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Abstract—Random walk-based graph sampling methods have
become increasingly popular and important for characterizing
large-scale complex networks. While powerful, they are known
to exhibit problems when the graph is loosely connected, which
slows down the convergence of a random walk and can result in
poor estimation accuracy. In this work, we observe that many
graphs under study, called target graphs, usually do not exist
in isolation. In many situations, a target graph is often related
to an auxiliary graph and an affiliation graph, and the target
graph becomes better connected when viewed from these three
graphs as a whole, or what we called a hybrid social-affiliation

network. This viewpoint brings extra benefits to the graph
sampling framework, e.g., when directly sampling a target graph
is difficult or inefficient, we can efficiently sample it with the
assistance of auxiliary and affiliation graphs. We propose three
sampling methods on such a hybrid social-affiliation network
to estimate target graph characteristics, and conduct extensive
experiments on both synthetic and real datasets, to demonstrate
the effectiveness of these new sampling methods.

I. INTRODUCTION

Online social networks (OSNs) such as Facebook, Sina
Weibo, and Twitter have attracted much attention in recent
years because of their ever-increasing popularity and impor-
tance in our daily lives [1]–[3]. An OSN not only provides
a platform for people to connect with their friends, but also
provides an opportunity to study user characteristics, which
are valuable in a variety of applications. For example, Twitter
users’ tweeting activities (e.g., number of tweets related to a
movie) can be used to predict movie box-office revenues [4],
and OSN users’ mood characteristics can forecast stock market
prices [5]. Therefore, measuring user characteristics in OSNs
is an important task.

Exactly calculating user characteristics requires the com-
plete OSN data. For third parties who do not possess the
data, they can only rely on public APIs to crawl the OSN.
However, commercial OSNs are typically unwilling to grant
third parties full permission to access the data due to user
privacy and business secrecy. They often impose barriers to
limit third party’s large-scale crawling [6], and restrict the rate

of requesting APIs [7]. As a result, crawling the complete data
of a large-scale OSN is practically impossible.

To address this challenge, sampling methods have been
developed, i.e., a small fraction of OSN users are sampled
and used to estimate user characteristics. In the literature,
random walk-based graph sampling methods have gained
popularity [8]–[15]. In random walk sampling, a walker is
launched over a graph, which continuously moves from a
node to one of its neighbors selected uniformly at random,
to obtain a collection of node samples. These samples can
yield unbiased estimates of graph characteristics [15,16].

Motivation. While random walk sampling is powerful, if a
graph is loosely connected, e.g., consists of communities, it
will suffer from slow mixing [17], i.e., requires a long “burn-
in” period to reach steady state, which results in the need of
a large number of samples in order to achieve good estima-
tion accuracy. Recent studies have found that mixing times
in many real-world networks are larger than expected [18].
To overcome the slow mixing problem, one approach is to
incorporate uniform node sampling (UNI) into random walk
sampling, which is also known as random walk with jumps
(RWwJ) [9,12,14]. In UNI, nodes are independently sampled
uniformly at random by querying randomly generated node
IDs in a graph. For example, users in many OSNs have unique
numeric IDs, and UNI can be conducted by generating random
IDs in the user ID space and including those valid IDs into
samples. RWwJ then leverages UNI to perform jumps on a
graph. Specifically, at each step of RWwJ, the walker jumps
with a probability determined by the node where it currently
resides, to a node sampled by UNI. By incorporating UNI
into random walk sampling, the walker can jump out of a
community or disconnected component of a graph, and avoid
being trapped, thereby reducing mixing times [9].

The main drawback of RWwJ is that UNI can be resource-
intensive when the valid node ID space of a graph is very
sparsely populated. For example, the fractions of valid IDs



in MySpace and Flickr are only about 10% and 1.3% respec-
tively [12], and as a result, one has to generate about 10 (or 77)
random IDs to obtain a valid ID in MySpace (or Flickr). This
problem can become even worse in some practical situations
as illustrated by the following example.

Example 1. A restaurant company wants to build a new
chain store in one of two small candidate cities in China. A
market surveyor is sent to evaluate the consumption abilities
of inhabitants of the two cities. In China, Sina Weibo [19]
is the most popular microblogging website and provides a
check-in service1 that enables people to share consumption
information with their friends. For example, a Weibo user
can share the location of a restaurant and photos of her
dinner with her friends via a mobile application. Since most
citizens use this check-in service to share their consumption
information on Weibo, the surveyor decides to use Weibo as
a platform to conduct his research. To measure the average
consumption abilities of citizens in the two cities, he plans
to uniformly sample two collections of Weibo users in the
two cities respectively. It is known that every Weibo user
ID consists of ten digits ranging from “1000000000” to
“5058913818” (as of March 25, 2014). He generates random
numbers in this range as test IDs and finds that about 11%
of the test IDs are valid Weibo users. However, because the
population sizes of the two cities are small, e.g., hundreds
of thousands of citizens compared to hundreds of millions of
Weibo users, the percentage of a valid user residing in the two
cities is on the order of 0.1%.

In the above example, the surveyor expects a test ID to fall
into one of the two cities to obtain a valid Weibo user sample,
but UNI becomes extremely inefficient because the probability
that UNI obtains a valid sample equals P (ID is valid) ⇥
P (ID falls into one city) = 0.11⇥0.001 ⇡ 10�4. This results
in the need for a surveyor to try 104 times on average to
obtain a single valid user residing in one of the two cities.
Even worse, in some OSNs such as Pinterest [21], user
IDs are represented by arbitrary-length strings, which makes
UNI practically impossible. Without the ability to efficiently
conduct UNI on a graph, RWwJ will also become inefficient.
This raises the following question: how do we sample nodes
efficiently on a graph when uniform node sampling is ineffi-
cient or impractical at all?
Present Work. In the previous example, the problem is how
to effectively sample Weibo users in the two cities, and
UNI is inefficient because of the sparsity of user ID space.
Since directly sampling users is inefficient, we propose to
sample users in an indirect manner. We notice that check-in
information (i.e., which user checked in which place) shared
by users often contain the venue information, e.g., the location
of the restaurant (i.e., a latitude-longitude coordinate on a map)

1The Check-in service [20] in Weibo allows a registered user to “check in”
at venues using a mobile application by selecting from a list of venues nearby
the user, and the location of the user is usually based on GPS hardware in
the mobile device. In addition, a user can attach a text description or several
photos associated with the venue while checking in.

where the user lunched. Most such OSNs provide APIs for
querying venues within an area specified by a rectangle re-
gion with south-west and north-east corners latitude-longitude
coordinates given [22,23]. This function can be used to design
efficient sampling methods for sampling venues in an area on
a map [24]–[26]. Since we can easily sample venues within an
area of interest, we are then able to indirectly sample Weibo
users in an area by relating users to venues through check-in
relations that exist between them. This will be more efficient
than directly sampling users in an area. We present the detailed
design of this sampling method in Section III and evaluate it
in Section IV.

An important lesson learnt from Example 1 is that, when
direct sampling of the user space is inefficient, we can switch
to sample the venue space, and the relations that exist between
the two sample spaces allow us to efficiently sample the user
space. In general, we use three graphs to represent the two
sample spaces and their relations. In Example 1, we consider
a venue as another type of node besides user node, and build
the following three graphs: (1) a user graph formed by users
and their relations, (2) a venue graph formed by venues and
their relations (the edge set is actually empty in Example 1),
and (3) a bipartite graph formed by users, venues and their
check-in relations. In Example 1, although directly sampling
the user graph is very difficult or extremely inefficient, we can
easily sample the venue graph, and use the bipartite graph to
connect the two sample spaces to indirectly sample the user
graph with efficiency.

Because the affiliation relationship between users and
venues plays an important role in this method, we refer to
the three graphs jointly as a hybrid social-affiliation network.
The formal definition of hybrid social-affiliation network will
be given in Section II, and the detailed design of the sampling
methods on hybrid social-affiliation networks will be presented
in Section III.
Contributions. We make three contributions in this work:

• We introduce the concept of hybrid social-affiliation
network and formulate a sampling problem over it to
characterize graphs. (Section II).

• We design three sampling methods over such a hybrid
social-affiliation network. These methods allow us to
efficiently sample a graph when it is difficult to sample
the graph directly (Section III).

• We conduct extensive experiments to validate the pro-
posed methods on both synthetic and real-world datasets
(Section IV).

II. PROBLEM DEFINITION

We begin with introducing the graph characteristics of
interest to us, and then formally define the hybrid social-
affiliation network.

A. Graph Characteristics
We model an OSN as an undirected graph G(U , E), where U

and E are sets of users and relations among users, respectively.
Users in the graph are labeled. We let L be a set of user labels



associated with the graph, and each user is mapped to a subset
of labels he owns by a characteristic function L : U 7! 2L.
For example, if L = {male, female}, then L(u) represents the
gender of user u.

In many applications, we are interested in estimating the
fractions of users having some labels, e.g., the fraction of
male/female customers buying a product. This can be rep-
resented by the label distribution {✓

s

}
s✓L, where ✓

s

is the
fraction of users with labels s in graph G. That is

✓

s

=
1

n

X

u2U
1 {s ✓ L(u)} , s ✓ L,

where n = |U| is the graph size, 1 {·} is the indicator function
and 1 {C} = 1 if condition C is true; otherwise 1 {C} = 0.

With this definition of graph characteristics, our objective
of this paper is to design an algorithm for collecting node
samples within a budget B from graph G and for providing
unbiased estimates of {✓

s

}
s✓L with low statistical error.

B. Hybrid Social-Affiliation Network

Example 1 motivates us to introduce a hybrid social-
affiliation network which can be used to design efficient
estimators when direct sampling of graph G is difficult
or inefficient. According to our previous analysis, a hybrid
social-affiliation network consists of three graphs: G(U , E),
G

0(V, E 0), and G

b

(U ,V, E
b

), where U ,V are sets of nodes,
and E , E 0

, E
b

are sets of edges. More specifically,
• G(U , E) is the target graph, whose characteristics

{✓
s

}
s✓L are of interest to us and need to be measured,

e.g., the user social network in Example 1.
• G

0(V, E 0) is an auxiliary graph, which can be more
efficiently sampled than the target graph, e.g., the venue
graph (with E 0 = ;) in Example 1.

• G

b

(U ,V, E
b

) is an affiliation graph [27, Chapter 8], which
is a bipartite graph connecting nodes in the target and
auxiliary graphs, e.g., the graph formed by users, venues
and their check-in relations in Example 1.

An example of such a hybrid social-affiliation network
is illustrated in Fig. 1, from which we observe that the
disconnected target graph becomes better connected with the
assistance of the auxiliary and affiliation graphs, so the target
graph can be more efficiently sampled.

G

G

b

G

0

auxiliary graph

affiliation graph

target graph

Fig. 1. Illustration of a hybrid social-affiliation network. Target graph
together with auxiliary and affiliation graphs form a better connected graph
than target graph itself, which improves sampling efficiency on target graph.

In addition to Example 1, many other graph measurement
problems can be formulated as hybrid social-affiliation net-
work sampling problems. To illustrate, we consider another
example.

Example 2. Mtime [28] is an online movie database in China,
which comprises two types of accounts: users and actors.
Users in Mtime can follow each other to form a social network.
Movie actors can also form connections with each other if they
cooperated in same movies. Moreover, a user can follow movie
actors if he/she is a fan of the actor.

In the above example, if we want to measure the character-
istics of the graph formed by Mtime users, and direct sampling
of this user graph is inefficient because the user graph is not
well connected due to user interest differences, geographic
constraints, etc. (A detailed analysis of the Mtime network
can be found in Section IV.) However, we can build a hybrid
social-affiliation network as follows:

• Target graph G consists of Mtime users and their follow-
ing relations.

• Auxiliary graph G

0 consists of actors and their coopera-
tion relations.

• Affiliation graph G

b

consists of Mtime users, actors and
the fan relations between them.

Unlike ordinary people, movie actors, especially pop stars,
are more easily to form connections with each other because
they have more opportunities to participate in the same events
such as Oscar and Cannes. In other words, auxiliary graph is
more likely to be well connected than target graph. We can
leverage this feature to measure target graph characteristics
more efficiently.

III. SAMPLING DESIGN ON HYBRID SOCIAL-AFFILIATION
NETWORKS

In this section, we design three methods for characterizing
a target graph by sampling a hybrid social-affiliation network.

A. Indirectly Sampling Target Graph by Vertex Sampling on
Auxiliary Graph (VSA)

The first method is based on the assumption that vertex
sampling, e.g., UNI, is easy to conduct on the auxiliary graph
but not on the target graph, as is the case in Example 1. We
present a sampling method VSA to indirectly sample the target
graph under this setting. The basic idea of VSA is illustrated
in Fig. 2.

u1 u2 u3 · · · u

n

G

v1 v2 v3 · · · v

n

0
G

0

p

v1 p

v2 p

v3
p

vn0

Fig. 2. Illustration of VSA. Edges in target and auxiliary graphs are omitted.



In VSA, we assume that a node v 2 V can be sampled with
probability p

v

in auxiliary graph G

0. For example, when graph
G

0 supports uniform node sampling, then p

v

= 1/n0
, 8v 2 V ,

where n

0 = |V| is the size of graph G

0. When a node v 2 V
is sampled, we collect all of its neighbors in the affiliation
graph as samples. We will describe how these samples can
yield unbiased estimates of target graph characteristics. The
detailed design of VSA is described in the follows.
Sampling Design. Sampling design of VSA consists of the
following two steps:

(i) Sample a collection of B0 nodes with replacement in the
auxiliary graph G

0. Denote these samples as sequence
S 0 = [y1, . . . , yB0 ].

(ii) For each v 2 S 0, let U
v

✓ U denote the set of neighbors
of v in G

b

. Include the pair (v,U
v

) into sequence S =
[(y1,Uy1), . . . , (yB0

,U
yB0 )].

Using sequence S , VSA estimates target graph characteris-
tics {✓

s

}
s✓L according to following estimators.

Estimators. If in advance, we know the graph size of G is n,
we can use the following estimator to estimate ✓

s

,

✓̂

VSA

s

=
1

nB

0

B

0X

i=1

1

p

yi

X

u2Uyi

1 {s ✓ L(u)}
d

(b)
u

, (1)

where d

(b)
u

is the degree of node u in affiliation graph G

b

.
When n is unknown, we introduce another estimator

✓̌

VSA

s

=
1

Z

B

0X

i=1

1

p

yi

X

u2Uyi

1 {s ✓ L(u)}
d

(b)
u

, (2)

where

Z =
B

0X

i=1

1

p

yi

X

u2Uyi

1

d

(b)
u

.

The following theorem guarantees the unbiasedness of the
two estimators.

Theorem 1. Estimator (1) is an unbiased estimator of ✓

s

.
Estimator (2) is an asymptotically unbiased estimator of ✓

s

.

Proof. To prove Estimator (1) is unbiased, we show that

E
h
✓̂

VSA

s

i
=

1

nB

0

B

0X

i=1

E

2

4 1

p

yi

X

u2Uyi

1 {s ✓ L(u)}
d

(b)
u

3

5

=
1

n

X

v2V
p

v

1

p

v

X

u2Uv

1 {s ✓ L(u)}
d

(b)
u

=
1

n

X

u2U
1 {s ✓ L(u)}

= ✓

s

.

The second equality holds because that y1, . . . , yB0 are i.i.d
random variables. The third equality holds because that when
we merge two summations into one summation with respect
to u, an item in the inner summation is added d

(b)
u

times for
each u. Hence, ✓̂VSA

s

is unbiased.

To prove that estimator (2) is asymptotically unbiased, we
can use the ratio form of the law of large numbers in [16,
Theorem 17.2.1 on P. 428]. Hence,

lim
B

0!1
✓̌

VSA

s

=
E
h
nB

0
✓̂

VSA

s

i

E [Z]
= ✓

s

,

where E [Z] = nB

0 can be proved in a similar way as of the
proof of unbiasedness of ✓̂VSA

s

.

Remark. It is important to know that VSA can provide
unbiased estimates of target graph characteristics under the
condition that every node in the target graph is connected to
nodes in the auxiliary graph. Because VSA can only sample
nodes in U satisfying d

(b)
u

> 0 according to the design of
VSA. If a node u is not connected to any node in V , u cannot
be indirectly sampled by VSA. In Example 1, since we are
only interested in users who share their check-ins in Weibo,
therefore Example 1 satisfies this condition.

B. Random Walk on Target Graph Incorporating with Vertex
Sampling on Auxiliary Graph (RWTVSA)

In some situations, d(b)
u

= 0 for some u 2 U . For example,
some Mtime users in Example 2 may not follow any movie
actor, and these users cannot be sampled by VSA (and as a
result, VSA can not provide unbiased estimates of Mtime user
characteristics). To address this issue, we propose a second
sampling method RWTVSA, which combines random walk
sampling on the target graph with vertex sampling on the
auxiliary graph.

The basic idea of RWTVSA is that, we launch a random walk
on the target graph, and at each step allow the walker to jump
with a probability dependent on the node of which it currently
resides. This is similar to RWwJ [9,12,14] on the target graph
G, but with the major difference that in RWTVSA the walker
jumps to a node in G by jumping first to a node in G

0, and
then randomly selecting one of its neighbors in G

b

. We refer to
this as an indirect jump, and show in experiments that indirect
jumps in RWTVSA bring similar benefits as the direct jumps
in RWwJ. An additional advantage of using random walk on
the target graph is that it better characterizes highly connected
nodes than uniform node sampling as random walks are biased
towards high degree nodes in G. We depict RWTVSA in Fig. 3,
where each node in G is connected to a virtual jumper node
to conduct indirect jumps, through doing vertex sampling over
auxiliary graph G

0.
Similar to VSA, we assume that a node v in G

0 can be
sampled with probability p

v

. In RWTVSA, we virtually connect
each node u 2 U to a jumper node j with edge (u, j). Each
edge (u, j) is assigned a weight !

u

, and the walker residing at
node u moves to j to perform an indirect jump with probability

p

uj

=
!

u

d

u

+ !

u

.

To determine {!
u

}
u2U , we note that in an indirect jump, the

walker jumps from j to node u with probability

p

ju

= q

u

=
X

v2Vu

p

v

d

(b)
v

, (3)
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Fig. 3. Illustration of RWTVSA and indirect jump. Each node u in G

is virtually connected to a jumper node j with weight !u. An indirect jump
is performed by: (i) randomly sampling a node v in G

0, and (ii) randomly
choosing a neighbor of v in Gb as the target node to jump to.

where V
u

✓ V is the set of neighbors of u in the affiliation
graph G

b

, and d

(b)
v

is the degree of node v in G

b

. By setting
the weights to satisfy

!

u

= ↵q

u

, u 2 U , (4)

for any ↵ � 0, we ensure that the stationary probabilities of
the random walk visiting u 2 U , and j are

⇡

u

=
d

u

+ !

u

2|E|+ 2↵
and ⇡

j

=
↵

2|E|+ 2↵
.

Note that if d

(b)
u

= 0, then p

uj

= p

ju

= 0, and the walker
cannot jump from u (or to u). However, u can still be sampled
by the random walk on G.

RWTVSA exhibits similar properties as RWwJ. That is,
when ↵ = 0, RWTVSA becomes a simple random walk on
the target graph, and when ↵ ! 1, RWTVSA is equivalent
to VSA.
Sampling Design. Suppose the random walk starts at node
x1 2 U , and at step i the random walk is at node x

i

.
We calculate the probability q

xi according to Eq. (3) and
!

xi = ↵q

xi . At step i, the walker jumps with probability
!

xi/(dxi +!

xi); otherwise, the walker moves to a neighbor u
of x

i

chosen uniformly at random and x

i+1 = u. An indirect
jump is performed as follows:

(i) sample a node v 2 V in the auxiliary graph with
probability p

v

.
(ii) sample a neighbor u of v uniformly at random in the

affiliation graph, and let x
i+1 = u.

Estimator. Based on the sample path S = (x
i

, . . . , x

B

)
collected by RWTVSA, an estimator for ✓

s

is

✓̂

RWTVSA

s

=
1

Z

BX

i=1

1 {s ✓ L(x
i

)}
d

xi + !

xi

, (5)

where Z =
P

B

i=1 1/(dxi + !

xi).

Theorem 2. Estimator (5) is asymptotically unbiased.

Proof. First, we know that when RWTVSA reaches steady
state, each node u is sampled with probability

p

u

=
⇡

u

1� ⇡

j

=
d

u

+ !

u

2|E|+ ↵

. (6)

Next, let D , P
B

i=1 1 {s ✓ L(x
i

)} /(d
xi + !

xi), then

E [D] = E
"

BX

i=1

1 {s ✓ L(x
i

)}
d

xi + !

xi

#
,

= B

X

u2U
p

u

1 {s ✓ L(u)}
d

u

+ !

u

=
Bn

2|E|+ ↵

✓

s

.

Similarly, we can show that

E [Z] = E
"

BX

i=1

1

d

xi + !

xi

#
,

= B

X

u2U
p

u

1

d

u

+ !

u

=
Bn

2|E|+ ↵

.

Now, we invoke Theorem 17.2.1 in [16, P. 428], which is the
ratio form of the law of large numbers, and we have

lim
B!1

✓̂

RWTVSA

s

=
E [D]

E [Z]
= ✓

s

.

Remark. Note that RWTVSA requires vertex sampling (e.g.,
UNI) on the auxiliary graph G

0. If vertex sampling is also not
allowed on G

0, RWTVSA cannot be applied. However, one can
replace the vertex sampling on G

0 by a random walk on G

0.
Unfortunately, this naive approach can perform very poorly
when the auxiliary graph G

0 is not well connected, because a
poorly connected graph can easily trap a simple random walk
in a community. In what follows, we design a third method to
address this challenge.

C. Random Walk on Target Graph Incorporating with Random
Walk on Auxiliary Graph (RWTRWA)

When both the target and auxiliary graphs do not support
vertex sampling, neither VSA nor RWTVSA can be applied.
Therefore, we design the RWTRWA method to address this
setting. RWTRWA consists of two parallel random walks on G

and G

0 respectively. The two parallel random walks cooperate
with each other, and can be considered as two RWwJs, as
illustrated in Fig. 4. Different from RWTVSA, nodes in G and
G

0 are both virtually connected to two jumper nodes j and j

0

to perform indirect jumps on G and G

0 respectively.

u1 u2 u3 · · · u

n

j

G

!u1 !u2 !u3 !un

v1 v2 v3 · · · v

n

0

j

0

G

0

Jumper nodes

wv1 wv2 wv3 wvn0

Fig. 4. Illustration of RWTRWA and indirect jumps. Nodes in G and
G

0 are virtually connected to two jumper nodes j and j

0 to perform indirect
jumps, respectively. Indirect jumps are illustrated using dashed blue arcs.



The basic idea behind RWTRWA is as follows. Suppose the
two random walks are RW on G and RW

0 on G

0, and at step
i, they reside at x

i

2 U and y

i

2 V , respectively. If one random
walk needs to jump at step i, say RW on G, then it jumps to
a uniformly at random chosen neighbor of y

i

in the affiliation
graph, which is assigned to x

i+1. Similar jumping procedure
also applies to RW

0 on G

0. Hence, they are equivalent to two
RWwJs, and both can avoid being trapped on G and G

0.
We need to determine edge weights {!

u

}
u2U and {w

v

}
v2V ,

which control the probability of jumping of the random
walks on G and G

0, respectively. Obviously, the stationary
distributions {⇡

u

}
u2U and {⇡

v

}
v2V of the two random walks

on G and G

0 are related to these weights. Here we can leverage
our previous analysis of indirect jumps in RWTVSA, and
derive that, when parameters !

u

and w

v

satisfy the following
conditions

!

u

= ↵

X

v2Vu

⇡

v

d

(b)
v

, u 2 U , (7)

w

v

= �

X

u2Uv

⇡

u

d

(b)
u

, v 2 V, (8)

for any ↵,� > 0, the stationary distributions of the two
random walks on G and G

0 (discarding states j and j

0) are

⇡

u

=
d

u

+ !

u

2|E|+ ↵

, u 2 U , (9)

⇡

v

=
d

v

+ w

v

2|E 0|+ �

, v 2 V. (10)

Arranging Eqs. (7)–(10) in matrix forms, we obtain

⇡U =
dU + !U
2|E|+ ↵

, ⇡V =
dV + wV
2|E 0|+ �

, (11)

!U = ↵AD

�1
V ⇡V , wV = �A

T

D

�1
U ⇡U , (12)

where A

n⇥n

0 is the adjacency matrix of G

b

, !U = [!
u

]T
u2U ,

wV = [w
v

]T
v2V , ⇡U = [⇡

u

]T
u2U , ⇡V = [⇡

v

]T
v2V , dU = [d

u

]T
u2U

and dV = [d
v

]T
v2V are vectors, DU = diag(d(b)

u1 , . . . , d
(b)
un) and

DV = diag(d(b)
v1 , . . . , d

(b)
vn0 ) are diagonal matrices.

Equations (11)–(12) uniquely determine !U and wV , i.e.,

!

⇤
U =c(I�cc

0
AD

�1
V A

T

D

�1
U )�1

AD

�1
V (dV+c

0
A

T

D

�1
U dU ),

w

⇤
V =c

0(I�cc

0
A

T

D

�1
U AD

�1
V )�1

A

T

D

�1
U (dU+cAD

�1
V dV)

where c=↵/(2|E 0|+ �) and c

0=�/(2|E|+ ↵) are constants.
The above results illustrate that, when ↵ and � are given,

!U and wV are uniquely determined. However, one needs
complete knowledge of G, G

0 and G

b

to determine their
values. While, we are interested in sampling the target graph
without having to know either G, G0 or G

b

in advance. In what
follows, we design RWTRWA in a way that only makes use
of local knowledge of these graphs during the random walks.

First, we need to know what happens when !U 6= !

⇤
U

or wV 6= w

⇤
V . If !U deviates from !

⇤
U (e.g., !U is given

and different from !

⇤
U ), we can still derive a “stationary

distribution” {⇡
u

} for the random walk over target graph by
Eq. (9). Because {w

v

} are related to {⇡
u

} according to Eq. (8),
we can use local knowledge (by querying U

v

from G

b

) to

obtain w

v

, 8v, and derive a “stationary distribution” {⇡
v

} for
the random walk over auxiliary graph by Eq. (10). However,
because !U 6= !

⇤
U , Eq. (7) will not hold, and as a result, {⇡

u

}
and {⇡

v

} will not be the stationary distributions.
To solve this contradiction, we notice that Eq. (7) actually

relates to the indirect jumps on target graph G. The walker
indirectly jumps to a node u 2 U with probability q

u

, !

u

/↵

according to our analysis in RWTVSA (see Eq. (3)). When !U
deviates from !

⇤
U , we derive a different !0

u

by Eq. (7), which
indicates the worker actually jumping to u with probability
q

0
u

, !

0
u

/↵ 6= q

u

. The walker expects to jump to a node that
follows distribution {q

u

}, but it actually jumps to a node that
follows distribution {q0

u

}. This is another way to explain the
contradiction. Fortunately, with this understanding, the contra-
diction can be easily solved by applying a Metropolis-Hastings
(MH) sampler [29, Chapter 7], by considering {q

u

} as the
desired distribution and {q0

u

} as the proposal distribution. We
can use a MH sampler to build a Markov chain (referred as
the MH chain) that generates samples with desired distribution
{q

u

}, and each time when the walker requires jumping, it
jumps to a latest sample of MH chain. This guarantees that
the walker jumps to u following distribution {q

u

}, and ensures
that {⇡

u

} and {⇡
v

} are still the stationary distributions of the
random walks on target and auxiliary graphs.

Sampling Design. The complete sampling design of
RWTRWA comprises three parallel Markov chains as illus-
trated in Fig. 5, and we need to specify a desired distribution
{q

u

}
u2U in advance, e.g., a uniform distribution.

x1 · · · xi xi+1 · · ·RW on G:

x

0
1 · · · x

0
i x

0
i+1 · · ·MH chain:

y1 · · · yi yi+1 · · ·RW on G

0:

Fig. 5. Three parallel Markov chains in RWTRWA.

•Random Walk on Auxiliary Graph G

0: Suppose the random
walk resides at node y

i

2 V at step i. Then we can calculate
w

yi according to Eq. (8). At step i + 1, the random walk
executes one of the following two steps.

Jump: With probability w

yi/(dyi + w

yi), the walker jumps
to a random neighbor v 2 V of node x

i

in G

b

, and
y

i+1 = v;
Walk: Otherwise, the walker moves to a random neighbor

v 2 V of y
i

in G

0, and y

i+1 = v.

•Metropolis-Hastings (MH) Chain: Suppose the MH chain
resides at node x

0
i

at step i. At step i+1, we randomly choose
a neighbor u 2 U of y

i

in G

b

. This is equivalent to sample a
node u 2 U with probability q

0
u

.
Acceptance: With probability r

i

, we accept u and x

0
i+1=u,

where r

i

=min{1, (q
u

q

0
x

0
i
)/(q

x

0
i
q

0
u

)};
Rejection: Otherwise, we reject u and x

0
i+1 = x

0
i

.



•Random Walk on Target Graph G: Suppose the random walk
resides at node x

i

2 U at step i. !
xi = ↵q

xi where q

xi is
specified in advance. At step i + 1, the walker executes one
of the following two steps.

Jump: With probability !

xi/(dxi + !

xi), the walker jumps
to x

0
i+1, and x

i+1 = x

0
i+1;

Walk: Otherwise, the walker moves to a random neighbor
u 2 U of x

i

in G, and x

i+1 = u.
This sampling design ensures that we use only local knowl-

edge of the three graphs to obtain a sample path S =
(x1, . . . , xB

), which can yield unbiased estimates of target
graph characteristics.
Estimator. We use the sample path S = (x1, . . . , xB

) gener-
ated by the random walk on G to design an estimator for ✓

s

as follows,

✓̂

RWTRWA

s

=
1

Z

BX

i=1

1 {s ✓ L(x
i

)}
d

xi + !

xi

, (13)

where Z =
P

B

i=1 1/(dxi + !

xi).

Theorem 3. Estimator (13) is asymptotically unbiased.

Proof. First we note that the random walk on target graph G

has the same form of stationary distribution with RWTVSA

given by Eq. (6). (Note that we have removed jumper node
j when calculating ⇡

u

in Eq. (9). Hence, ⇡

u

in Eq. (9) is
equivalent to p

u

in Eq. (6).) The remaining of the proof is
similar to the proof of Theorem 2.

IV. EXPERIMENTS

In this section, we conduct experiments on both synthetic
and real datasets to evaluate our proposed methods. Our goal
is to demonstrate the unbiasedness of proposed estimators and
study their estimation errors with respect to different factors
such as sampling budget B (i.e., the number of sampled nodes
in target graph) and parameter values, i.e., ↵ and �.

For a graph, it is natural to consider node degrees as labels,
i.e., L = {0, 1, . . . ,M} where M is the maximum degree in
the graph. If we choose the characteristic function L(u) =
{d

u

}, and let ✓
l

, ✓{l} = 1
n

P
u2U 1 {l 2 L(u)} , l 2 L, then

✓

l

is the fraction of nodes with degree l in the graph, and
{✓

l

}
l2L therefore is the degree distribution (or PDF) of the

graph. We can also consider choosing L(u) = {0, 1, . . . , d
u

�
1}, then ✓

l

is the fraction of nodes with degree larger than
l in the graph, and {✓

l

}
l2L is the complementary cumulative

degree distribution (or CCDF) of the graph. To distinguish the
two characteristic functions, in the following discussion, we
will use ✓

l

to denote the parameter for PDF and ⇥
l

for CCDF.2

A. Experiments on Synthetic Data

In our first experiment, we examine the soundness of the
proposed sampling methods using synthetic data.

2Usually, CCDF is the plot of choice when people show degree distribution.
Therefore, in some experiments, we mainly show the results of CCDF in this
paper, and results for PDF can be found in our technical report [30].

Synthetic Data. We generate a hybrid social-affiliation net-
work by connecting three Barabási-Albert (BA) graphs [31],
namely G1, G2 and G3. Each BA graph contains 100,000
nodes, and the three BA graphs have different average degrees:
4, 10 and 20 respectively. G1 and G3 are connected by one
edge to form the target graph G. G2 is the auxiliary graph G

0,
and the affiliation graph G

b

is formed by connecting nodes in
G and G

0 according to the following two steps:
1) connect every node in G to a randomly selected node in

G

0;
2) randomly choose 200,000 pairs of nodes in G and G

0

and connect them to form the remaining edges in G

b

.
The first step ensures that every node in U satisfies d(b)

u

> 0
so that we can apply VSA method on this dataset.
Results and Analysis. First we demonstrate that the proposed
estimators ✓̌

VSA

l

, ✓̂RWTVSA

l

and ✓̂

RWTRWA

l

are indeed asymptoti-
cally unbiased. To show this, we apply these sampling methods
to estimate ✓2 and ✓12, i.e., the fraction of nodes with degree
2 and 12 in target graph, and compare their estimates to the
ground truth for different sampling budgets B (from 0 to
0.01n, where n = |U|). The results are shown in Fig. 6. It
is clear to see that when sampling budget B increases, all
estimators converge to the ground truth. Hence, the proposed
estimators are asymptotically unbiased.

Next, we study the estimation error of each estimator for
estimating the PDF and CCDF of degree distribution. We
choose the normalized rooted mean squared error (NRMSE)
as a metric to evaluate the estimation error of an estimator,
which is defined as follows

NRMSE(✓̂
l

) =

r
E
h
(✓̂

l

� ✓

l

)2
i

✓

l

.

NRMSE measures the relative difference between an estimated
value and a real value. The smaller the NRMSE, the better an
estimator is. NRMSE can also be defined on ⇥̂

l

, which we
omit here. To compare the NRMSE of different estimators, we
fix the sampling budget B to be 1% of the number of nodes in
the target graph, and calculate the averaged empirical NRMSE
over 1, 000 runs. The results are shown in Fig. 7.

In Figure 7, we also show the NRMSE for a simple
random walk (RW) estimator on the target graph. Because the
target graph G has a bottleneck, i.e., its two components are
connected by a single edge. RW can hardly converge within
B = 0.01n steps. Therefore, we observe that NRMSE for RW
is almost the largest among all estimators. Comparing VSA

with RW in Figs. 7(a) and 7(d), we find that VSA can provide
smaller NRMSE for low degree nodes than RW. However,
VSA produces larger NRMSE for large degree nodes than RW.
Therefore, VSA can better estimate small degree nodes than
large degree nodes in a graph.

The weakness of VSA can be overcome by RWTVSA

and RWTRWA. From Figs. 7(b), 7(e) and 7(c), 7(f) we can
see that when indirect jumps are incorporated into random
walks in RWTVSA and RWTRWA, NRMSE for large degree
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Fig. 6. Asymptotic unbiasedness of the estimators (l = 2, 12).
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Fig. 7. NRMSE for different estimators. (Each result is averaged over 1, 000 runs, and B = 0.01n.)

nodes decreases, and NRMSE for small degree nodes remains
smaller than RW. If we increase the probability of jumping at
each step of random walk by increasing ↵ and �, we observe
that NRMSE for small degree nodes decreases, but NRMSE
for large degree nodes increases. This behavior is similar to
RWwJ [9,12] because we have declared that RWTVSA and
RWTRWA are equivalent to RWwJs in their designs.

B. Experiments on LBSN Datasets
In the second experiment, we apply VSA method on two

real-world location-based social network (LBSN) datasets to
solve the problem mentioned in Example 1, i.e., measure user
characteristics within an area of interest.
LBSN Datasets. We obtain two public LBSN datasets from
Brightkite and Gowalla [32]. Brightkite and Gowalla are
once two popular LBSNs where users shared their locations
by checking-in. Users in the two social networks are also

connected by undirected friendship relations, which form two
user social networks. The statistics of these two datasets are
summarized in Table I.

Because we are only interested in users that have check-
ins, VSA can be applied to these two datasets. Suppose the
we want to measure characteristics of users located around
New York City (NYC), as specified by a rectangle region on a
map: latitude range 40.4� ⇠ 41.4�, longitude range �74.3� ⇠
�73.3� (see Fig. 8). The goal is to estimate degree distribution
of the users who checked in this region. As we explained in
Introduction, directly sampling users is inefficient. Here, we
apply the VSA method along with a venue sampling method
— Random Region Zoom-In (RRZI) [26] to sample users in
NYC more efficiently.
Venue Sampling. RRZI [26] utilizes a venue query API
provided by most LBSNs to sample venues on a map. The
API requires a user to specify a rectangle region by provid-



TABLE I
SUMMARY OF TWO LBSN DATASETS.

dataset Brightkite Gowalla

G

network type undirected undirected
# of users 58, 228 196, 591
# of friendship edges 214, 078 950, 327
# of users in LCC1 56, 739 196, 591
# of edges in LCC 212, 945 950, 327

G

0 and Gb

# of venues 772, 966 1, 280, 969
# of users having check-ins 51, 406 107, 092
# of check-ins 4, 491, 143 6, 442, 890

G

0 and Gb
for NYC

# of venues in NYC2 23, 484 26, 448
# of users checking in NYC 4, 257 7, 399
# of check-ins in NYC 33, 656 113, 423

1 The largest connected component.
2 The New York City (Fig. 8).
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Fig. 8. Venue distribution in New York City and illustration of accessible
subregions used by RRZI. Each subregion contains less than K venues.

ing the south-west and north-east corners latitude-longitude
coordinates, and then the API returns a set of venues in this
region. Usually, the API can only return at most K venues in
a queried region. RRZI regularly zooms in the region until the
subregion is fully accessible, i.e., the API returns less than K

venues in the subregion. The zooming-in process is equivalent
to dividing the region into many non-overlapping accessible
subregions (as illustrated in Fig. 8), and each subregion is
associated with a fixed probability related to the zooming-
in strategy. This feature enables RRZI to provide samples of
venues within an area of interest.

Results. Combining VSA with RRZI, we conduct two ex-
periments to indirectly sample users in NYC on Brightkite
and Gowalla. We totally sample 5% of venues in NYC and
calculate the degree distribution of users in NYC. The results
are shown in Figs. 9 and 10.

From Figures 9(a) and 10(a), we observe that RRZI-VSA

method can provide good estimates of user characteristics in
NYC. The estimates for low degree users are better than high
degree users, and this is clear to see from the NRMSE plots in
Figs. 9(b), 9(c) and 10(b), 10(c). This feature coincides with
our previous analysis using synthetic data. From the NRMSE
plots, we can also find an approximate law that a larger K, i.e.,
the maximum number of venues the API can return, reduces
the estimation error of RRZI-VSA. However, it is not true for

estimating large degree users on Gowalla in Fig. 10(c). In fact,
a better way to reduce estimation error is to combine VSA with
other better venue sampling methods introduced in [24]–[26].
However, we omit this due to space limitation.

C. Experiments on Mtime Dataset
In the third experiment, we apply RWTVSA and RWTRWA

on Mtime to measure Mtime user characteristics as we have
introduced in Example 2.
Mtime Dataset. As we introduced in Example 2, users and
actors in Mtime naturally form a hybrid social-affiliation
network. To build a ground-truth dataset as the testbed of
RWTVSA and RWTRWA, we downloaded the complete Mtime
network data by traversing user IDs ranging from 100000 to
10000000, and actor IDs ranging from 892000 to 2100000.

For each Mtime user, we collect the set of users he/she
follows and users who follow him. This builds up a directed
follower network among Mtime users. Each Mtime user
maintains a list including a subset of movie actors he/she is
interested in. This information is used to build up the fan-
relations between users and actors. For each movie actor, we
collect the movies he/she participated in, and if two actors
participated in a same movie, we connect them. This builds
up a cooperative network among actors. The complete Mtime
dataset is summarized in Table II.

TABLE II
SUMMARY OF THE MTIME DATASET.

G

user follower network type directed
total users (isolated and non-isolated)3 1, 878, 127
# of non-isolated users in follower network 1, 035, 164
# of following relations 14, 861, 383
# of users in LCC 987, 055
# of following relations in LCC 14, 791, 482

G

0

actor cooperative network type undirected
total actors (isolated and non-isolated) 1, 123, 340
# of non-isolated actors in cooperative network 1, 122, 166
# of cooperative relations 10, 344, 364
# of actors in LCC 1, 114, 065
# of cooperative relations in LCC 10, 328, 904

Gb

# of fan relations 225, 558, 343
# of users following actors 1, 419, 339
# of isolated users following actors 842, 963
# of actors having fans 441, 413
# of isolated actors having fans 1, 174
# of isolated actors having only isolated fans 225
# of isolated users following only isolated actors 393

3 An isolated node in a graph is a node with zero degree.

Analysis of the Dataset. First we provide some statistics of
Mtime dataset. In Table II, we compare the first block with
second block, which are related to target graph G and auxiliary
graph G

0 respectively. We find that about 19% of the user
IDs and 93% of the actor IDs are valid. This indicates that
conducting UNI on the auxiliary graph is more efficient than
conducting UNI on the target graph. Moreover, we find that
more than 47% of the Mtime users are not in LCC, but the
same number for actors is less than 0.1%. This indicates that
the auxiliary graph is better connected than the target graph.
Although a large fraction of users are isolated nodes in the
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Fig. 9. User characteristics estimation in NYC on Brightkite. (B0 = 0.05n0 and each result is averaged over 1000 runs.)
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Fig. 10. User characteristics estimation in NYC on Gowalla. (B0 = 0.05n0 and each result is averaged over 1000 runs.)

target graph, from the last block (regarding the affiliation graph
G

b

), we find that almost all the isolated users are connected
to non-isolated actors (except a few hundreds of them). So
the majority of isolated users are indirectly connected to
other users through actors. This is illustrated in Fig. 11. The
advantage of introducing the hybrid social-affiliation network
is now clear for Mtime dataset, i.e., we can study a larger
user space than simply the LCC of target graph (when UNI
on target graph is inefficient or not allowed).

LCC of G
(987, 055 users)

Isolated parts of G
(858, 733 users)

LCC of G0

(1, 114, 065 actors)
Isolated parts of G0

(1, 658 actors)

Fig. 11. The Mtime network components. Dashed red lines denote fan
relations between actors and users.

Results. Using the Mtime dataset as a testbed, we demonstrate
that RWTVSA and RWTRWA methods can provide good
estimates of user characteristics. Although the user follower
network is directed, we can build an undirected version of the
target graph on-the-fly while sampling because a user’s in-
coming and out-going neighbors are known once the user is
queried [10,12]. Different from previous experiments, here the
user labels can be in-degrees or out-degrees. Hence, we will

evaluate the in-degree and out-degree distribution estimations
of the two estimators, respectively.

Results of the RWTVSA method are depicted in Fig. 12.
In Fig. 12(a) and (e), we show the in-degree and out-degree
CCDF estimates. We can see that RWTVSA can provide
unbiased estimates. From Fig. 12(b) and (f), we observe that
when sampling budget increases, the NRMSE decreases for
both in-degree and out-degree estimations. From Fig. 12(c)
and (g), we observe that when more jumps are allowed by
increasing ↵ from 1 to 100, estimation accuracy also increases.

Results for RWTRWA are similar to the results of RWTVSA,
and we show them in Fig. 13. First, from Fig. 13(a) and
(e), we observe that RWTRWA can also well estimate the in-
degree and out-degree distributions. Second, from Fig. 13(b)
and (f), we can find that when sampling budget increases, the
estimation accuracy increases significantly for both in-degree
and out-degree estimations. Last, from Fig 13(c) and (g), we
find that when more jumps are allowed (by increasing ↵ and
�), the NRMSE also decreases.

However, it is worth noting that ↵ and � should not be
too large for both RWTVSA and RWTRWA. Because we
know that when ↵ ! 1, RWTVSA becomes VSA, which is
biased on the Mtime dataset, and hence causes large NRMSE.
Similar behavior happens to RWTRWA, too. We depict these
observations in Figs. 12(d), 12(h) and 13(d), 13(h).

V. RELATED WORK

We briefly review the related literature in this section.
Sampling methods, especially random walk-based graph

sampling methods, have been widely used to characterize
large-scale complex networks. These applications include, but
are not limited to, estimating peer statistics in peer-to-peer
networks [8,33], uniformly sampling users from online social
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Fig. 12. RWTVSA degree distribution estimates and NRMSE analysis. Each result is averaged over 10, 000 runs.
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Fig. 13. RWTRWA degree distribution estimates and NRMSE analysis. Each result is averaged over 10, 000 runs.

networks [11,13,14,34], characterizing structure properties of
large-scale networks [35]–[38], and measuring statistics of
point-of-interests on maps [26]. The above literature is mostly
concerned with sampling methods that seek to directly sample
nodes (or samples) in target graphs (or sample spaces). How-
ever, direct sampling is not always efficient as we argued in
this work.

When the target graph (or sample space) can not be directly
sampled or direct sampling is inefficient, several methods
based on graph manipulation have been proposed to improve
sampling efficiency. For example, Gjoka et al. [39] study an
approach to improve sampling efficiency through building a

multigraph using different kinds of relations (i.e., edges) that
exist on an OSN. A multigraph is better connected than any
individual graph formed by only one kind of relations. There-
fore, the random walk can converge fast on this multigraph.
Zhou et al. [40] exploit several criteria to rewire the target
graph on-the-fly to increase the graph conductance [17] and
reduce mixing time of random walks. Our method differs from
theirs that we do not manipulate target graphs. We study a
new approach that utilizes an auxiliary graph and an affiliation
graph to assist sampling on target graph indirectly.

Birnbaum and Sirken [41] designed a survey method for
estimating the number of diagnosed cases of a rare disease in



a population. Directly sampling patients of a rare disease from
the huge human population is obviously inefficient, so they
studied how to sample hospitals so as to sample patients indi-
rectly. Their method motivates us to design the VSA method.
However, as we pointed out, VSA method cannot sample nodes
that are not connected to auxiliary graph, and we overcome this
problem by designing RWTVSA and RWTRWA methods. Our
work also complements existing sampling methods related to
random walk with jumps [9,12,14] by removing the necessity
of uniform node sampling on target graphs.

VI. CONCLUSION

When graphs become large in scale, sampling methods
become necessary tools in the study of characterizing their
properties. Among these sampling methods, random walk-
based crawling methods have gained popularity. However, if
the graph under study is not well connected, random walk-
based graph sampling methods suffer from the slow mixing
problem. In this work, we observe that a graph usually does
not exist in isolation. Usually, the target graph is accompanied
with an auxiliary graph and an affiliation graph, and they form
a hybrid social-affiliation network together. We find that the
target graph becomes better connected with the assistances of
the other two graphs. This new viewpoint brings benefits to the
graph sampling framework. We design three sampling methods
to measure the target graph from this new viewpoint, and these
methods are demonstrated to be effective on both synthetic
and real datasets. Therefore, our method complements existing
methods in the literature of graph sampling.
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