/
16. if (S[i] is a lower bound of T[i]) vol=vol+ � J ��� � � � � ;

6

17. else vol=vol- � J ��� � � � � ;18.
T

19.
T

while (� 1 4 6
);

20. for (each � � 0 1)
21. if (level

4 +)� �)�� �) U � =[level-
+)��)�� �]* � J � � � ;22. return x;

Our algorithm will assign the bandwidth U � as equal to +	� ,
which is the maximal download bandwidth of servent � , for
all the requesting servents if the aggregate maximal download
bandwidth is less than or equal to the upload bandwidth re-
source (i.e., # ����� � + � ! � 1). Otherwise, our algorithm will

sort all the lower bounds M +)� �) � � T and upper bounds M " +)��) � � T in

ascending order and try to test whether the amount of resource
� 1 can fill the buckets such that these bounds can be reached.
We initialize the starting water level to be the minimum value
of the sorted bounds. The initial marginal amount of water for
filling a higher water level is � J � 8'� � � � , where �5 8�� is the in-
dex of the servent which has the minimum lower bound. Within
each iteration of the do-while loop, we test whether the bound
for the next bucket in

�
can be reached. If it can be reached,

we first reduce the remaining resource in � 1 , then we adjust
� J � �
� � if servent � ’s bound can be reached, and then we assign
the transfer bandwidth to all the eligible requesting servents. If
the bound cannot be reached, the algorithm terminates and we
have found the transfer bandwidth distribution.
Theorem 3: The CDPF algorithm has computational complex-
ity
� �
	 � � � �
	�� � , where 	 is the number of requesting servents

in
0�1

.
Proof: In line 2 of the CDPF algorithm, the sorting operation
takes

� � 9 � � 0 1 � � � � �,9 � � 0�1 � � � time. The do-while loop
between line 6 and 19 takes constant time and, at most, we
go through this loop 9 � � 0 1 � number of times. Therefore,
the computational complexity of the CDPF algorithm is� � 9 � � 0 1 � ������� 9 � � 0 1 � � � . Since � 0 1 �3� 	 , after simplifying,
the computational complexity is

� �
	 � � � �
	�� � .

The proposed algorithm is efficient. A file sharing node only
needs to update the resource distribution whenever a new re-
questing servent initiates a file transfer, or an existing request-
ing servent finishes the file transfer process. Therefore, our de-
centralized mechanism is scalable and can handle tens of thou-
sands of nodes joining or leaving a P2P network since not all
these nodes are targeting one specific file sharing node for the
file transfer at the same time. Finally, although our mechanism
needs the information about contribution and connection type
of requesting servents, the information needs to be available
only when the requesting servent joins the resource competi-
tion. Therefore, a file sharing servent does not need to have the
information for the whole P2P network.

IV. Contribution Update

After each file transfer activity, we need to update the con-
tribution values of all the participating servents. We give the

physical meaning of contribution values and discuss how they
should be updated. We will then present our contribution up-
date algorithm and give its complexity analysis. Security issues
for the contribution update will be discussed in a later section.

A. Social gain and social payment

In P2P networks, many factors can influence the contribution
value of a given servent – e.g., shared storage or shared band-
width. It is difficult to rank the importance of these factors.
Furthermore, it is the shared contents, rather than the resources
being shared, that attract download requests. Hence, the same
amount of bandwidth or storage offered for sharing by two ser-
vents does not imply the same amount of contribution by these
servents. Rather, we define a servent’s contribution as the util-
ity it gives to the whole P2P community. When a servent, say
2 , transfers files for other servents, it gives utilities to the com-
munity. Therefore, we increase the contribution value of 2 by
the social gain ��� 1 ��� 1 � , which is defined as:

��� 1 �E� 1 � � ��� �E� 1 0�1 � � � ��� �
����� � V � �EG �
� � �'% (12)

On the other hand, when a servent � � 0?1
receives transfer

bandwidth of U � based on the CDPF algorithm, the U � value may
not be equal to � � , which is the solution of the PF algorithm for
maximizing the social welfare. Therefore, we define ��� � � U � �
as the social payment for servent � when it receives a transfer
bandwidth of U � :

��� � � U � � � ��� ��� 1 0�1 ���
 V � ��G.�� U � � , ��� �E� 1 � U � 0 1 � M&� T � � (13)

The physical meaning of ���5� � U � � is the difference between the
maximum aggregate utility under social welfare resource distri-
bution (as solved by the PF algorithm) and the maximum aggre-
gate utility under contribution dependent resource distribution
(as solved by the CDPF algorithm). In other words, if U � band-
width is assigned to servent � based on the CDPF algorithm,
the P2P community will not receive maximum social welfare.
Hence, servent � should pay for this difference, and we deduct
the payment amount from servent � ’s contribution value.

B. Instantaneous contribution update

When a servent, say 2 , provides its transfer bandwidth for
use by the P2P community, its contribution value is increased
by

��� �E� 1 0 1 � . This increase is equal to the maximum social
welfare. On the other hand, the aggregate utility received by
the requesting servents in

0 1
is not equal to

��� �E� 1 0�1 � . The
reason for the difference is that some requesting servents may
receive more transfer bandwidth under the CDPF algorithm, as
compared with the PF algorithm. Such a servent needs to make
a social payment equal to the extra bandwidth received.

In our contribution update mechanism, we compare the re-
source allocation, U � , under CDPF with the resource allocation,
� � , under PF for servent � . We choose a servent who obtains the
largest amount of extra bandwidth U � � �$� and reduce that ser-
vent’s contribution by ���5� � U � � . The process is repeated until

7

the solution of the CDPF algorithm equals the solution of the
PF algorithm.

Let us illustrate the contribution update process using the ex-
ample in Figure 3. For the resource owner servent 2 ,

J 1
is

increased by ��� 1 �E� 1 � � ������� 9 � , �������(8$% ��� � , � � ���(8$% ����� .
i=1 i=2 i=3 i=4

(��� , ���) (��� , 	����) (���� , ���) (���� , 	����) (���� , 	����)
 � ��� ��� ��� � � ��� � ��� 	���� ���
 � � ����� ��	�� 	������
In the first round shown in the table above, servent 4 gains

the most extra resource. Therefore its contribution value is re-
duced by ��� � � 8 6 6 � � ��� �,9 6$6 �M 8 :9B :<; �= T ��� V � ��G � �8 6 6 � ,��� �(8 6 6 'M	8$ A9B �< T � � � � � � �,9�� , � � � � 8$% ����� , � � � � 8$% ����� � �
 �������(8$%�� � , �
� � � �,9 � , � � � � 8$%�� � � . There are 8 6$6 units of resource
remaining for servent 2 .

i=1 i=2 i=3
(��� , ���) (��� , 	����) (���� , ���) (���� , 	����)
 � ��� 	�� 	�� � ��� � ��� ���
 � � ��	�� 	�� �

In the second round shown in the table above, servent 3 gains
the most extra resource. Therefore its contribution value is
reduced by ��� � ��� 6 � � ��� �(8 6 6 'M	8$ A9B �< T � � V � �EG � U � � ,��� � � 6 'M 8 :9 T � �3� �� �������,9�� , � � � � 8$%�� � � � �������(8$%�� � , � � � �,9 � � .
There are now � 6 units of resource remaining for servent 2 .

i=1 i=2
(��� , ���) (��� , 	����) (���� , ���)
 � ��� � � ��� � ���
 � � �

In the last round shown in the table above, CDPF and PF
produce the same resource allocation vector. Hence, no more
payment is necessary by servents 8 and 9 . Lastly, we point out
that our contribution update mechanism achieves the desirable
property (1) given in Section II-B. This is formally stated in the
following theorem.
Theorem 4: The cumulative contribution is conserved to be
equal to the total social utility at all time. That is,

��
��� � J � �EK � �

��
��� �

���� V � ��G.�� U � ��� � � +	�
#K 476 %

Proof: For simplicity, assume
J � � 6 � � 6
#� � 0 1 . Let � 1 � � ��K �

be the payment of servent � for receiving bandwidth U � from ser-
vent 2 at time K and � 1 ��K � be the gain of servent 2 for providing
its bandwidth at time K . Let

0 �1 ��K ��� 0 1 ��K � be the set consist-
ing of all the servents requesting resources from servent 2 and
having positive payments at time K . Consider the time interval
 K (K , � K � . We have�
����� ����� 1�� J � �EK , � K � � J � ��K � �/� � 1 ��K � � �

����� � � 1 � � ��K � � � K %
Let �$� be the � ��� servent that is required to pay. According to
the payment rules, we have

� 1 � � # ��K � � ��� ��� 1 � �� ��
� � � U �) ��K �' 0�1 � M

�� �!
� � � � � T �� V � # ��G"� # U � # �EK � �

, ��� ��� 1 � ��
��� � U �) ��K �' 0 1 � M

�!
��� � �-� T � � %

Summing for all the servents in
0 �1 , we have�

����� � � 1 � � ��K � � ��� �E� 1 0�1 � � ������ � V � �EG � U � �EK � �, ��� �E� 1 � �
����� � U � ��K � 0�1 � 0 �1 � � %

Since
� � ��� 1 0 1 � �#� 1 �EK � , we have

� 1 ��K � � �
����� � � 1 � � �EK � � �

����� � V � ��G.�� U � ��K � � ,��� ��� 1 � �
����� � U � ��K �' 0 1 � 0 �1 � � %

When the contribution update process finishes, a servent, say
� , who does not need to pay receives a transfer bandwidth of U �
under CDPF, which is equal to the bandwidth �	� under the PF
algorithm. Therefore, we have

��� ��� 1 � �
����� � U � �EK � 0 1 � 0 �1 � � �

����� �$ � � V � �EG!�� U � �EK � �
. Thus,

� 1 �EK � � �
����� � � 1 � � �EK ��� �

����� � V � �EG!�� U � �EK � ��
����������� 1�� J � ��K , � K ��� J � ��K � � � �

����� � V � �EG!�� U � �EK � � � K�
����� �%��� 1%� +

J � �EK �
+ K � �

����� � V � �EG � U � �EK � �
��
1 � � �

����� �%��� 1%� +
J � �EK �
+ K �

��
1 � � ������ � V � ��G.�� U � �EK � �

��
� � � +

J � �EK �
+ K �

��
��� � V � ��G.�� U � ��K � �� �� ��

� � � +
J � ��� �
+	� +	� �

� �� ��
� � � V � ��G � U � ��� � � +	�

��
��� � J � �EK ���

��
��� �

� �� V � ��G � U � ��� � � +	�;%
Our contribution update mechanism is based on a fluid

model. In implementation, we divide time into quanta denoted
as

� K . At the beginning of each time quantum, we assign the
transfer bandwidth using the CDPF algorithm. At the end of

8

each time quantum, we update the contribution values of ser-
vent 2 and the servents in

0 1
. The pseudo-code for the contri-

bution update is:

Contribution Update (� , � 1 ,all requesting servents in
0 1

)
1. x = CDPF(� , � 1 ,all requesting servents in

0?1
);

/* x is the solution of CDPF algorithm */
2. y = PF(� 1 ,all requesting servents in

0 1
);

/* y is the solution of PF algorithm */
3.

J 1 � J 1 , � # ����� � ������� �)+) , 8 � � � � K ;
/* the resource owner k increases its contri-

bution by the social gain */
4. do M
5. q = arg max M U � � � � T ;

/* q is the servent who will reduce its con-

tribution in this iteration */
6. if (U�� � � � 4 6

) M
7. ��� � # ������� ������� �)+) , 8 � ;
8.

0�1 � 0�1 � M�� T ;
9. � 1 ��� 1 � U � ;
10. y = PF(� 1 ,all requesting servents in

0 1
);

11. ��� � ��� � � ����� ��(*)+) , 8 � , # ������� ������� �)+) , 8 � � ;
/* servent � reduces its contribution by its

social payment */
12.

J � � J � �I��� � � K ;
13.

T
14.

T
while (U�� � � � 476

);

In line 3, the algorithm increases the contribution of the re-
source owner by the social gain ��� . The contributions of the
requesting servents are reduced in the do-while loop. In line
5, we choose the servent � who gains the most extra resourceU � � �$� . From lines 7 to 11, we compute the social payment
for servent � and adjust the remaining amount of resource for
the remaining requesting servents. In line 12, we decrease the
contribution of servent � by its social payment.
Theorem 5: The contribution update algorithm has computa-
tional complexity

� �
	 " � � � �
	�� � , where 	 is the number of re-
questing servents.
Proof: From Theorem 3, we know that the CDPF algorithm
has complexity

� �
	 � � � �
	�� � . The PF algorithm is a special case
of the CDPF algorithm and also has complexity

� � 	 � � � �
	�� � .
Each iteration within the do-while loop executes the PF
algorithm (line 10) once. We execute the do-while loop at
most 	 times in the case that 	 � 8 requesting servents need
to make their social payment. Therefore, the do-while loop
has complexity

� �
	 " � � � �
	�� � . Since the statements outside the
do-while loop have a lower complexity, the contribution update
algorithm has time complexity

� �
	 " � � � �
	�� � .
V. Maintaining the Truth Revealing Property

In this section, we discuss how one can provide the truth re-
vealing property. In particular, how to ensure that (1) no servent
in the P2P system will misrepresent its contribution value, and
(2) each servent will honestly report its true connection type.
Maintaining the True Contribution Values: First, we can-
not simply allow a servent to alter its contribution at will. The
justifications are

� A malicious servent 2 may increase its contribution value
by more than its social gain ��� 1 ��� 1 � after it has provided
a file transfer service.

� A malicious servent � may reduce its contribution value by
less than its social payment ��� � � U � � after it has received
a file transfer service.

Through these malicious acts, a servent hopes to receive a
higher transfer bandwidth when it requests for file download.
We propose a light-weight, secure protocol to perform the con-
tribution update process. We adopt the concept of reputation
system [8]. In our framework, the contribution update process
is managed by a distributed auditing authority (DAA). One
can view a DAA as a database of servents’ contributions dis-
tributed among a set of nodes, each of which is an auditing au-
thority (AA). Servents in a P2P system can contact any AA in
the distributed set for contribution update. The AA uses well-
studied distributed concurrency control methods [7] to maintain
the consistency and integrity of the distributed database. In this
paper, we also assume that all the AAs are trusted.

Let us describe the contribution update process which in-
volves the AA, the servent 2 that provides a file transfer service,
and a set of requesting servents

0 1
. For ease of presentation,

let use consider one particular AA. The AA maintains a table
which records the contribution value of all the servents in a P2P
system. Each tuple in the table is of the format M ID, C val,
timestamp, tran ID

T
where ID is a unique identifier of

a servent in the incentive P2P system, and C val is the lat-
est contribution value recorded for the servent at time times-
tamp based on the latest transaction ID tran ID. When a new
user registers in the incentive network, an entry is created in the
AA’s table and the servent is assigned an initial contribution
value of zero.

Assume that servent � wishes to request a file from servent
2 . Servent � needs to first request its contribution certificate,
denoted as � �� , from the AA. AA performs the database lookup
and returns � �� back to servent � . In our protocol, � �� contains
the C val of servent � , and the certificate is digitally signed
by the AA. Servent � can then provide this certificate � �� and
its maximum download bandwidth +B� to servent 2 for the file
download request. The rationale for this step is that servent �
cannot falsify its contribution value since it is certified by the
AA. Any tampering of this value can be detected by servent 2 .

Servent 2 , upon receiving the file download request from ser-
vent � , can verify the validity of � �� . If it is valid, 2 provides the
file download service for servent � . At the end of the transfer
quantum, servent � will provide a service receipt

0 �� (which is
digitally signed by servent �) to servent 2 . After collecting ser-
vice receipts from all requesting servents, servent 2 can submit
these receipts to AA for the contribution update. The rationale
for the service receipt is that servent 2 cannot falsify any con-
tribution activity since AA can verify the validity of all service
receipts. Based on the contribution update algorithm in Section
IV, the AA may increase the contribution value of servent 2 and
decrease the contribution value of all requesting clients in

0 1
.

It is important to point out that after receiving a file transfer
service, servent � may refuse to provide its service receipt

0 ��
to servent 2 in the hope that its contribution value will not be

9

decreased. In this case, servent 2 can report this event to the
AA. When AA detects a sufficient number of anomalies against
servent � , AA can decide to blacklist [8] servent � for later activ-
ities. For example, the AA can refuse to provide the contribu-
tion certificate � �� to servent � . Lastly, because the initial value
of contribution for a new servent is zero and the contribution
value is always non-negative, a malicious servent cannot take
advantage of using up its contribution value and then createing
a new account in a P2P network to obtain file transfer service
without any social contribution.
Truth Revealing of Connection Types: As mentioned, the in-
centive protocol assumes that all servents honestly report their
connection type G � � �E� � �+ � � , i.e., their maximum upload and
download bandwidth capacities. We now address the truth re-
vealing issue in connection type reporting. We argue that for a
rational user, there is no incentive to report any connection type
different from its true type.
Revealing the download bandwidth + � : Consider a servent �
with a maximum download bandwidth of +B� . There is no incen-
tive for a rational user to report a download bandwidth which is
higher than +	� . The reasons are:
� Based on the utility function in Equation (5), receiving a

transfer bandwidth U � higher than +	� will not result in a
higher utility since the maximum value of the utility is
�������,9�� , which is achieved at having a transfer bandwidth
of U � ��+ � .

� The proposed CDPF algorithm assigns the transfer band-
width among requesting servents based on the maxmin
fairness principle. Therefore, reporting a higher download
bandwidth may result in receiving a lower transfer band-
width allocation U � .

Also, there is no incentive for a rational user to report a down-
load bandwidth which is less than its true value +-� . The reason
is that since servent � does not know about the congestion level
at the servent, say 2 , providing service, declaring a download
bandwidth less than +	� may result in a lower transfer bandwidth
allocation U � . This situation occurs when servent 2 is not con-
gested and the CDPF algorithm assigns the transfer bandwidthU � based on the declared download bandwidth.
Revealing the maximum upload bandwidth � 1 : Again, con-
sider that servent 2 is a service providing node. Clearly there is
no incentive for servent 2 to declare an upload bandwidth less
than � 1 . The reason is that this will discourage other servents
from requesting service from servent 2 , which will in turn result
in a lower contribution value for servent 2 .

On the other hand, servent 2 may declare that it has a higher
upload bandwidth than � 1 so to attract service requests from
other servents. However, the wrong information can be easily
detected since the nodes requesting service will provide service
receipts after the file download process. Therefore, the AA can
easily verify whether the declared upload bandwidth is equal to
the aggregate received bandwidth by all the requesting servents.

Lastly, one may argue that a requesting servent may probe the
file-sharing servent multiple times in order to estimate the con-
gestion level and bandwidth resources so as to obtain a higher
bandwidth in the long run. Since the congestion level at the file
sharing servent and at the network are time varying, this sort of

scheme may not always achieve the result of obtaining a higher
bandwidth for the requesting servent.

VI. Experimental Results

In this section, we present simulation results showing that
our mechanism can fairly distribute transfer bandwidth among
the requesting servents and can provide higher aggregate utility
than other scheduling disciplines such as FCFS and processor-
sharing.
Experiment A: servents with similar connection type but
different contribution values: Four servents make requests to
servent 2 , which has a transfer resource of � 1 � = 6$6 . The
contribution values of these requesting servents at time K � are
 J �! J "$ J � J � � � 8 �8 % �; :9B A9B%��!� . The connection types of all
the requesting servents are the same and their maximal down-
load bandwidth are + � � + " � +��5� +�� �@8 � 6 . Each simula-
tion lasts 8 6$6 units of time in the interval of K � 7K- 7K � , 8 6$6 � .Figure 4 illustrates the bandwidth assignment U � �EK � and their re-
spective contribution values

J � �EK � during the simulation period.

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

Time

B
an

dw
id

th

servent 1
servent 2
servent 3
servent 4

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

Time

C
on

tr
ib

ut
io

n
V

al
ue

servent 1
servent 2
servent 3
servent 4

Fig. 4. (a) Instantaneous bandwidth assignment and (b) instantaneous contri-
bution values for competing servents.

In experiment A, we observe that although all the servents
have the same connection type, our CDPF algorithm assigns
higher bandwidth to the servents which have larger contribution
values. At the same time, our mechanism decreases the con-
tribution values of these servents (since they are getting more
social resources). Eventually, all servents tend to have equal
contribution values and equal bandwidths, which maximize the
aggregate utility among all the servents.
Experiment B: servents with different connection types and
contribution values: The connection types of the requesting
servents are different and they are + � � 8 6 6 :+ " � 8 � 6 :+ � �
9 6$6 �+ � � 9 � 6 , respectively. All the other settings are the same
as in Experiment A. For time K � K K � , 8 6 6 , we illus-
trate the bandwidth assignment U � ��K � and contribution

J � ��K � in
Figure 5. In experiment B, we observe that our instantaneous

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

Time

B
an

dw
id

th

servent 1
servent 2
servent 3
servent 4

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

Time

C
on

tr
ib

ut
io

n
V

al
ue

servent 1
servent 2
servent 3
servent 4

Fig. 5. a) Instantaneous bandwidth assignment and (b) instantaneous contri-
bution values for competing servents.

10

bandwidth assignment also converges to the solution of the PF
algorithm, which provides maximized aggregate utility for the
P2P network. Initially, servent 8 gains less bandwidth than the
solution of the PF algorithm. Therefore, the CDPF algorithm
does not decrease the contribution value of servent 8 . For ser-
vent 9 , < , and = , they gain a larger bandwidth than by the PF
algorithm at the beginning. Afterwards, their contribution val-
ues converge to the same value. Therefore, their instantaneous
bandwidth converges to the solution of the PF algorithm.
Experiment C: achieved utility under different resource dis-
tribution algorithms: We compare the efficiency of our incen-
tive mechanism with that of the FCFS and processor-sharing
disciplines. The average file transfer request rate matrix,

�
, is

randomly generated in 10,000 experiments. There are fifty ser-
vents and they can make requests to each other. There are five
different connection and each servent has an equal probability
of being any of the connection type. The file request rate and the
file service rate are Poisson. Under the FCFS discipline, there
are at most five servents receiving service at the same time. Any
further requests are queued and served in FCFS order. Under
the processor sharing discipline, each requesting servent gets
an equal share of the available bandwidth from the provider
servent. The distribution for the incentive mechanism is as de-
scribed above. The probability density function for the aggre-

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

300000 350000 400000 450000 500000

P
ro

ba
bi

lit
y

de
ns

ity
 fu

nc
tio

n

Aggregated Utility

FCFS
Process-Sharing

Incentive Mechanism

Fig. 6. Probability density function for aggregate utility under FCFS, process-
sharing and incentive mechanism.

gate utility under these three resource distribution algorithms
are illustrated in Figure 6. The x-axis is the value of the aggre-
gate utility and the y-axis is the frequency achieving the value
of aggregate utility. The proposed incentive mechanism always
gives a higher aggregate utility than the other algorithms.

VII. Related Work

In [6], the authors address one possible mechanism for
Napster-liked P2P network. Our work is different from theirs
in the sense that our mechanism uses “virtual credit” so that it
will not reduce the willingness of users to participate in a P2P
network. The concept of reputation system is discussed in [8]
for the application of P2P systems and ad-hoc networks. Zhong
et al. [19] discuss some shortcomings of micro-payment and
reputation system. They propose a cheat-proof, credit-based
mechanism for mobile ad-hoc networks. In [5], the authors dis-
cuss the economic behavior of P2P storage networks. In [18],
the authors model P2P networks as a Cournot Oligopoly game

and give elegant control-theoretical solution focusing on global
storage system. Our work focuses on the file-transfer and band-
width allocation of a P2P system and we use the mechanism de-
sign approach in designing a competitive game in a P2P system.
Lastly, algorithmic mechanism design [10], [11], [16] provides
a theoretical framework for designing incentive mechanisms.

VIII. Conclusion

We have presented an incentive mechanism for P2P net-
works. Our mechanism distributes resources among servents
based on each servent’s utility function, connection type, and
contribution. Our mechanism achieves both higher aggregate
utility and fairness for a P2P network. Under our mechanism,
the contribution value of a servent will be increased if it pro-
vides service to the P2P community. A servent who has a larger
contribution value will receive a higher utility when it competes
with other servents for file download services. Therefore, ser-
vents in the community have incentive to share information,
thereby resolving the free-riding problem. Furthermore, our
mechanism may decrease the contribution values of servents
who access a congested resource. Therefore, it also provides in-
centive for servents to access information from non-congested
servents and resolves the tragedy of the commons problem.

REFERENCES
[1] The Gnutella Protocol Specification v0.4 1, document revision 1.2.
[2] Limewire : a Gnutella client software.
[3] E. Adar and B. Huberman. Free riding on Gnutella. Technical report,

Xerox PARC, 10 Aug. 2000. FirstMonday.
[4] J.-Y. Boudec. Rate adaptation, congestion control and fairness: A tutorial,

http://icapeople.epfl.ch/leboudec.
[5] A. C. Fuqua, T. Ngan, and D. S. Wallach. Economic behavior of peer-to-

peer storage networks. To appear in Workshop on Economics of Peer-to-
Peer Systems (Berkeley, California), June 2003.

[6] P. Golle, K. Leyton-Brown, I. Mironov, and M. Lillibridge. Incentives for
sharing in peer-to-peer networks. Proceedings of the 2001 ACM Confer-
ence on Electronic Commerce.

[7] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann; 1st edition, 1993.

[8] M. Gupta, P. Judge, and M. Ammar. A reputation system for peer-to-peer
networks. NOSSDAV, 2003.

[9] G. Hardin. The tragedy of the commons. Science, 162:1243–1248, 1968.
[10] N. Nisan and A. Ronen. Algorithmic mechanism design. In Proc. 31st

Annual Symposium on Theory of Computing (STOC99)., 1999.
[11] D. Parkes. Chapter 2, Iterative Combinatorial Auctions: Achieving eco-

nomic and computational efficiency ph.d. dissertation, univesity of penn-
sylvania. May, 2001.

[12] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scal-
able content addressable network. In Proc. of ACM SIGCOMM, 2001.

[13] M. Ripeanu. Peer-to-peer architecture case study: Gnutella network.
Computer Science Dept., University of Chicago, 2001.

[14] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object lo-
cation, and routing for large-scale peer-to-peer systems. Lecture Notes in
Computer Science, 2218:329–350, 2001.

[15] S. Shenker. Fundamental design issues for the future internet. IEEE
Journal on Selected Areas in Communication, 13(7), September 1995.

[16] J. Shneidman and D. Parkes. Rationality and self-interest in peer to peer
networks. Int. Workshop on Peer-to-Peer Systems (IPTPS), 2003.

[17] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications.
ACM SIGCOMM, 2001.

[18] W. Wang and B. Li. To play or to control: a game-based control-theoretic
approach to peer-to-peer incentive engineering. in the Proceedings of the
Eleventh International Workshop on Quality of Service (IWQoS 2003).

[19] S. Zhong, Y. Yang, and J. Chen. Sprite: A simple, cheat-proof, credit-
based system for mobile ad hoc networks. Technical Report, Department
of Computer Science, Yale University, July 2002.

