
Falloc: Fair Network Bandwidth Allocation in IaaS
Datacenters via a Bargaining Game Approach

Jian Guo1 Fangming Liu⇤1 Haowen Tang1 Yingnan Lian1 Hai Jin1 John C.S. Lui2
1Key Laboratory of Services Computing Technology and System, Ministry of Education,

School of Computer Science and Technology, Huazhong University of Science and Technology, China.
2Department of Computer Science & Engineering, The Chinese University of Hong Kong.

1{guojian,fmliu,cstang02,hjin}@hust.edu.cn, 2cslui@cse.cuhk.edu.hk

Abstract—With wide application of virtualization technology,
tenants are able to access isolated cloud services by renting the
shared resources in datacenters. Unlike resources such as CPU
and memory, datacenter network, which relies on traditional
transport-layer protocols, suffers unfairness due to a lack of VM-
level network isolation. In this paper, we propose Falloc, a new
bandwidth allocation protocol, towards VM-based fairness across
the datacenter with two main objectives: (i) guarantee bandwidth
for VMs based on their base bandwidth requirements, and (ii)
share residual bandwidth in proportion to weights of VMs. To
design Falloc, we model the datacenter bandwidth allocation as a
bargaining game and propose a distributed algorithm to achieve
the asymmetric Nash bargaining solution (NBS). We apply the
theory to practice by implementing Falloc with OpenFlow in ex-
periments under diversed scenarios, which shows that Falloc can
achieve fairness by adapting to different network requirements of
VMs, and balance the tradeoff between bandwidth guarantee and
proportional bandwidth share. By carrying out large scale trace-
driven simulations using real-world Mapreduce workload, we
show that Falloc achieves high utilization and maintains fairness
among VMs in datacenters.

I. Introduction

Infrastructure-as-a-service (IaaS) cloud services, such as
Amazon EC2 [1], have become an attractive choice for today’s
business, in which large-scale datacenters are multiplexing
computing, storage and network resources across multiple
tenants. With a simple pay-as-you-go charging model, tenants
are able to rent their respective set of virtual machines (VMs)
with performance isolation on CPU and memory resources.
However, in current datacenters, the scarce network bandwidth
is shared across many tenants without any performance guar-
antees. The bandwidth between VMs can fluctuate significantly
due to the competition of network intensive applications and
their performance may become unpredictable. The uncertainty
in the execution times of jobs increases the risk of revenue
loss for tenants, which is against the provider’s incentive on
attracting more tenants. As the rapid development in infras-
tructure cloud, it is critical to reason about how to properly
share networks in IaaS datacenters.

Towards providing predictable performance for the tenants
under multiplexed infrastructure, we need to take fairness into
consideration due to the limited bandwidth resources in data-
centers. The essential of fairness is to protect each application’s

⇤The Corresponding Author is Fangming Liu. The research was supported
in part by a grant from National Basic Research Program (973 program) under
Grant of 2014CB347800, by a grant from National Natural Science Foundation
of China under grant No.61133006.

performance in the competition of various network aggressive
applications (e.g., [2]–[4]). That is, a fair policy should be able
to allocate bandwidth according to the network requirement
of applications. Current cloud applications have two primary
requirements for datacenter networks, which can be used to
form the basis of designing an allocation policy: minimum
bandwidth guarantee and proportional bandwidth share.

Minimum bandwidth guarantee can provide strong isola-
tion among VMs or tenants, since it ensures a lower bound
of bandwidth allocation independent of the communication
patterns of other VMs. With the ability of guaranteeing band-
width for each VM, providers can negotiate SLAs on network
performance with the tenants, which may be attractive to
tenants deploying network intensive applications in the cloud.
Proportional share, on the other hand, is to share bandwidth in
proportion to certain associated weights among VMs, where
each VM can obtain a portion of the physical bandwidth
regardless of the competition at the flow-level. By slicing the
network bandwidth, proportional share makes efficient use of
the network resource and maintains weighted fairness among
the VMs, which can be useful to differentiate the service level
for applications with different priorities.

However, the tradeoff between guaranteeing bandwidth
and sharing bandwidth proportionally [5], [6] makes it a
challenging work to fulfill these two basic requirements in
datacenter networks. Even more serious is that the allocation
should achieve high network utilization. Recent works based
on bandwidth competition, such as Seawall [7], proportionally
divide the network to VMs or tenants according to their
weights, by introducing flow-level fairness to the VM-level.
They neglect the requirement of minimal bandwidth guarantee
since the sharing bandwidth of a VM can reduce significantly if
more VMs compete for the same physical bandwidth resources.
Other works based on VM placement such as Oktpus [8]
provide bandwidth guarantees for VMs by assigning them to
locations where sufficient bandwidth can be reserved. Due to
the time-varying nature of the network traffic in datacenters,
the reservation policy leads to bandwidth wastage if the
reserved bandwidth are not fully utilized.

Although these two mechanisms emphasize on different
goals and both have their own merits and demerits, they can
potentially be combined to exploit both of their advantages.
Specifically, by assigning VMs to proper locations, one could
achieve a specified bandwidth guarantees (fixed or time-
varying) for each VM. When the network demand deviates

978-1-4799-1270-4/13/$31.00 c�2013 IEEE

away from this pre-reserved bandwidth, one could deploy
competition mechanism to allocate the network according
to the bandwidth demand, which will improve the network
utilization. The key challenge is how much bandwidth should
be allocated to each VM. While existing works focus on
bandwidth isolation technologies for VMs, they fail to take
a theoretical insight into such a fair resource sharing problem.

In this paper, we view the bandwidth allocation as a basic
resource sharing problem involving consideration of fairness.
By taking advantage of a game-theoretical approach, this paper
takes the first step to model the bandwidth allocation process in
datacenters as a asymmetric weighted Nash bargaining game,
where all VMs are cooperative so as to maximize the social
welfare in a manner without harming others’ benefit.

Contribution: We make the following contributions in this
work: First, based on our derived theoretical guidelines, we
present the design of Falloc, an application layer bandwidth
allocation protocol to achieve fairness among VMs in datacen-
ters. In Falloc, each VM is assigned with a base bandwidth
and a weight. The protocol can guarantee the bandwidth of a
VM when its bandwidth requirement is less than the base band-
width and share the residual bandwidth among VMs in propor-
tion to their weights. Based on a bargaining game approach, the
calculation of the bandwidth allocation to each VM-pair can
be executed in a distributed manner and the result achieves a
weighted Nash bargaining solution. Second, we implement the
Falloc prototype with OpenFlow and evaluate it on a Mininet
testbed under diversed scenarios. By characterizing the impact
of both B and K on the allocation, we validates Falloc’s
ability to enforce bandwidth guarantee and proportional share
on network bandwidth, and show that Falloc can balance
the tradeoff between them by changing the base bandwidth
of VMs. Third, we carry out trace-driven simulations using
Mapreduce workloads and show that Falloc can adapt to
dynamic traffic. It can achieve a utilization approximate to the
best effort manner while providing performance guarantees for
VMs by enforcing a fair bandwidth allocation.

II. Motivation and Design Objectives

A. Motivation and Objectives: Fair Datacenter Networks

The fairness concepts in the context of datacenter are
introduced from traditional network resource sharing problems.
The most remarkable difference between these two scenarios
is that, conventional transport layer fairness equally slice
the bandwidth among all flows, while the fundamental of
bandwidth sharing in datacenter network is to achieve pred-
icable/high performance for applications [8]. As applications
are running by VMs in IaaS datacenters, researchers choose
to reserve certain bandwidth for different VMs (e.g., [8]), or
allocate a certain portion of the bandwidth on congested links
to VMs (e.g., [7]) based on the bandwidth requirement of these
applications. These previous works indicate that a network
sharing policy for IaaS datacenters should try to guarantee
fairness by providing network isolation for different VMs.
Specifically, cloud providers need to satisfy the bandwidth
demand of one VM without sacrificing others’ network perfor-
mance. However, it is not easy to achieve fairness relying on
traditonal Transmission Control Protocol (TCP). The challenge
comes from the fact that the TCP protocol maintains flow-level

fairness and one cannot change this protocol if he wants to run
any TPC-based applications in the cloud.

Hence, to fairly share the intra-datacenter networks, we
need to design an application-layer bandwidth sharing pro-
tocol with the ability to fulfill the bandwidth requirement of
VMs running different applications. We believe the following
important objectives should be taken into consideration:

• Bandwidth guarantee. With bandwidth guarantees for
VMs, one can achieve predicable performance for network
sensitive applications running in these VMs. For many cloud
applications, predicable performance means less delay for
application users. For example, a web service can provide fast
data delivery to users if the data transfer between the server’s
front and back end is guaranteed [9]. With this protocol, cloud
users can specify bandwidth for each VM and the protocol
should guarantee this bandwidth for the VMs.

• Weight assignment. Since jobs in the cloud have different
priorities, the protocol should have the ability to assign dif-
ferentiate weights to VMs running different applications. For
example, an important job calculating stock prices and a less
urgent data-backup job are sharing the same congested link, a
cloud provider may want to allocate more bandwidth for the
important job. With the weights of VMs, the protocol should
share the bandwidth in proportion to their respective weights.

However, these two objectives both have their disad-
vantages: bandwidth guarantee may cause a wastage if the
guaranteed bandwidth is left unused due to the time-varying
network requirements of cloud applications, and proportional
bandwidth share can not provide a reliable network perfor-
mance for applications since the shared bandwidth reduces
as more competitors take part in. Considering the tradeoff
between these two objectives, an alternative approach is to
combine them together and use each on a ratio of the total
bandwidth according to the applications’ network requirement.
Since proportional bandwidth share can highly utilize the
bandwidth on congested link, we can prioritize bandwidth
guarantee while judging how much to guarantee, and share
the residual bandwidth in proportion to the weight of each
VM. This way, we can also achieve a high utilization of the
network bandwidth.

B. Our Choice: Base Bandwidth and Weight for VMs

To achieve our goal of fairness in sharing datacenter
networks, we introduce the definition of base bandwidth (B)
and weight (K). The base bandwidth of each VM is a threshold
for guaranteeing bandwidth for a VM. The weight of each
VM represents the portion of shared bandwidth for a VM.
Specifically, if the bandwidth demand of a VM is lower than
the base bandwidth, we allocate sufficient bandwidth to the
VM to satisfy its network requirement. Otherwise, we allocate
bandwidth higher than the base bandwidth to these VMs, and
the part exceeded the base bandwidth is shared in proportion
to the weight. The motivation of introducing B and K into
the datacenter network model can be summarized as below:

• Towards providing SLA. Today’s IaaS cloud platforms do
not provide SLAs on network bandwidth. The unpredictability
in network performance leads to uncertainty in execution times
for network intensive jobs, which indirectly translates into a

...

Non-blocking Switch
BW1

BW2
BWm

VM

VM
... ServerVM

VM
... VM

VM
...

Fig. 1. Datacenter model with m servers connecting to a non-blocking switch
with heterogeneous bandwidth. The VMs are hosted on these servers.

risk of revenue loss for the cloud users. By providing a guaran-
teed bandwidth B and a weight K for VMs, cloud providers
are able to price the bandwidth and cloud users can choose
suitable bandwidth for VMs according to the requirements
of network performance of their applications. This way, we
provide incentives for users to migrate their business to the
cloud which can potentially increase the provider’s revenue.

• Working with the VM allocation based methods. The base
bandwidth can bridge the VM allocation based mechanisms
(e.g., [8], [10]) with our competition based mechanisms. An
allocation based mechanism studies how to place VMs to the
servers with bandwidth reservation, and the reserved band-
width for each VM needs to be specified in advance. After
the placement, the reserved bandwidth can be treated as the
base bandwidth in our model. However, instead of enforcing
a bandwidth reservation for each VM statically, we slice the
physical bandwidth dynamically to the VMs according to the
bandwidth demand. For example, Oktpus [8] proposes a virtual
cluster in which each VM is connected to a virtual switch with
bandwidth ˜B. We can set B =

˜B as the base bandwidth and
then apply our protocol to allocate the unused bandwidth to
VMs with bandwidth demand higher than the base bandwidth.

• Flexible fairness. Due to the limited network resource in
datacenters, it may not be possible to guarantee the whole of
the bandwidth demand for each VM. A practical strategy is
to guarantee a certain bandwidth considering both the tenant’s
budget as well as the bandwidth demand of the applications,
and uses another economical policy for bandwidth demand
beyond the guaranteed bandwidth. Hence, our choice is to
guarantee a certain bandwidth within the base bandwidth
demand for each VM while attempt to share the residual
bandwidth in proportion to VMs’ weights.

III. Resource Sharing Problem in Datacenter Network

We first take a rigorous look into the underlying resource
sharing problem in the context of IaaS datacenters.

A. Modeling Datacenter Network

We consider an IaaS cloud model consisting of M servers
M = {1, 2, . . . ,M} and N VMs N = {1, 2, . . . , N} hosted
by these servers. Since existing work such as multi-path
routing (e.g., [11]) and multi-tree topologies (e.g., [12]) has
largely improved bisection bandwidth of datacenter networks,
we design our policy with a full bisection bandwidth network,
where the physical bandwidth of servers can be fully utilized
without considering the bottlenecks inside the datacenter net-
works. Based on the hose model in [5], [8], we present the
datacenter network abstraction in Fig. 1, where the servers are
connected to a non-blocking virtual switch.

In our model, we propose a bandwidth allocation policy for
each VM-pair, which provides strong guarantees compared to
the solution of allocating bandwidth to each VM (e.g., [8]).

TABLE I. NOTATIONS

Notations Definitions
Di,j Bandwidth demand from VM i to j
ri,j Bandwidth (rate) allocation from VM i to j

DE
i (DI

i) Egress (ingress) bandwidth demand of VM i

rEi (rIi) Egress (ingress) bandwidth allocation of VM i

BE
i (BI

i) Egress (ingress) base bandwidth of VM i
Ki Weight of VM i

CE
m(CE

m) Egress (ingress) bandwidth capacity of server m
Vm The set of VMs on server m

The VM-pair based allocation policy offers better resource
management than a VM based policy since some applications
need network performance guarantee between VM-pairs. For
example, a reduce task of a MapReduce job needs to shuffle
data from multiple map tasks, and the job may be delayed by
one or more slow tasks on network congested VMs. More-
over, by specifying bandwidth of each VM-pair, the resulting
bandwidth of each VM can be easily obtained.

Let DN = [Di,j]N⇥N be a matrix representing the band-
width demand between VMs in a datacenter, where Di,j is
the bandwidth demand of VM-pair from VM i to VM j. We
specify a bandwidth allocation strategy by solving a rate matrix
rN = [ri,j]N⇥N , where ri,j is the bandwidth allocation from
VM i to j. To distinguish the ingress and egress bandwidth
(or rates) of VMs (or servers), we use the superscripts I and
E in the following problem formulation, respectively.

We summarize commonly used notations in Table I. VM
i is denoted by a 7-tuple, (rIi , rEi , DI

i , D
E
i , B

I
i , B

E
i ,Ki), and

server m by a 3-tuple (CI
m, CE

m, Vm). For the total ingress and
egress bandwidth demand of VM i, we have DI

i =

PN
k=1 Dk,i

and DE
i =

PN
k=1 Di,k. Similarly, the total ingress and egress

rates of VM i are rIi =

PN
k=1 rk,i and rEi =

PN
k=1 ri,k,

respectively. We use Vm ⇢ N to denote the set of VMs
on server m. Suppose each server is equipped with a full-
duplex Ethernet adapter, then we have Cm = CI

m = CE
m.

In order to guarantee the base bandwidth in extreme cases
that all the traffic demands of VMs are aggressive, the sum
of base bandwidth of all the VMs hosted on the same server
should be less than the physical bandwidth of this server, i.e.,P

i2Vm
Bi < Cm.

In the formulation part, we focus on the bandwidth alloca-
tion with instantaneous bandwidth demand at a specific time.
We will provide strategies to implement our protocol under
dynamic bandwidth demand in protocol design, and evaluate
the performance in the simulations.

B. Constraints Formulation

As presented in Sec. III-A, the base bandwidth Bi of each
VM i and the bandwidth demand Di,j of each VM-pair from
VM i to j are given. The allocation process can be viewed as
a bandwidth competition among N ⇥N VM-pairs. In order to
meet the network requirement when the bandwidth demand of
a VM is less than the baseband width, the allocation should
ensure an initial lower bound for each VM-pair assocaited with
this VM, i.e., ri,j � Li,j where

Li,j = min{Di,j , Bi,j}. (1)

Bi,j represents the base bandwidth for the VM-pair from
VM i to VM j, which is unknown and can be derived from

the base bandwidth associated with VM i and VM j. In our
work, we specify Bi,j as the following form

Bi,j = min{BE
i

KiP
Dik 6=0,k2N Kk

, BI
j

KjP
Dkj 6=0,k2N Kk

},

(2)
where Di,j 6= 0 implies that VM i has connections to VM j.
Similarly, we have the weight for the VM-pair from VM i to
VM j

Ki,j =
KiP

Dik 6=0,k2N 1

+

KjP
Dkj 6=0,k2N 1

. (3)

Note that Bi,j and Ki,j are only available when Di,j 6= 0. The
derivation is based on an idea of weight-based partition. Due
to page limit, we put the details in our technical report [13].

As the bandwidth demand is the maximal rate that a
VM-pair can achieve, the allocated rate ri,j should be upper
bounded by Ui,j where

Ui,j = min{Di,j , Cm, Cl}, i 2 Vm, j 2 Vl. (4)

This ensures that the allocated bandwidth can be fully utilized.

After obtaining the domain of the rate for each VM-pair,
i.e., ri,j 2 [Li,j , Ui,j], we use X ✓ RN2

to represent the
vector space of the available allocation for N2 VM-pairs,
and then r = {r1,1, r1,2, . . . , rn,n} 2 X represents a specific
allocation result.

Note that for VM-pairs whose bandwidth demand is lower
than the base bandwidth, the lower bound and the upper bound
are equivalent and the rate will be allocated equally to the
bandwidth demand, i.e., ri,j = Di,j . However, for VM-pairs
whose bandwidth demand is higher than the base bandwidth,
the allocation policy should not only allocate each VM-pair
the base bandwidth, but also try to allocate the exceeded
bandwidth (i.e., ri,j � Li,j) in proportion to the weight Ki,j .
From another perspective, the bandwidth sharing policy should
maintain a high utilization in datacenter networks. Specifically,
the allocation should be Pareto-optimal, where there exists no
other allocation that leads to higher bandwidth for a VM-pairs
without sacrificing the bandwidth of other VM-pairs.

C. Asymmetric Nash Bargaining Solution (NBS) for Fairness

With consideration on both utilization and fairness, we
choose to use the Nash bargaining solution to solve this
bandwidth allocation problem. In the Nash bargaining game,
two or more players enter the game with an initial utility and a
utility function. They cooperate in the game to achieve a win-
win solution, in which the social utility gains represented by
the Nash product are maximized. This is exactly the situation
as the bandwidth allocation in datacenters, where each VM-
pair should be guaranteed with the initial base bandwidth, and
the provider aims to maximize the joint profits associated with
all the VM-pairs. Since NBS ensures the Pareto optimality and
achieves the fairness in resource allocation, we believe that the
NBS is a suitable alternative for our allocation policy in the
context of datacenter networks.

To formulate the optimization problem of bandwidth al-
location, we first present the main concepts and results from
NBS. The N2 VM-pairs can be viewed as the players who

are competing for limited bandwidth resources in datacenters.
Note that the bandwidth is the only performance metric in the
model, we can use ri,j as a simple utility for each VM-pair.
Since all the players have their respective weight, we apply the
asymmetric weighted Nash bargaining solution [14] and assign
them with different contributions to the social welfare by using
the exponentiation of the utility gains, i.e., (ri,j � Li,j)

Ki,j .

Accordingly, the corresponding initial utility for the VM-
pair should be Li,j . Let x0 = {L0,0, L0,1, . . . , LN,N} 2 X
be the vector of the initial utilities of all the VM-pairs. Since
each ri,j has a closed domain, the allocation space X is a
convex and closed set. Let the set G = {r | r 2 X, ri,j �
Li,j , 8i, j 2 N} be the allocation results that each VM-pair
can get at least their initial bandwidth. Suppose G is nonempty
and then (G, x0) is a bargaining game.

Definition 1. A function � : (G, x0) ! RN is called a
Nash bargaining solution if it satisfies: �(G, x0) 2 G, Pareto
optimality, symmetry, scale independence, and independence
of irrelevant alternatives [15].

Define J = {ri,j | r 2 G, ri,j > Li,j} as the set of VM-
pairs that can achieve strictly higher bandwidth compared to
their initial rates. If J is nonempty, then we have the following
theorem [16].

Theorem 1. There exists a Nash bargaining solution and the
elements of the vector r = �(G, x0) solve the following
optimization problem:

max

ri,j

Y
(ri,j � Li,j)

Ki,j , 8ri,j 2 J. (5)

The convex optimization above has a unique solution
equivalent to the Nash bargaining solution. Eq. (5) illustrates
the form of the joint profit in the bargaining game, which is
the product of the utility gains of all the players and can be
maximized by the Nash bargaining solution. In particular, the
objective function in Eq. (5) is mathematically equivalent to
the objective max

P
ln(ri,j � Li,j), 8ri,j 2 J .

With the constraints for each ri,j ,we can obtain the
optimization for fair bandwidth allocation (Pr) as follows

max

ri,j

X

j

X

i

Ki,j ln(ri,j � Li,j), 8ri,j 2 J (6)

s.t. Li,j ri,j Ui,j , 8i, j 2 N (7)X

i2Vm

rIi Cm 8m 2 M (8)

X

i2Vm

rEi Cm, 8m 2 M, (9)

where rIi =

PN
j=1 rj,i and rEi =

PN
j=1 ri,j are the ingress and

egress rate of VM i, respectively. Eq. (8) and Eq. (9) represent
the constraints of the bandwidth capacity for each server.

Note that the VM-pairs in the objective always has a rate
ri,j > Li,j and the rates of other VM-pairs are equal to their
lower bounds as discussed in Sec.III-B. For simplicity, we
have ri,j > Li,j , 8i, j 2 N when characterizing the optimal
solution. In fact, it turns out that the rates satisfying ri,j = Li,j

can be eliminated in the differential in Sec.IV-A and this
assumption has no impact on the results.

IV. Protocol Design via Bargaining Game

In this section, a bargaining game approach is used to
construct iterations which convergence to the multipliers that
solve the optimal rate for each VM-pair. We present our Falloc
protocol design based on this game-theoretic approach.

A. Characterizing the Optimal Solution

Given the optimization problem for bandwidth allocation,
we first characterize the optimal solution, i.e., the rate for each
VM-pair. We use the matrix W = (wm,i)M⇥N to denote the
placement of VMs on each server, where wm,i is a binary vari-
able defined as: 1 means i is on server m, and 0 otherwise. Let
rI = (rI1 , r

I
2 , . . . , r

I
N) (rE = (rE1 , r

E
2 , . . . , r

E
N)) be the vector

of ingress (egress) rates of N VMs and C = (C1, . . . , CM)

be the vector of bandwidth capacity of M servers.

Note that the constraints of the variable r are linear, we
can apply the method of Lagrange multipliers, and the KKT
conditions [17] are both necessary and sufficient for an existing
optimal solution.

Theorem 2. There exists �I
m � 0 (m 2 M) and �E

m � 0

(m 2 M) such that for all i, j 2 N :

r⇤i,j = Li,j +
Ki,jPM

m=1 �
E
mwm,i +

PM
m=1 �

I
mwm,j

, (10)

Li,j ri,j Ui,j ,

where r⇤i,j is the unique Nash bargaining solution for the
problem (Pr).

The proof of Theorem 2 is presented in the appendix of
the technical report [13].

The original problem in Eq. (6)-(9) is a convex optimization
with 2(M +N) constraints, whose computational complexity
may increase significantly as the number of VMs and servers
scales up. Fortunately, the solution in Eq. (10) indicates that
each optimal rate ri,j can be solved by the optimal multipliers
associated with two servers, i.e., the server hosting the source
VM i and the server hosting the destination VM j. Hence,
the key to maximize the joint profit in utilizing datacenter
networks is to obtain the optimal Lagrange multiplier of each
server, which is independent from other servers. This motivates
us to obtain the rate of each VM-pair distributively rather using
a centralized approach for the optimization.

B. Algorithm via Bargaining Game

The centralized primal problem in Eq. (6)-(9) can be solved
by the dual-based decomposition. Specifically, we first define
a primal problem which has the same optimal solution as
problem (Pr) and then obtain the dual problem corresponding
to the primal problem with no duality gap. The dual problem
(Pd) is described as follows:

max

�I ,�E2RM
d(�I ,�E

) = L(r⇤,�I ,�E
), (11)

where d(�I ,�E
) is the dual function and L(·) is the La-

grangian of the primal problem. The derivation of the dual
problem is presented in our technical report [13].

To solve the primal problem, we first obtain the optimal
solution to the dual problem. Specifically, by using a suitable

step-size, we design an iteration that converges to the optimal
�I (�E) by applying the subgradient methods [18]. Since the
strong duality holds as discussed above, we can achieve the
optimal Nash bargaining solution with Eq. (10).

Let the set � denote the optimal solution to the dual
problem and the set R be the solution to the primal one. We
define the following recursion:

�(s+1)
m = max(0,�(s)

m + ⇠
@d

@�m
), 8m 2 M, (12)

where ⇠ is the step-size. We first discuss the sequence for �I ,
while regarding �E as a constant.

It has been proved in [18] that (�I
)

(s) converges in �
as s ! 1 if we choose such a step size according to the
following condition.

Proposition 1. For the recursive sequence {(�I
)

(s)}, if
(�I

)

(0) 2 R+M and ⇠ satisfy the diminishing step size rules
[18], then the recursion of dual variable {(�I

)

(s)} converges,
thus

lim

s!1
(�I

)

(s)
= �I⇤ 2 �. (13)

Having determined the step size in Eq. (12), the gradient
of the dual function can also be solved by obtaining the partial
derivatives of d(�I ,�E

) as below

@d(�I ,�E
)

@�I
m

=

NX

j=1

wm,j

NX

i=1

r⇤i,j � Cm. (14)

For the sequence {(�E
)

(s)}, we have the similar conclusion
and the partial differential is

@d(�I ,�E
)

@�E
m

=

NX

i=1

wm,i

NX

j=1

r⇤i,j � Cm. (15)

In Theorem 2, we have obtained the explicit form of op-
timal rate r⇤i,j . The sequences generated by Eq. (12) converge
to the optimal solution to the dual problem (Pd) in Eq. (11)
according to Proposition 1. Since there is no duality gap in the
dual decomposition, the rate vector r associated with �I and
�E converges to the Nash bargaining solution, thus 8i, j 2 N

lim

s!1
r((�I

)

(s), (�E
)

(s)
) = r⇤ 2 R. (16)

In summary, the approach to obtain the optimal rate can
be viewed as an iterative bargaining process, where the dual
variables serve as the bargaining prices (Eq. (12)) and the
rates indicate the utility gains of the players (Eq. (10)). For
example, ri,j is the rate of VM-pair i and j. Suppose VM
i is hosted on server m and VM j is hosted on server l,
then the dual variables of server m and server l are �E

m and
�I
l , respectively. Let rEpm

=

PN
i=1(wm,i

PN
j=1 ri,j)�Cm and

rIpm
=

PN
i=1(wm,i

PN
j=1)ri,j � Cm represent the allocated

egress and ingress bandwidth of server m. If server m has any
remaining bandwidth, i.e., Cm > rEpm

, it cuts down the price of
the bandwidth. Then the VM-pair will buy more bandwidth in
the next round when indicated by the increase of rate ri,j as the
dual variables decreases. Therefore, the remaining bandwidth
can be allocated to the VM-pairs with unsatisfied demand.

Similarly, when the total allocated rates exceed the capacity of
server m, the price will increase so as to reduce the excessively
allocated bandwidth

C. Falloc: Protocol Design

According to the results in the bargaining game approach,
the process of obtaining the optimal rate can be executed in a
distributed manner: 1) the dual variables (�E

m and �I
m) of each

server m can be updated independently with local information
in Eq. (15). 2) the iteration of each rate (ri,j) in Eq. (10)
only requires the information of the server hosting VM i and
the server hosting VM j. This motivates the design of Falloc,
which consists of following mechanisms.

1) Centralized convergence control. To design Falloc,
we first consider how to coordinate all the iteration processes
and where to locate the base bandwidth and weight of each
VM. Instead of a global controller, it is much more practical
to use several centralized servers in different local areas to
control the convergence and manage the global information of
VMs. This is because in IaaS datacenters, the intra-datacenter
traffic is always limited within the VMs belonging to the same
tenant, and a reasonable VM allocation strategy should try
to place the VMs of the same tenant into the same rack or
aggregation. For example, in a tree-topology datacenter, we
can use only one centralized server under each aggregate or
top-of-rack switch. This can avoid the messages across the
core switch, and greatly reduce the convergence steps of our
algorithm due to the decrease in the number of VM-pairs.

As shown in Algorithm 1, the centralized controller first
initializes the lower/upper bound bandwidth for each VM-
pair (line 1-3), and then uses the stopping criteria (line 6)
to control the convergence of Algorithm 2. In the convergence
process, a precise result will lead to heavy cost since it may
cause remarkable increase in iteration steps. We can define
two stopping rules in Falloc protocol to balance the tradeoff
between cost and precision.

• Step-based mechanism: Use S as the total iteration steps
in the convergence process. For example, if the cloud provider
cares much about the algorithm’s overhead, he can choose
a small S (e.g., S < 50) in this mechanism to reduce the
execution time.
• Precision-based mechanism: Stop the convergence process
if the variation of each ri,j is less than � within two consec-
utive iterations. For example, if the cloud provider has a SLA
on bandwidth allocation for VMs with the tenant, he will need
to specify a small � (e.g., � = 0.1Mbps) so as to fulfill his
agreement.

Before the iteration, the required input data including the
stopping rules is sent out by the controller. The iteration servers
then locally update the iterations until every ri,j converges.

2) Distributed iteration process. Since the calculation of
rate ri,j for each VM-pair involves two servers, it can be
executed either on the source server or the destination server.
The iteration of ri,j starts with the initial lower bound Li,j .
We present the iteration process of each server in Algorithm
2.

During each iteration, server m updates its dual variables
(�E

m and �I
m) by calculating its residual bandwidth (rEpm

and

Algorithm 1 Falloc: Centralized convergence control
Input:

The base bandwidth of VMs < BI
i , B

E
i >, 8i 2 N

The weight of VMs < Ki >, 8i 2 N
The total number of iteration rounds: S
The gap between two consecutive iterations: �

Output: Rate allocation matrix: [ri,j]N⇥N , 8i 2 N
for all VM-pair: i, j 2 N do

Initialize Li,j as Eq. (1) and Ui,j as Eq. (4)
end for
for all Server: m 2 M do

r(0)i,j = Li,j

while s < S or r(s)i,j � r(s�1)
i,j > � do

Run Algorith 2 at server m
end while

end for

rIpm
) according to Eq. (12) (line 2). For all the VM-pairs (ri,j)

with VM i on server m, the server should request for the other
dual variable �I

l from server l (j 2 Vl). The rate of the VM-pair
is then updated based on these two dual variables according
to Eq. (10). In addition, we make a judgment in case that the
rate exceeds the upper bound bandwidth Ui,j (line 6). The step
size is chosen according to the step size rules in Proposition
1 and updated locally within each iteration (line 12).

Note that the convergence speed of ri,j depends on the
step-size ⇠ and the gradient of the dual variables, which are
exactly the residual bandwidth of server m and l. Since the
step-size and residual bandwidth are both maximal initially
and decrease as the algorithm performs, the dual variables will
quickly converge to an approximate optimal value and then
slowly approach the optimal one. Hence, the algorithm can
finish within an acceptable number of steps if we do not need
a strict optimal rates for all VM-pairs.

When the iteration stops under the control of the stop-
ping rules, Falloc’s outputs can be applied in hypervisors or
swtiches by enforcing a bandwidth limitation for each VM-
pair. The allocated bandwidth, which is always less than (or
equal to) the bandwidth demand, will be fully utilized due to
the aggressiveness of transport-layer flows.

3) Message exchange protocols. Since the servers need to
share the dual variables with their connected neighbors and re-
quire input data from the centralized controller, Falloc defines
the protocols for such communication, aiming at minimizing
the delay and overhead of message exchange. We describe the
message exchange protocols under two conditions.

Fig. 2 shows the message exchange between two iteration
servers. Each server in the communication plays two different
roles: requestor and replier. When a request server wants to
request for a dual variable (�I

l), it first checks if it has received
the dual variable. If it has the dual variable (Fig. 2(b)), it will
continue the iteration with this value. Otherwise (Fig. 2(a)), it
sends a REQUEST message to the paired server (j,l 2 Vj) and
stays in WAIT status until it receives an ACK with VALUE of
the requested dual variable. After receiving the REUEST, the
reply server (j) will then send back an ACK of WAITING if
the requested dual variable is not ready and re-sends an ACK
consisting of the dual variable until it finishes the calculation.

On the other hand, when a reply server finishes calculating

Algorithm 2 Falloc: Iteration process on server m
Input:

The step-size: ⇠
Server bandwidth capacity: Cm, 8m 2 M
Bandwidth demand matrix: [Di,j]N⇥N , 8i 2 N
VM placement: [wm,i]M⇥N , 8m 2 M, 8i 2 N

Output: Rates of VM-pairs on server m: ri,j , i 2 Vm

1: Update allocated bandwidth
rEpm =

P
i wm,ir

E
i , rIpm =

P
i wm,ir

I
i

2: Update dual variables as Eq. (12)
�E
m = max(0,�E

m � ⇠(Cm � rEpm))

�I
m = max(0,�I

m � ⇠(Cm � rIpm))

3: for all ri,j , i 2 Vm do
4: Update �E

= �E
m

5: Obtain �I
= �I

l from server l, j 2 Vl

6: if Ki,j

�E+�I > Ui,,j � Li,j then
7: r(s)i,j = Ui,j

8: else
9: r(s)i,j = Li,j +

Ki,j

�E+�I

10: end if
11: end for
12: Update step size ⇠
13: Update iteration round s = s+ 1

a new dual variable, it will first check if there are REQUESTs
for this variable. If there are (Fig. 2(a)), it will send ACKs
with this dual variable to the request servers. Otherwise (Fig.
2(b)), it pushes the dual variable to all the paired servers for
future usage.

To implement Falloc in datacenters, we present two com-
munication schemes for message exchange between controllers
and iteration servers.

• Distributed solution: For traditional datacenters, the itera-
tion process can be performed in a distributed manner on each
server. When the iteration server receives a START command,
it will request for the input data (as shown in Algorithm 2)
from the controller. Usually, the information can be found on
this controller. If not, the controller will broadcast the required
information to all the centralized controllers in other areas
and then feed it back to the iteration servers. This distributed
solution only has a computational complexity of S · O(n) on
each server, but transmits about S ·M messages in total.

• Centralized solution: In a datacenter deploying Software-
Defined Networking (SDN), we can perform the iteration
process in a centralized manner. Under such condition, the
iteration process at each server can be executed by a single
process in the controller’s operating system. Hence, the delay
and overhead of transmitting the dual variables and input
data can be avoided. After obtaining the optimal rates, the
controller will allocate the bandwidth for each VM-pair using
the SDN switch. This distributed solution only has M message
exchange, but requires S ·O(n2

) computational complexity on
the centralized controller.

V. Implementation with OpenFlow and Evaluation

In this paper, we implement Falloc with the OpenFlow
protocol by using the centralized solution as described in Sec.
IV-C. (Note that Falloc can also be implemented distributedly
at the source) OpenFlow is an example of SDN, where the

Check
γ

Receive
VALUE

Status=
WAIT

Calculate
ri,j

Finish
after

request

Calculate
γ

Time Time

Requestor Replier
m l

(a) Request mode: request happens
before the dual variable is ready

Check γ

Receive
VALUE

Calculate
ri,j

Finish
before
request

Calculate
γ

Time Time

Requestor Replier

m l

(b) Push mode: the dual variable is
pushed before it is requested

Fig. 2. Message exchange protocol between request server and reply server.

H1

Switch

H2 H3 H4

S1

S5

H13

S4

BW=1Gbps

H14 H15 H16

Host

... ...

S2 S3

1 42 3

Fig. 3. Testbed with 16 hosts divided into 4 groups. Each group consists of
4 hosts and 1 switch. The group is equivalent to a server.

path of network packets through the switches can be deter-
mined by software running in switches or servers. The Falloc
prototype runs our proposed bandwidth allocation algorithm
in a centralized server, and enforces the allocation result by
forwarding packets through specified queues in the switches.
It consists of two basic components:

• Bandwidth allocation service: The service is responsible for
calculating the rates to be allocated, and enforce rate allocation
for each VM-pair. It reads the input data following the message
exchange protocols, and then performs the algorithms in Sec.
IV-C to obtain the optimal rate for each VM-pair. After
finishing the calculation, it will set up queues with maximum
rates at the port of each switch, based on the allocated rate of
the VM connected to this port.

• OpenFlow controller: The controller is a program running
on the centralized server, which manages packet-forwarding
for VMs in the network. We implement it as a L3-learning
switch with basic functions such as Address Resolution Proto-
col (ARP), flow table configuration for IPv4 packets, etc. To
realize rate control in Falloc, the controller forwards a packet
to the specific queue by configuring the flow table in OpenFlow
switch, based on the packet’s source and destination.

A. Experimental Results with OpenFlow

We evaluate Falloc prototype in Mininet, a SDN evaluation
platform running real network protocols and workloads, with
which the developed code can be moved to a real OpenFlow
network without any changes. Our first set of experiments is to
quantify the bandwidth allocation of Falloc, by characterizing
the impact of different base bandwidth B and weight K with
specified bandwidth demand for VMs. As shown in Fig. 3,
we build a testbed consisting of 16 hosts, and every 4 hosts
are connected to a switch, equivalent to a server with 4 VMs.
The edge switches are connected to a single root switch with
1Gbps bandwidth. The workload is constructed by generating
network traffic based on the specified demand matrix DN . In
the experiment, we focus on how the protocol allocates the
bandwidth on a congested link, by showing the allocated rates
and the observed rates of H1, H2, H3 and H4 under typical
scenarios.

H1 H2 H3 H4
0

200

400

600

VMs on the same server

T
h

ro
u

g
h

p
u

t(
M

b
p

s)

Demand Observed rate Rate

Fig. 4. Bandwidth allocation to
VMs with different bandwidth de-
mand, while the base bandwidth of
each VM is 250Mbps.

0 150 250
0

100

200

300

400

Base bandwidth of a VM (Mbps)

T
h

ro
u

g
h

p
u

t(
M

b
p

s)

H
1

H
2

H
3

H
4

Fig. 5. Bandwidth allocation to
VMs by varying the base bandwidth,
when K1 : K2 : K3 : K4 = 1 : 2 :
3 : 4.

Results of bandwidth allocation. Fig. 4 shows the band-
width allocation to the VMs on server 1, where each VM
has a base bandwidth of 250Mbps and all the VMs have
the same weight. H1 and H2 are pulling data from server
2 and each is connected to one VM, while H3 and H4 are
pulling data from server 3 and 4, respectively, and each is
connected to two VMs. For VM H1 and H3, whose bandwidth
demand is less than the base bandwidth, Falloc can guarantee
sufficient bandwidth for both of them. This implies that the
base bandwidth can be guaranteed in our implementation. For
VM H2 and H4, whose bandwidth demand exceeds the base
bandwidth, Falloc gives a fair bandwidth allocation, by sharing
the residual bandwidth with about a proportion of 2 : 3, which
is exactly the proportion of the total weight associated with H2

to H4. The result also indicates that our implementation can
achieve 99% accuracy when controlling the rate with 100Mbps
network workload and above 95% accuracy when the workload
increases to about 400Mbps.

Impact of weight. We characterize the impact of weight K
by assigning different weights and the same base bandwidth B
to the VMs on server 1. Fig. 5 plots the bandwidth allocation
for H1 s H4 with different settings of base bandwidth, i.e.,
B = 0, 150, 250Mbps for each VM, and all the VMs have
infinite bandwidth demand (represented by a value larger than
the physical bandwidth). On the one hand, Fig. 5 shows that
Falloc guarantees the base bandwidth of VMs regardless of
the weights of other VMs. Under each setting, the observed
rate of each VM is larger than B. Particularly, when the base
bandwidth is a full partition of the physical bandwidth, i.e.,
B = 250Mbps, the weight will have no effect on the allocation
result, since there is no remaining bandwidth to be shared after
guaranteeing the bandwidth demand for each VM. Note that
the difference of bandwidth allocation is caused by the error in
rate enforcement. On the other hand, when the base bandwidth
equals to zero, Falloc will not guarantee bandwidth and only
shares the bandwidth proportionally among the VMs. This is
showed by the proportion of the rates with B = 0 in the figure,
which is about 2 : 3 : 4 : 5. Considering the weights of VMs
connecting to H1 s H4, the allocation result is reasonable.

Impact of base bandwidth. The base bandwidth B is
another basic metric that determines the bandwidth allocation.
To validate the impact of B, we set up 3 experiments with the
same weight K, and assign different B to H1 s H4, while
maintaining the proportion as 1 : 2 : 3 : 4. As shown in Fig. 6,
when each B is 0, the bandwidth is equally allocated due to
the same weight of all the VMs. However, when the sum of B
is maximumed, i.e., equals the 1000Mbps physical bandwidth,
the proportion of bandwidth for H1 : H2 : H3 : H4 is strictly
1 : 2 : 3 : 4, although they are assigned with the same weight.

0 500 1000
0

100

200

300

400

Sum of base bandwidth(Mbps)

T
h

ro
u

g
h

p
u

t(
M

b
p

s)

H
1

H
2

H
3

H
4

Fig. 6. Bandwidth allocation to
VMs with different base bandwidth
for each VM.

0 10 20 30 40 50
0

100

200

300

400

500

Iteration steps

B
W

 a
llo

ca
tio

n
(M

b
p

s)

H2:a=0.005
H4:a=0.005
H2:a=0.006
H4:a=0.006
H2:a=0.007
H4:a=0.007

Fig. 7. Rate variation of VM H2
and H4 with increasing number of
iteration steps.

This is because the Falloc protocol should hardly guarantee
the bandwidth demand if it is less than the base bandwidth.

Balance the tradeoff. The above analysis for Fig. 5 and
Fig. 6 verifies the tradeoff between bandwidth guarantee and
proportional bandwidth share. In our solution, we choose to
give priority to bandwidth guarantee and consider proportional
sharing as a complement. Experiments show that by changing
the base bandwidth, Falloc can balance this tradeoff, and
obtain an allocation involving both bandwidth guarantee and
proportional share for VMs. This is a good start to provide
flexible fairness in sharing datacenter networks and by using
proper B and K based on a rigorous optimization, one can
assign suitable bandwidth to different applications towards
maximizing the datacenter’s performance.

Rate of convergence. We now quantify the convergence
by showing the rates of the VMs in the iteration process. We
give the result in the scenario corresponding to the experiment
shown in Fig. 4. The step size ⇠ is set to a/S and the rates
of VM H1 and H3 are omitted since they remain unchanged
during the iteration. As we can see in Fig. 7, the rates of VMs
converge under the control of our allocation algorithm. We find
that the optimal step size should be chosen according to the
problem scale. A large step size may lead to fluctuation during
the convergence, while a small step size will slow down the
convergence speed.

To verify the convergence speed in general cases, we
randomly generate 10 groups of demand matrices with a
varying number of servers from 50 to 500. Each group consists
of 50 demand matrices and the bandwidth demand of each
VM-pair is subject to the uniform distribution U(0, 1000)
in Mbps. We assert that the algorithm converges when the
variation of every ri,j in the rate matrix is less than � within
one iteration. Fig. 8 shows the average convergence steps with
� = 1 and 0.1Mbps. Allowing the error to be as much
as 1 Mbps, our algorithm can converges to a suboptimal
bandwidth allocation with less than 65 steps within 1 second
even when the number of servers arrives at 500, which should
be considered satisfactory.

B. Large Scale Simulations

To evaluate how Falloc performs under scenarios with
dynamic bandwidth demand on a large scale, we implement
Falloc with a real-world trace based simulator in C++. The
implementation simulates the behavior of a Hadoop cluster
in the cloud by analyzing the workload traces of Mapreduce
jobs. Specifically, we consider the bandwidth consumption of
reading/writing HDFS and data transmission in shuffle phase,
as well as the computation time in map/reduce phase.

100 200 300 400 500

40

60

80

100

120

140

Number of servers

It
e

ra
tio

n
 s

te
p

s

∆=0.1

∆=1

Fig. 8. Average convergence steps
with increasing number of servers
when � = 1 and 0.1Mbps.

0 200 400
0

50

100

150

200

Time(sec)

T
h

ro
u

g
h

p
u

t(
M

B
/s

)

Fig. 9. Network throughput of VM
when running Hadoop Word Count
with 1.2GB input data.

0 50 100 150
0

50

100

150

200

Time(sec)

T
h

ro
u

g
h

p
u

t(
M

B
/s

)

Fig. 10. Network throughput of
VM when running Hadoop Sort with
1.0GB input data.

0 20 40 60 80 100
0

50

100

150

200

Time(sec)

T
h

ro
u

g
h

p
u

t(
M

B
/s

)

Fig. 11. Network throughput of
VM when running Hadoop Join with
1.0GB input data.

0

1000

2000

3000

C
om

pl
et

io
n

tim
e

(s
ec

)

Fa
llo

c Res
erv

ati
on

Bes
t e

ffo
rt

Prop
ort

ion
al

Fig. 12. Comparing the completion
time between Falloc and other shar-
ing policies.

0

20

40

60

80

100
U

til
iz

at
io

n
(%

)

Fa
llo

c
Res

erv
ati

on
Bes

t e
ffo

rt
Prop

ort
ion

al

Fig. 13. Comparing the average
network utilization between Falloc
and other sharing policies.

0 500 1000 1500 2000
0

25

50

75

100

Time (sec)

U
til

iz
a

tio
n

 (
%

)

Best effort
Reservation
Falloc
Proportional share

Fig. 14. Comparing network utiliza-
tion of the entire datacenter during
the execution of all batched jobs.

1 2 40

1000

2000

3000

4000

Time interval (sec)

C
om

pl
et

io
n

tim
e

(s
ec

)

20

40

60

80

U
til

iz
at

io
n

(%
)Completion time

Utilization

Fig. 15. Job completion time and
average network utilization with dif-
ferent time �t = 1, 2, 4 s.

Characterizing Mapreduce workload. We characterize
the network throughput of map/reduce tasks by using two
VMs located in the same server to execute the map task and
reduce task, respectively. The measurement is conducted in
Hadoop 1.0.0 platform, with several typical Mapreduce jobs
as the workloads. The server has two 4-core Xeon 2.4Ghz
cpu and 32GB memory, running KVM based virtual machines,
and each VM is allocated with one core and 4GB memory.
Fig. 9-11 show the instantaneous network throughput of the
Mapreduce jobs (Hadoop Word Count, Sort and Join) with a
100ms time interval. Since we do not set limitation to the
bandwidth between these two co-located VMs, the capped
rates of shuffling indicate that the bottleneck is not in network
bandwidth. Based on the observation in [19], we can use these
capped rates as the the bandwidth demand of the tasks in
Mapreduce jobs.

We consider a multi-tenant datacenter with homogeneous
servers, which have equal ingress and egress network band-
width of 1Gbps. Jobs in the datacenter are running in VMs and
each server has 2 VM slots. The simulations use a full bisection
bandwidth network following [5]. The simulator simulates a
local area (managed by one centralized controller) consisting
of 200 servers in the datacenter, where batched jobs are all
submitted at one time. A job’s tasks are scheduled to run if
there are available map and reduce slots in the datacenter, and
the job size is represented by the number of VMs needed by
this job. For each simulation, we generate 200 mixed jobs, and
the job size is exponentially distributed around a mean of 49

(as [8]). Since our policy do not consider VM placement, it
is unnecessary to directly compare the performance of Falloc
with other VM allocation based policies. On the contrary, we
assume that the VM allocation has been done before applying
our policy. We investigate Falloc’s performance with com-
parison to three commonly used bandwidth sharing policies:
(i) best effort: no application-layer bandwidth allocation, (ii)
static reservation: the bandwidth of each VM is static (iii)
proportional share: bandwidth is shared in proportion to each
VM’s weight. We apply equivalent base bandwidth and weight
for each VM, i.e., B = 250Mbps, K = 1.

Job completion time. To compare the job completion time,

the simulator runs the same batched jobs with each sharing
policy at a time. The input iteration steps of Falloc is set to 50

and it updates the allocation every one second. The reservation
policy statically reserves 250Mbps bandwidth for each VM,
and the proportional share policy uses the average bandwidth
requirement as the weight. Fig. 12 shows the simulation result,
where Falloc reduces the total completion time by about 16%
compared to the reservation policy. But since the workloads
in the simulation have similar bandwidth demand, Falloc
shows no advantage on providing fairness for different jobs,
comparing to best effort and proportional sharing policies.
We leave the comparison consisting of aggressive network
application (e.g., video delivery) as future work.

Network utilization. To understand how Falloc can signifi-
cantly reduce the job completion time, we compare the average
network utilization among these policies with the same input
data. Fig. 13 shows that Falloc achieves on average 45.2%
network utilization (the realtime utilization is shown in Fig.
14), 18.8% higher than reservation and almost as high as
best effort. The improvement in network throughput verifies
that Falloc can make better use of network resource while
providing bandwidth guarantees for VMs.

Precision and cost. We repeat the above simulations by
varying the main factors impacting the cost of running Falloc,
i.e., the updating time interval �t. As shown in Fig. 15, the
completion time increases as the �t varies from 1 to 4 s
while the network utilization decreases. The implication is
that by extending the time interval, the allocated bandwidth
can not quickly adapt to the changing bandwidth demand
and the excessively allocated bandwidth will be wasted as
the demand reduces. Hence, the improvements in performance
can be achieved by increasing the precision of Falloc’s output,
which will lead to more overhead in the server and network. In
order to reduce the overhead, a practical method is to reduce
the iteration rounds, since the iteration will become useless
after the algorithm converges.

VI. Related Work

Recently, researchers have observed severe unfairness
among VMs caused by sharing networks via TCP in IaaS cloud

platforms. To achieve predictable network performance for
cloud applications, cloud providers need to maintain fairness at
VM or tenant level. Such goals motivate researchers to design
new policies and systems for sharing datacenter networks and
the proposed mechanisms consists of two main basic ideas, i.e.,
guaranteeing bandwidth for VMs and proportionally sharing
bandwidth among VMs or tenants [6].

Previous work, such as Oktopus [8], SeconNet [10] and
[20], focuses on providing deterministic bandwidth guarantees
for VMs. They allocate VMs into servers based on VMs’
bandwidth requirements, and by enforcing reservations in
both hosting servers and switches, they can ensure the band-
width of inter-VM network and achieve predictable network
performance for the applications in these VMs. The main
disadvantage of reservation policies is that they may not be
able to achieve high utilization of datacenter networks due
to variation in bandwidth demand of cloud applications. In
[19], the authors propose a time varying reservation policy
to meet the bandwidth requirements of VMs, and make a
contribution to increase the utilization of the datacenter when
reserving bandwidth for VMs. However, it is only suitable for
pulse-like bandwidth demand. Unlike the VM placement based
methods above, Gatekeeper [21] provides minimum bandwidth
guarantee for VMs by shaping the traffic of VMs, but the
unused bandwidth is shared in a best-effort manner.

Other works provide network isolation for VMs by sharing
the bandwidth resources proportionally. Seawall [7] provides
a hypivisor based mechanism to slice the bandwidth of each
congested link according to weights of source VMs. NetShare
[22] allocates the relative bandwidth among different services
based on their weights to and provides constant proportionality
of tenants throughout the network. Faircloud [5] presents
understanding on key requirements and properties for sharing
network in datacenters. The authors propose three bandwidth
allocation policies based on proportional share to explore the
tradeoff in sharing datacenter networks. These weight based
competition mechanisms, however, can not provide determin-
istic bandwidth guarantees for VMs since the competition of
other VMs should be considered in bandwidth allocation.

Finally, similar to [14], [16], [23], [24], our work use the
cooperative game framework to share resources.

VII. Conclusion
In summary, we propose a bandwidth allocation protocol

named Falloc to fairly share network resources at VM-level in
IaaS datacenters. Falloc guarantees the bandwidth requirement
based on the base bandwidth for each VM, and shares the
residual available bandwidth in a proportional way according
to VM’s weight. Through a bargaining game approach, we
present the design of Falloc protocol for both distributed
and centralized environment in a datacenter. The experiment
with OpenFlow implementation shows that Falloc can provide
flexible fairness for VMs by balancing the tradeoff between
bandwidth guarantee and proportional bandwidth share. We
carry out trace-driven simulations to evaluate the performance
of Falloc, and show that the protocol can achieve high network
utilization and good job completion time in datacenter network.

REFERENCES

[1] Amazon elastic compute cloud. [Online]. http://aws.amazon.com

[2] F. Liu, Y. Sun, B. Li, B. Li, and X. Zhang, “FS2You: Peer-Assisted
Semi-Persistent Online Hosting at a Large Scale,” IEEE Transactions
on Parallel and Distributed Systems, vol. 21, no. 10, pp. 1442–1457,
2010.

[3] F. Liu, P. Shu, H. Jin, L. Ding, J. Yu, D. Niu, and B. Li, “Gearing
Resource-Poor Mobile Devices with Powerful Clouds: Architectures,
Challenges and Applications,” IEEE Wireless Communications Maga-
zine, Special Issue on Mobile Cloud Computing, vol. 20, no. 3, pp.
14–22, Jun. 2013.

[4] F. Liu, B. Li, L. Zhong, B. Li, H. Jin, and X. Liao, “Flash Crowd in
P2P Live Streaming Systems: Fundamental Characteristics and Design
Implications,” IEEE Transactions on Parallel and Distributed Systems,
vol. 23, no. 7, pp. 1227–1239, Jul. 2012.

[5] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy,
and I. Stoica, “Faircloud: Sharing the network in cloud computing,” in
ACM SIGCOMM, 2012.

[6] J. Guo, F. Liu, D. Zeng, J. C. Lui, and H. Jin, “A cooperative game
based allocation for sharing data center networks,” in IEEE INFOCOM,
2013.

[7] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha, “Sharing
the data center network,” in USENIX NSDI, 2011.

[8] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in ACM SIGCOMM, 2011.

[9] Z. Zhou, F. Liu, Y. Xu, R. Zou, H. Xu, J. C. Lui, and H. Jin,
“Carbon-aware load balancing for geo-distributed cloud services,” in
IEEE MASCOTS, 2013.

[10] C. Guo, G. Lu, H. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang, “Secondnet: A data center network virtualization architecture
with bandwidth guarantees,” in ACM CoNEXT, 2010.

[11] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving datacenter performance and robustness with
multipath tcp,” in ACM SIGCOMM, 2011.

[12] A. Greenberg, J. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. Maltz, P. Patel, and S. Sengupta, “Vl2: a scalable and flexible data
center network,” in ACM SIGCOMM, 2009.

[13] J. Guo, F. Liu, H. Tang, Y. Lian, H. Jin, and L. John C.S., “Falloc:
Fair network bandwidth allocation in iaas datacenters via a bargaining
game approach,” Technical report, HUST, http://grid.hust.edu.cn/fmliu/
icnp2013falloc.pdf, August 2013.

[14] H. Boche, M. Schubert, N. Vucic, and S. Naik, “Non-symmetric nash
bargaining solution for resource allocation in wireless networks and
connection to interference calculus,” in Proc. 15th European Signal
Processing Conference, 2007.

[15] N. Nisan, Algorithmic game theory. Cambridge Univ Pr, 2007.
[16] H. Yaı̈che, R. Mazumdar, and C. Rosenberg, “A game theoretic frame-

work for bandwidth allocation and pricing in broadband networks,”
IEEE/ACM Transactions on Networking (TON), vol. 8, no. 5, 2000.

[17] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[18] S. Boyd, L. Xiao, and A. Mutapcic, “Subgradient methods,” lecture
notes of EE392o, Stanford University, Autumn Quarter, vol. 2004, 2003.

[19] D. Xie, N. Ding, Y. Hu, and R. Kompella, “The only constant is change:
incorporating time-varying network reservations in data centers,” in
ACM SIGCOMM, 2012.

[20] J. Zhu, D. Li, J. Wu, H. Liu, Y. Zhang, and J. Zhang, “Towards
bandwidth guarantee in multi-tenancy cloud computing networks,” in
IEEE ICNP, 2012.

[21] H. Rodrigues, J. Santos, Y. Turner, P. Soares, and D. Guedes, “Gate-
keeper: Supporting bandwidth guarantees for multi-tenant datacenter
networks,” in USENIX Workshop on I/O Virtualization, 2011.

[22] T. Lam and G. Varghese, “Netshare: Virtualizing bandwidth within the
cloud,” UCSD, Tech. Rep., 2009.

[23] Z. Fang and B. Bensaou, “Fair bandwidth sharing algorithms based
on game theory frameworks for wireless ad-hoc networks,” in IEEE
INFOCOM, 2004.

[24] J. Dai, F. Liu, B. Li, B. Li, and J. Liu, “Collaborative Caching in
Wireless Video Streaming Through Resource Auctions,” IEEE Journal
on Selected Areas in Communications, vol. 30, no. 2, pp. 458–466, Feb.
2012.

