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Abstract

In online learning, a player chooses actions to
play and receives reward and feedback from the
environment with the goal of maximizing her re-
ward over time. In this paper, we propose the
model of combinatorial partial monitoring games
with linear feedback, a model which simultane-
ously addresses limited feedback, infinite out-
come space of the environment and exponential-
ly large action space of the player. We present
the Global Confidence Bound (GCB) algorithm,
which integrates ideas from both combinatorial
multi-armed bandits and finite partial monitoring
games to handle all the above issues. GCB only
requires feedback on a small set of actions and
achieves O(T

2
3 log T ) distribution-independent

regret and O(log T ) distribution-dependent re-
gret (the latter assuming unique optimal action),
where T is the total time steps played. More-
over, the regret bounds only depend linearly on
log |X | rather than |X |, where X is the action
space. GCB isolates offline optimization tasks
from online learning and avoids explicit enumer-
ation of all actions in the online learning part. We
demonstrate that our model and algorithm can be
applied to a crowdsourcing application leading to
both an efficient learning algorithm and low re-
gret, and argue that they can be applied to a wide
range of combinatorial applications constrained
with limited feedback.

* The work was done while the author was an intern at Microsoft Research.
Proceedings of the 31st International Conference on Machine Learning, Beijing,
China, 2014. JMLR: W&CP volume 32. Copyright 2014 by the author(s).

1. Introduction
In the online learning framework, a player (or a learner) and
the environment interact with each other in discrete time
steps in the following way. At each time step, the environ-
ment generates an outcome and the player selects an action,
and when the action is applied to the environment outcome,
the player gains a reward and receives a feedback about
the environment outcome and potentially about her reward.
The player wants to learn from past feedbacks to maximize
her reward over time, or as in standard treatment, mini-
mize her regret, which is the difference between the reward
she could collect if she always plays the best action over
time and the reward she actually receives. We consider s-
tochastic online learning in this paper, which means that the
environment generates outcomes following a certain prede-
termined distribution not known to the player. The key in
designing the player’s learning algorithm is to address the
tradeoff between exploration and exploitation: the player
needs to try all possible actions (exploration) while bias-
ing toward the actions giving her the best rewards so far
(exploitation).

Online learning has a wide range of applications and has
been extensively studied over the years in statistics and
machine learning. The multi-armed bandit (MAB) prob-
lem (Robbins, 1985) is a classical framework in online
learning in which the environment outcome in each time
step is the reward of n arms (or actions), the player’s ac-
tion is to select one of the n arms to play, and the reward
the player receives, as well as her feedback, is the reward of
the selected arm. Algorithms for MAB achieve O(log T )
distribution-dependent regret (i.e. the regret also depends
on the distribution of outcomes) and O(

√
T ) distribution-

independent regret, over T time steps (Auer et al., 2002).

In some applications with combinatorial structures, the
number of arms to play may be exponential in the problem
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instance size, and MAB becomes impractical since both it-
s regret and its running time would be exponential in the
problem size. The combinatorial MAB (CMAB) problem
(Chen et al., 2013) was proposed to address this issue. In
CMAB, each action is a super arm, which is a set of base
arms, and once played, the outcomes of all base arms are
revealed to the player as the feedback. CMAB algorithms
can achieve the same level of regret as MAB algorithms in
terms of dependence on the time horizon T , and both the
running time and the regret of CMAB algorithms is poly-
nomial in the problem size when assuming the existence of
a polynomial-time offline optimization oracle.

MAB and CMAB require feedback on the reward or out-
come of the chosen arm, or each of its constituent base
arms in the case of CMAB. This feedback may not be
available in many applications. Partial monitoring games
are online learning models addressing the issue of limited
feedback information (Piccolboni & Schindelhauer, 2001;
Cesa-Bianchi et al., 2006; Antos et al., 2012). Existing
works focus on a finite action space X and a finite outcome
space, and allow flexible feedback structure for each action
x ∈ X . Depending on the condition governing feedback
and reward, they could achieve either Θ(T

2
3 ) or Θ̃(

√
T )

distribution-independent regret in T time steps.1 However,
existing work on partial monitoring does not address the
case of exponential action space in that both the regret and
the running time of the learning algorithm depend linearly
or polynomially on the size of the action space X . More-
over, they do not address the case of infinite outcome space.

Although CMAB and current partial monitoring work ad-
dress limited feedback, exponential action space, and infi-
nite outcome space separately, some applications may re-
quire them all simultaneously. Consider the following mo-
tivating example in crowdsourcing. Suppose that a crowd-
sourcing platform acts as a broker between workers who
have time and skill and employers who have tasks to com-
plete. Every day employers post tasks, and the crowdsourc-
ing platform matches workers to tasks. The platform wants
to maximize the social welfare over time, which is the total
performance of matched worker-task pairs, and it relies on
employers and workers to provide feedback on the perfor-
mance of completed tasks. However, providing task per-
formance feedback is inconvenient or costly for employers
and workers, and in some cases may also violate privacy
concerns. Therefore, the platform can only ask employers
and workers to provide partial feedback for a small sub-
set of completed tasks. Moreover, the action space in this
case is the set of all matchings between workers and tasks,
which is exponential in the problem size. Finally, the per-
formance feedback may be measured as a continuous vari-
able such as time to complete the task, payment for the task,

1The notations Õ, Θ̃ disregard polylogarithmic factors.

etc., leading to an infinite outcome space. Thus this appli-
cation requires a learning method handling limited feed-
back, exponential action space, and infinite outcome space
at the same time, which has not been addressed in the liter-
ature to the best of our knowledge.

In this paper, we fill this gap by combining ideas from
both CMAB and partial monitoring and providing a unified
model and algorithm addressing all the above issues. We
first extend the finite partial monitoring model with infinite
and continuous outcomes and linear feedback as follows.
We model the outcome of the environment as a vector of
bounded and continuous random variables v, thus support-
ing an infinite outcome space. For each action x ∈ X ,
the feedback of x on v is given by the linear transforma-
tion Mxv, where Mx is the transformation matrix of x.
The matrices Mx provide a very flexible model of limit-
ed feedback, including the extreme that an all-zero matrix
Mx means that there is no feedback for action x. We re-
fer this model as a combinatorial partial monitoring game
with linear feedback.

We present a general algorithm called Global Confidence
Bound (GCB) for combinatorial partial monitoring games
with linear feedback with distribution-independent re-
gret bound O(T

2
3 log T ) and distribution-dependent bound

O(log T ) (the latter assuming unique optimal action). One
of the key ideas of GCB is to use a small observer set of ac-
tions for exploration. This idea combines the observer set
idea from partial monitoring with the idea of estimating the
small base arm set from CMAB. Our algorithm handles the
large action space in that (a) our regret bound linearly de-
pends on log |X | instead of |X |, and (b) our algorithm does
not enumerate actions in the online learning part but on-
ly relies on efficient problem-specific solutions to the cor-
responding offline optimization tasks, similar to the way
large action spaces are handled in CMAB.

We then apply GCB to the crowdsourcing application and
show that it allows an efficient polynomial-time learning
algorithm with low regret depending linearly on log |X |,
polynomially on problem instance size, besides being sub-
linear in the time horizon T . It is important to point out
that our algorithm GCB not only applies to the crowdsourc-
ing application but to a much larger class of applications.
Many matching applications, whether they are online dat-
ing brokages matching individuals, recommender systems
matching products with customers, or advertising systems
matching advertisements with users, could potentially ben-
efit from the algorithm since they may also have constraints
limiting the feedbacks the systems may obtain. It also goes
beyond matching tasks and may work well with other com-
binatorial optimization tasks that has efficient offline solu-
tions, such as online shortest path learning and optimiza-
tion. Furthermore, we formulate GCB in a general setting
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in which the reward function may not be linear in the out-
come vector v, and only a continuity assumption is needed
on the expected reward function, which may further enlarge
the application range of our algorithm.

To summarize, the contributions of our paper include: (a)
we present a general online learning model and algorithm
that handle limited feedback, exponential action space and
infinite outcome space simultaneously and work with non-
linear reward functions; (b) we provide a detailed formula-
tion and solution for partial monitoring games with linear
feedback;2 and (c) we propose an application in the domain
of crowdsourcing worker allocation, and demonstrate that
our algorithm can be applied to the application yielding an
efficient algorithm with low regret.

The rest of the paper is organized as follows. Section 2 dis-
cussed related work. Section 3 provides the details of our
model and assumptions. Section 4 presents the GCB algo-
rithm and its regret bound. Section 5 describes the crowd-
sourcing application and demonstrates how GCB is applied
to the application. We conclude the paper in Section 6.
Detailed regret analysis are provided in the supplementary
material.

2. Related Work
Feedback models in online learning (Cesa-Bianchi & Lu-
gosi, 2006) have been studied for a long time. The sim-
plest model of feedback is a full-information game. When
one action is played, feedbacks directly include reward-
s of all actions. The regret for a full-information game
is Θ(

√
T log |X |) (Littlestone & Warmuth, 1989; Vovk,

1990). Another well-studied feedback model is a multi-
armed bandit game, introduced by (Robbins, 1985). (The
name is derived from an analogy of multiple slot ma-
chines.) In each time step one action is played, and the
reward of that arm is revealed as feedback. The tight re-
gret bound for adversarial multi-armed bandit games is
Θ(
√
|X |T ) (Audibert & Bubeck, 2009). Since only one

reward is revealed while others are unknown, one faces an
exploration vs. exploitation dilemma. The UCB1 algorith-
m for stochastic multi-armed bandit games (Auer et al.,
2002) is a simultaneous exploration and exploitation pol-
icy, which applies a confidence bound on each arm, and
achieves a distribution-dependent regret bound ofO(log T )
over time. The above literature distinguishes two kinds of
games: adversarial games and stochastic games (Bubeck
& Cesa-Bianchi, 2012), and we focus on the latter in this
paper.

2The final paragraph in the conclusion of (Bartók et al., 2011)
mentions a similar extension to linear feedback without further
details. However, our algorithm and analysis further focus on
handling exponential action space, which is not addressed in the
framework of (Bartók et al., 2011).

A recent line of research focuses on handling combinatori-
al structures in adversarial (Cesa-Bianchi & Lugosi, 2012)
or stochastic online learning (Gai et al., 2012; Chen et al.,
2013) and provides useful ideas which we incorporate here.
In (Chen et al., 2013), the authors use an offline oracle to
separate the problem-specific solver and the learning algo-
rithm, enabling the possibility of dealing with large sets of
actions.

Another line of research aims to characterize the difficul-
ty of learning in different feedback models. Finite par-
tial monitoring games were first defined in (Piccolboni
& Schindelhauer, 2001). Studies in (Cesa-Bianchi et al.,
2006; Antos et al., 2012) characterize finite partial moni-
toring games into four categories: trivial, easy, hard, and
hopeless, with regret bounds of 0, Θ̃(T

1
2 ),Θ(T

2
3 ), and

Θ(T ) respectively. Algorithm BALATON in (Antos et al.,
2012) achieved Θ̃(T

1
2 ) assuming the local observability

property to separate different optimal actions, and CBP in
(Bartók et al., 2012) is proposed to switch between Õ(T

1
2 )

and Õ(T
2
3 ) adaptively, when the problem may be either lo-

cally or globally observable. In constrast, not only is our
model able to handle exponentially large action space, but
we are also the first to provide an O(log T ) distribution-
dependent regret for a globally observable game (with the
unique optimal action assumption), whereas CBP only pro-
vides an O(log T ) distribution-dependent regret for locally
observable games, which is a stronger assumption.

3. Model and Definitions
In this paper, we consider the combinatorial stochastic par-
tial monitoring game with linear feedback, as described be-
low. A combinatorial partial monitoring game is a repeated
game between the player and the environment at discrete
time steps t = 1, 2, · · · . Let v(t) denote the value of a
variable v at the end of time t. Before the game starts, the
environment determines a fixed probability distribution p
on [0, 1]n, where n is the dimension, and p is not revealed
to the player. At each time t, the environment samples an
independent random vector3 v(t) ∈ [0, 1]n from the fixed
distribution, and this vector is taken to be the environmen-
t’s outcome at this time step. The random outcome vector
v(t) is not observed by the player. Meanwhile, at time t the
player chooses an action x(t) ∈ X , where X is a finite set
of all possible actions of the player. When the action x(t) is
applied to the environment outcome v(t), the player gains
a reward4 r(x(t),v(t)) ∈ R and receives a feedback y(t),
which is a linear transformation of the latent outcome v(t)
as we now explain. For every action x ∈ X , there is a

3All vectors in the paper are column vectors.
4Some prior work treats loss rather than reward. Reward and

loss are two symmetric terms, and our results apply to the case of
loss functions too after performing the appropriate sign changes.
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transformation matrix Mx ∈ Rmx×n, whose row dimen-
sion mx depends on x. At time t, the player receives the
feedback vector y(t) = Mx(t) · v(t) ∈ Rmx(t) , and this is
what we mean by “linear feedback”. Note that the actual
reward r(x(t),v(t)) may not be part of the feedback y(t)
and thus may not be observed by the player. Also Mx for
some action x could be all zeros, meaning that there is no
feedback for action x. The outcome dimension n, the ac-
tion spaceX , the reward function r(·, ·) and transformation
matrices Mx,∀x ∈ X form the instance of the game, and
are known to the player. For some game instances (e.g. the
crowdsourcing application of Section 5), X and Mx’s have
certain combinatorial structure and thus they have a suc-
cinct representation, and the size of X may be exponential
to the size of the (succinctly represented) game instance.

To summarize, the game proceeds at discrete time steps t =
1, 2, . . ., and at each time t:

1. The environment samples an outcome vector v(t)
from its predetermined distribution p independently.

2. The player chooses an action x(t) from X , which
could be based on the feedback the player receives in
the previous time steps.

3. When the action x(t) is applied to the environ-
ment outcome v(t), the player gains the reward
r(x(t),v(t)), and receives the feedback y(t) =
Mx(t) · v(t).

Let v be a generic random outcome vector sampled from
the outcome distribution p. As is common, we use the
expected regret metric to measure the performance of the
player. Given a time horizon T , the expected regret, or
simply regret at time T , is defined as:

R(T ) = T max
x∈X

E [r(x,v)]−
T∑
t=1

E [r(x(t),v(t))]. (1)

In the first term above, the expectation is taken from the
distribution of v, and it represents the reward the player
would get if she always played the action that yields the
maximum expected reward at each time step. In the second
term, the expectation is taken from the distribution of v(t)
and the possible randomness of the player’s algorithm, and
it represents the expected reward the player actually gains
by time T when running her algorithm.

Let ν = E [v] denote the vector of expected values of
v. From Equation (1), we see that what we are interest-
ed in is the expected reward of playing an action x, namely
E [r(x,v)], where the expectation is taken over the distribu-
tion of v. In this paper, we assume that the above expected
reward is a function of x and the expected outcome vector
ν of v, and thus we define r(x,ν) = E [r(x,v)]. This as-
sumption is always satisfied if the reward function r(x,v)
is a linear function of v, or if the full distribution of v is

determined by its mean vector ν, as in the case of a vector
of independent Bernoulli random variables. Let x∗ be the
optimal action for the expected reward under the expected
outcome vector ν, i.e. x∗ = maxx∈X r(x,ν). Then we
can rewrite the regret in Equation (1) as follows:

R(T ) =T · r(x∗,ν)−
T∑
t=1

E [r(x(t),ν)], (2)

where the expectation in the second term is taken over the
randomness of x(t), which could come from either the ran-
dom feedback the player received in the previous time steps
or the randomness in the player’s algorithm itself.

3.1. Assumptions

In this section, we provide and justify two technical as-
sumptions needed for our proposed algorithm to work.

After action x(t) is played at time t, the feedback y(t) is a
linear transformation of the outcome v(t), and thus the in-
formation about the environment outcome is distorted. To
retrieve an estimate of v(t), we assume the existence of
a global observer set, which is defined below following a
similar definition in (Piccolboni & Schindelhauer, 2001).

Definition 3.1 (Global Observer Set). For a set of actions
σ = {x1, x2, · · · , x|σ|} ⊂ X , we stack5 their transfor-
mation matrices to obtain a (

∑|σ|
i=1mxi)-by-n block ma-

trix Mσ =
(
Mx1

;Mx2
; · · · ;Mx|σ|

)
. We say that σ is

a global observer set if Mσ is of full column rank, i.e.
rank(Mσ) = n. This implies that the Moore-Penrose
pseudoinverse M+

σ satisfies M+
σ Mσ = In, where In is an

n-by-n identity matrix.

Our first assumption is thus:

• Existence of global observer set. We assume that
there exists a global observer set σ in the partial mon-
itoring game with the linear feedback transformation
matrices Mx for all x ∈ X .

The above assumption is reasonable, since if it does not
hold, it means that even if we are allowed to play all possi-
ble actions in X on the same given outcome v, we cannot
recover the value of v. This would mean that we may not
be able to detect the difference between the rewards on dif-
ferent actions and may not achieve sublinear regret. This is
similar to the case of the hopeless problem class with regret
no better than Θ(T ) (Cesa-Bianchi et al., 2006).

When the above assumption holds, one can systematically
find a global observer set σ with |σ| ≤ n. For example,
we can add an action x into σ if it strictly increases the

5Notation (A;B;C) means stacking up matrix A on top of
B and then on top of C, where A, B, and C have same column
dimensions.



Combinatorial Partial Monitoring Game with Linear Feedback and Its Applications

rank of the resulting Mσ , until Mσ reaches the full rank
n. As a consequence, the size of the global observer set
is small. Note that the above assumption implies that we
do not require feedback for any actions outside the global
observer set σ.

Our second assumption is on the continuity of the expected
reward function.

• Continuity of the expected reward function. We as-
sume the expected reward function is Lipschitz con-
tinuous in its second variable, with Lipschitz con-
stant L > 0; that is, for all x ∈ X , for any two
mean outcome vectors ν1,ν2 ∈ [0, 1]n , we have
|r(x,ν1)− r(x,ν2)| ≤ L‖ν1 − ν2‖2. 6

The above continuity assumption is also a reasonable as-
sumption, since without such an assumption, a smal-
l change in the mean outcome vector may result in an ar-
bitrarily large change in the expected reward, which mean-
s that it is very difficult to control the regret bound when
one has to learn the mean outcome vector over time. The
assumption certainly holds when the reward function is a
linear function of the outcome vector.

The above continuity assumption, together with the bound-
ed support of the distribution of v, also implies that the
expect reward in a given game instance is bounded. In
fact, for each x ∈ X and each ν ∈ [0, 1]n, |r(x,ν)| ≤
|r(x,0)|+ |r(x,ν)− r(x,0)| ≤ |r(x,0)|+L‖ν − 0‖2 ≤
|r(x,0)| + L

√
n. Thus, |r(x,ν)| ≤ maxx∈X |r(x,0)| +

L
√
n. Let Rmax = maxx1,x2∈X ,ν∈[0,1]n |r(x1,ν) −

r(x2,ν)| be the maximum difference in expected reward
among actions for any possible outcome distribution. We
will use Rmax in our regret bound later.

3.2. Relationship with finite partial monitoring game

It is easy to see that our model encompass MAB, full-
information game, and CMAB as special cases, while our
model focuses on limited feedback not addressed in these
other models, as already discussed in the introduction.
Thus, we only provide some further comparison with the
finite partial monitoring game model.

The finite stochastic partial monitoring game (Bartók et al.,
2011) generalizes the MAB and the full-information game
and focuses on partial feedback information. It consists of
N actions and M possible outcomes. At each time t the
player selects one action I(t) and the environment sam-
ples one outcome J(t) from a predetermined distribution,
and the player incurs a loss L(I(t), J(t)) and receives a
feedback H(I(t), J(t)) ∈ Σ, where Σ is a finite symbol

6 For technical reasons, define φ(ν) = max(min(ν, ~1), ~0)
to adjust ν to the nearest vector in [0, 1]n, and r(x,ν) =
r(x, φ(ν)),∀ν ∈ Rn \ [0, 1]n to keep Lipschitz continuity
throughout Rn.

set, L is called the loss matrix and H is called the feed-
back matrix. In our setting, we could model the outcome
vector as v ∈ {ei | i = 1, 2, . . . ,M}, where ei is the M -
dimensional 0-1 vector with only the i-th entry being 1.
The transformation matrix Mx is the signal matrix of ac-
tion x defined in (Bartók et al., 2011). The reward function
r(x,v) = −L(x, ·)v, where L(x, ·) is the row of L corre-
sponding to action x. Since the reward function is linear,
the continuity of the expected reward function holds. Our
assumption on the existence of the global observer set is s-
lightly stronger than the global observable property in (Pic-
colboni & Schindelhauer, 2001) to accommodate the more
general class of nonlinear reward functions. Our model is
more general than the finite stochastic partial monitoring
game, in that it allows infinite outcome spaces, general lin-
ear transformation from outcomes to observations, and pos-
sibly non-linear reward functions.

4. Learning Algorithm GCB
Our learning algorithm integrates ideas from both CMAB
and partial monitoring. In CMAB, in order to handle ex-
ponentially large action space, the algorithm utilizes a s-
mall set of base arms and their outcome estimates to de-
rive the rewards of all actions. In partial monitoring, in or-
der to handle limited feedback, it uses observer sets so that
feedback from actions in an observer set helps in estimat-
ing rewards of other actions. In our combinatorial partial
monitoring model, we combine the above ideas and use the
global observer set σ as defined in Section 3. The global
observer set both helps to estimate rewards of other non-
observable actions as in partial monitoring, and handles ex-
ponentially large action space because it is small.

More specifically, given an observer set σ =
{x1, x2, · · · , x|σ|}, when the player plays these actions at
time steps t1, t2, · · · , t|σ|, the environment produces sam-
ple outcomes v(t1),v(t2), · · · ,v(t|σ|), and the feedbacks
can be stacked as

(
y(t1);y(t2); · · · ;y(t|σ|)

)
= ~y(t) at

final step t = t|σ|. From the definition of σ, we can denote
the inverse function as I(Mσ, ~y) = M+

σ ~y. (Recall that
M+
σ denotes the Moore-Penrose pseudoinverse of the

stacked matrix Mσ .) After the inversion, the estimate ṽ(t)
of outcomes is obtained at time t: ṽ(t) = I(Mσ, ~y(t)).
It is easy to check that E [ṽ(t)] = ν, which implies that
we can use multiple independent values of ṽ(t) to obtain
an accurate estimate of ν. We call the above one round
of estimation or one round of exploration of the player.
Our algorithm invokes multiple rounds of exploration to
obtain an accurate estimate of ν, which in turn helps us to
estimate the rewards of all actions.

Denote noise ε(t) = v(t) − ν, thus ‖ε(t)‖2 ≤
√
n. Since

M+
σ Mσ = In and M+

σ = (Mᵀ
σMσ)−1Mᵀ

σ , the estimated
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error of ṽ(t) is bounded as

‖ṽ(t)− E [ṽ(t)]‖2 = ‖M+
σ ~y(t)−M+

σ Mσν‖2
=
∥∥M+

σ ·
[
Mx1

ε(t1); · · · ;Mx|σ|ε(t|σ|)
]∥∥

2

=

∥∥∥∥∥∥(Mᵀ
σMσ)−1

|σ|∑
i=1

Mᵀ
xiMxiε(ti)

∥∥∥∥∥∥
2

≤ max
ν0,ν1,··· ,ν|σ|∈[0,1]n

∥∥∥∥∥∥(Mᵀ
σMσ)−1

|σ|∑
i=1

Mᵀ
xiMxi(νi − ν0)

∥∥∥∥∥∥
2

≤
√
n

|σ|∑
i=1

∥∥(Mᵀ
σMσ)−1Mᵀ

xiMxi

∥∥
2
.

Let βσ = max ‖(Mᵀ
σMσ)−1

∑|σ|
i=1M

ᵀ
xiMxi(νi − ν0)‖2,

where the max is taken from ν0,ν1, · · · ,ν|σ| ∈ [0, 1]n.
By the above derivation, we see that βσ is a constant of the
game instance independent of the outcome distribution p,
and bounds the error of estimated outcome ṽ(t). Hence-
forth, we use the simple error bound ‖ṽ(t)− ν‖2 ≤ βσ in
the rest of this paper.

We present our Global Confidence Bound Algorithm
(GCB) in Algorithm 1. Variable nσ is a counter recording
the number of rounds of exploration that have been played
so far. GCB alternates between exploration and exploita-
tion as follows. At the beginning it executes one round
of exploration (in |σ| time steps) to initialize the empirical
mean of outcome vector ν̂. Then at a time step t ≥ 1, it
computes action x̂ that provides the best expected reward
on ν̂ (line 6) and x̂− that provides the second best expect-
ed reward (line 7). We remark that these two lines rely on
efficient problem-specific offline solutions that overcome
the problem of exponentially many actions (See Section 5
for efficient solutions for the crowdsourcing application).
Enumeration of all actions in X occurs nowhere else in the
algorithm, and thus there is no dependency on the size of
X in the running time of GCB other than lines 6 and 7.

Line 8 includes the key conditions deciding whether at
time step t we should do exploration or exploitation. First,√

αfX (t)
nσ

is a global confidence bound, where we set α =

24L2β2
σ and frequency function fX (t) = ln t + 2 ln |X |

for our analysis. This confidence bound is used to de-
tect whether the estimated global optimal and second op-
timal solutions are significantly separated (first condition
in line 8), and if so we are confident that we can exploit
on the current optimal x̂. Unlike UCB1 in (Auer et al.,
2002), CUCB in (Chen et al., 2013) or CBP in (Bartók
et al., 2012), our confidence bound is not on individual ac-
tions or base arms, but on the global optimal action. The
second condition in line 8 is needed for our distribution-
independent regret bound, and it guarantees that even if the
difference of the estimated expected reward of the curren-

Algorithm 1 GCB
Require: σ, α, fX (t); ∀x ∈ X , r(x, ·), Mx.

1: Initialize t← 0, nσ ← 0
2: loop
3: if t = 0 then
4: state← begin exploration {initialize ν̂}
5: else
6: x̂ = argmaxx∈X r(x, ν̂)
7: x̂− = argmaxx∈X\{x̂} r(x, ν̂)

8: if
(
r(x̂, ν̂)− r(x̂−, ν̂) >

√
αfX (t)
nσ

)
or
(
nσ > t

2
3 fX (t)

)
then

9: state← exploitation
10: else
11: state← begin exploration
12: end if
13: end if
14: if state = begin exploration then
15: {exploration phase:}
16: for s← 1; s ≤ |σ|; s← s+ 1 do
17: play xs in observer set σ, and observe ys
18: if s = |σ| then
19: nσ ← nσ + 1
20: ~ynσ =

(
y1;y2; · · · ;y|σ|

)
21: ṽnσ = I(Mσ, ~ynσ ) {estimate outcomes}
22: ν̂ = 1

nσ

∑nσ
j=1 ṽj {take average}

23: end if
24: t← t+ 1
25: state← in exploration
26: end for
27: else
28: {exploitation phase:}
29: play action x̂
30: t← t+ 1
31: end if
32: end loop

t best and second best actions remains very small, which
could be true when there are multiple optimal actions, our
algorithm will avoid endlessly repeating the exploration
phase and will start exploitation if it knows that enough
rounds of exploration have been done. The frequency func-
tion fX (t) includes a term of 2 ln |X |, which typically does
not appear in confidence bounds in online learning algo-
rithms. This is another key aspect of our algorithm to make
our regret dependent on ln |X | instead of |X |.

In lines 15–26, GCB executes one round of exploration as
a batch in |σ| consecutive time steps, as we already ex-
plained. Lines 29–30 are for the simple exploitation phase,
in which the current optimal action x̂ is played. Note that
GCB does not need feedback from playing x̂. It only re-
quires feedback for the actions in the global observer set,
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and the feedbacks for these actions are only required to
guarantee that when stacking up their transformation ma-
trices together the resulting matrix Mσ is of full column
rank (Definition 3.1).

A few remarks about the algorithm are now in order. First,
repeated exploration of a single global observer set σ is for
the ease of algorithm presentation and regret analysis. In
practice, one can find multiple global observer sets and ex-
plore them in order. The regret bound for such exploration
is essentially the same.

Second, GCB requires efficient offline algorithms for both
computing the best action and the second best action, giv-
en an expected outcome vector. It is reasonable to assume
the existence of an efficient offline algorithm for computing
the optimal solution, otherwise one cannot require sublin-
ear regret that compares with the optimal action. For com-
puting the second best action, one may be able to achieve it
by disabling the best action in some way and then finding
the best action in the remaining actions. (The example in
Section 5 is done in this way.) Moreover, computing the
second best action in line 7 can be replaced by a decision
problem — deciding if there is an action besides x̂ that has

expected reward at least r(x̂, ν̂) −
√

αfX (t)
nσ

. In any case,
these algorithms are problem-specific and require domain
expertise on the application. GCB separates the concern
of offline optimization from the online learning part. In
contrast, other partial monitoring algorithms such as BAL-
ATON in (Bartók et al., 2011) and CBP in (Bartók et al.,
2012) rely on explicit enumeration of all actions in their
online learning part, and thus do not efficiently address the
issue of exponentially large action space.

4.1. Results on Regret Bound

Recall the following problem-specific constants: the size of
the global observer set |σ|; parameter L from the continuity
assumption; error bound βσ on estimated outcome; and the
maximum difference in expected reward Rmax.

Theorem 4.1 and 4.2 provide the distribution-independent
and distribution-dependent regret bounds for Algorithm 1.

Theorem 4.1 (Distribution-independent bound). Let
fX (t) = ln t+2 ln |X |, andα = 24L2β2

σ . The distribution-
independent regret bound of Algorithm 1 is:

R(T ) ≤Rmax|σ| · T
2
3 (lnT + 2 ln |X |) +

8

3
LβσT

2
3

+Rmax

(
|σ|+ 4e2

|X |4

)
. (3)

For distribution-dependent bound for an outcome distribu-

tion p with mean outcome vector ν, we define:

∆x =r(x∗,ν)− r(x,ν), (4)
∆max = max{∆x : x ∈ X}, (5)
∆min = min{∆x : x ∈ X ,∆x > 0}. (6)

Theorem 4.2 (Distribution-dependent bound). Let
fX (t) = ln t + 2 ln |X |, and α = 24L2β2

σ . If the instance
has a unique optimal action under outcome distribution p
and mean outcome vector ν, the distribution-dependent
regret bound of Algorithm 1 is:

R(T ) ≤
∑
x∈σ

∆x ·
[

96L2β2
σ

∆2
min

(lnT + 2 ln |X |) +
4e2

|X |4
lnT

+1

]
+ ∆max ·

(
3e2

|X |4
+

941L3β3
σ

∆3
min

)
. (7)

Theorem 4.1 shows that our algorithm achieves
O(T

2
3 lnT ) distribution-independent regret, which is

close to the theoretical bound of Θ(T
2
3 ) for partial

monitoring games with the global observability property
(Antos et al., 2012). Theorem 4.2 shows that our algorithm
achievesO(log T ) distribution-dependent regret (assuming
unique optimal action), which matches the theoretical low-
er bound for the classical MAB problem (Lai & Robbins,
1985).

From both the distribution-independent and distribution-
dependent regrets, we see that the regret bounds depend
linearly on ln |X |. When comparing with regret bounds
of existing work on partial monitoring, such as Theorem 1
in (Bartók et al., 2012) for the CBP algorithm, we see that
they have terms explicitly summing over all actions x ∈ X ,
leading to regret bounds linearly dependent on |X |. We are
able to achieve this because we use a small global observer
set σ (recall that |σ| ≤ n), and we include a term 2 ln |X |
in our frequency function fX (t) so that we use more explo-
rations to reduce the error probability in finding the optimal
action x̂, thus avoiding paying a regret linear in |X | for po-
tentially exploiting a wrong x̂.

In the distribution-dependent bound, we require that there
is a unique optimal action in the problem instance. This is
because of our weak assumption of the global observer set:
we only assume feedbacks for the global observer set. To
distinguish two actions we have to play the global observer
set repeatedly and pay high regrets, but if the two are in-
deed both optimal we can never tell them apart and have
to keep paying high regrets for exploration. In contrast,
in MAB, CMAB and the more general partial monitoring
games with the local observability property (Antos et al.,
2012), the player is able to play multiple close-to-optimal
actions for both exploration and exploitation purposes at
the same time: if they are indeed all optimal, playing any of
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them is a good exploitation, and if they are different playing
them will eventually tell them apart with a low regret.

To summarize, GCB algorithm employs the following fea-
tures to achieve our goal: (a) GCB employs a global con-
fidence bound condition, avoiding comparing the reward
differences between all pairs of actions; (b) GCB separates
the concern of offline optimization from online learning,
and eliminates steps that require enumerating all action-
s from the online learning part; (c) GCB trades off more
explorations for a lower error probability in exploitation to
avoid the potential for such errors to incur a high regret cost
linear to the action space size.

5. Crowdsourcing Application
In this section, we demonstrate our combinatorial partial
monitoring model and the GCB algorithm using the fol-
lowing crowdsourcing application. Consider a crowdsourc-
ing platform providing matchings between N workers and
M tasks each day. For simplicity of description, we as-
sume that N ≤ M and that these M tasks come from
the same employer. Let random variable vij be the per-
formance of worker i on task j. The performance could be
measured as time to complete the task, proportion of the
task completed, wage paid to the worker, or some perfor-
mance evaluation value given by the employer. The actual
form is unimportant and we assume it to be a continuous
random variable normalized to the range [0, 1]. Therefore,
the outcome vector can be represented by the random vec-
tor v =

(
v11, v12, · · · , v1M , v21, · · · , vNM

)ᵀ ∈ [0, 1]NM .
The action space is the set of matchings between work-
ers and tasks in the complete bipartite graph connecting
workers and tasks. In vector form, an action is a vec-
tor x =

(
z11, z12, · · · , z1M , z21 · · · , zNM

)ᵀ ∈ {0, 1}NM
with

∑N
i=1 zij ≤ 1 and

∑M
j=1 zij ≤ 1, where zij repre-

sents whether worker i and task j are matched. Thus, the
size of the action space X is exponential in N and M .

The system’s reward is defined as r(x,v) = xᵀv, i.e.
the sum of performance of all matched worker-task pairs,
which is often referred to as the social welfare. Because of
linearity, we have r(x,ν) = E [r(x,v)] = r(x,ν), where
ν = E [v], and the continuity assumption thus holds.

If we apply the CMAB framework to this problem, we
would require feedback of daily performance for every
worker-task pair. However, reporting daily performance
for every worker-task pair is costly for the employer, and
sometimes also raises privacy concerns, and thus the plat-
form cannot expect to collect vij for all matched worker-
task pairs every day. On the other hand, providing some
feedback to the platform could help it to improve the
matching in the future, which is beneficial to both employ-
ers and workers. Therefore, it is reasonable to assume that
employers and workers would agree to provide partial feed-

back for at least a small set of matchings. For each match-
ing that the platform receives feedback, we assume that the
requested feedback from the employer consists of a single
value, which is the aggregate reward of s matched worker-
task pairs. With this setting, the transformation matrix Mx

contains a single row with exactly s 1’s and all other entries
are 0, and Mxx = s.

It is easy to find a small global observer set such that their
stacked matrix Mσ is of full column rank. For example,
if s = 1, Mσ could simply be the identity matrix, which
means that each action in the observer set is used for sam-
pling the outcome of one action. If the application requires
1 < s < N to avoid revealing both individual workers’
performance and the total performance received by the em-
ployer in a day, we can also construct the global observer
set with a full-column-rank matrixMσ . A simple construc-
tion is given in the supplementary material.

Therefore, we have modeled the crowdsourcing application
as a problem instance in the framework of combinatorial
partial monitoring with linear feedback, and we can apply
our GCB algorithm to the application. For this application,
the offline problem of finding the optimal action is equiva-
lent to finding a matching that maximizes the total expect-
ed reward given the expected reward on each edge, which
is exactly the maximum weighted matching problem, and
thus can be efficiently solved. (The algorithm appears in
many textbooks, e.g. (Kozen, 1992).) The offline prob-
lem of finding the second best matching can also be solved.
We remove one edge in the optimal matching, and find the
maximum weighted matching in the remaining graph. We
then repeat this for all edges in the optimal matching and a-
mong the matchings computed select the one with the max-
imum weight. Therefore, both computing the best and the
second best actions are efficient.

Hence, Theorems 4.1 and 4.2 apply to our application. The
problem-specific constants are: |σ| = NM , Rmax = N ,
L =

√
N , and βσ =

√
NM for the case of s = 1. In

summary, GCB can be applied to our crowdsourcing ap-
plication setting, leading to low regret sublinear in T and
polynomial in the offline problem instance size.

6. Future Work
Our work can be extended in several directions. One di-
rection is to incorporate problems with only approximate
algorithms for the offline optimization task, which is simi-
lar to the treatment in CMAB (Chen et al., 2013). Another
direction is to extend the model to include more flexible
observer sets, such that we could more tightly integrate ex-
ploration and exploitation. Moreover, how to efficiently
compute the global observer set σ with both small |σ| and
βσ in general needs to be addressed in the future.
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Bubeck, Sébastien and Cesa-Bianchi, Nicolò. Regret anal-
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