
1

Composition of Java-based Router Elements and its
Application to Generalized Video Multicast

Yu Dong David K. Y. Yau John C. S. Lui

Abstract— We describe a software router capable of flexible
service composition through plug and play of specialized Java
software modules. These Java modules – previously developed for
network simulation in the J-Sim project – are leveraged for actual
deployment on our router through a JSocket class of objects.
Our system provides significant software engineering benefits
of simplified code development and safe composition/reuse of
various router components. These benefits have proved highly
useful in implementing new network services for emerging appli-
cation needs. In particular, we present a paradigm of generalized
multicast with application to large-scale video streaming. We
detail the performance of our prototype implementation in terms
of efficiency (when compared with a native C implementation)
and its ability to satisfy the dynamic resource capabilities of
a heterogeneous set of receiver end-systems including mobile
handheld devices.

I. INTRODUCTION

The Internet is expanding in scale and increasing in di-
versity. For example, mobile devices (laptops, handhelds, cell
phones, etc.) are increasing in capability and are being con-
nected to the network in larger numbers. New applications and
services are being conceived and developed for the changing
network environment.

To keep up with the evolving needs of the Internet, software-
programmable routers are promising. They provide a highly
flexible way to extend existing network protocols and config-
ure protocol components according to the needs of emerging
applications. With such a router, new services can be read-
ily started by hot-swapping the configuration file of router
modules, without shutting down the router. This feature is
important for new service deployment and system resource
management. Current composable routers predominantly sup-
port OS kernel modules implemented in C/C++. Click, for
example, provides an element-based router architecture, in
which elements (each being a Linux loadable module realizing
a simple router function) can be configured for customized
per-flow processing of packets. Deploying router functions as
compiled C/C++ kernel modules has the advantage of being
highly efficient.

Unfortunately, kernel modules – particularly modules that
can be safely composed and reused – can be quite hard
to develop. Weak data typing, lack of well-defined module

Research was supported in part by the U.S. National Science Foundation
under grant numbers CCR-9875742 and CNS-0305496, and in part by an
HKSAR RGC Earmarked Grant. Y. Dong is with the Department of Computer
Sciences, West Lafayette, IN, USA; D. K. Y. Yau is with the Department
of Computer Sciences, Purdue University, and the Department of Computer
Science and Engineering, The Chinese University of Hong Kong; J. C. S. Lui
is with the Department of Computer Science and Engineering, The Chinese
University of Hong Kong.

interfaces, possibly intricate data dependencies between mod-
ules, platform dependence, absence of fault isolation, and an
unfamiliar development and execution environment to most
programmers, are some of the major stumbling blocks. The
use of a modern object oriented language, like Java, will
solve some of the problems. For example, Java is platform
independent and has much stronger type checking than C/C++.
By design, it explicitly disallows many of the “dangerous”
operations, such as reckless memory management and pointer
manipulations, that one can perform with C/C++. However,
the unconstrained use of Java objects will not guarantee safe
composition of these objects without unintended side effects.
In particular, Java is susceptible to the hyperspaghetti object
and subsystem phenomenon [13], in which objects can be so
tightly and invisibly coupled together that it is difficult to
extract classes in one system for reuse in another.

The J-Sim project [12] has implemented a software infras-
tructure for flexible large-scale network simulations. In J-Sim,
protocol components are written in Java, but must conform to
the requirements of the autonomous component architecture
(ACA). In ACA, components communicate with one another
by sending/receiving data at their entry points, called ports.
The semantics of data exchanges are defined through certain
contracts that are agreed upon at design time. A contract
specifies the casuality of information exchange between com-
ponents but not the types of the components participating
in the exchange. A component is bound to contracts, rather
than other components that interact with it. Binding contracts
at design time and components at system configuration time
eliminates the hyper-spaghetti phenomenon. Our work enables
the use of J-Sim ACA components for actual deployment on
operational routers, rather than for simulations.

A. Our contributions

Our contributions in this paper are three fold. First, we
realize a software router that can support the use of ACA
components as building blocks of router services. This is
done by integrating ACA into the CROSS/Linux software
router [3] we have previously developed. Compared with
existing modular routers, the target router will provide soft-
ware engineering benefits of easier code development and
safe composition and reuse of router components. Second,
we leverage the significant code base of J-Sim protocol simu-
lation modules for deployment on operational routers. This
will greatly facilitate the development and experimentation
of new network services while exploiting the rich body of
complementary protocol functions developed in the Internet,

2

IntServ, and DiffServ contexts. In particular, we have applied
our platform to generalized multicast of scalable video to a
set of heterogeneous video receivers (e.g., desktops, laptops,
and handhelds). IP multicast components, including IGMP
and DVMRP, and other J-Sim components, are immediately
leveraged on the router control plane. In addition, we have
implemented an adaptation mechanism for video clients to
negotiate the desired quality of video with appropriate routers.
(The functions of duplicating and scaling received video
packets are implemented in a separate module of the router
forwarding plane.) Third, we have evaluated the performance
of our prototype implementation in terms of efficiency (when
compared with a native C implementation) and its ability to
satisfy the dynamic resource capabilities of a heterogeneous
set of video receivers (particularly the energy capacity of
mobile handheld devices).

B. Related work

Component-based synthesis of routing protocols has been
advanced in x-kernel [8], and adopted to different extents in
recent extensible routers [4], [1], [10]. The existing platforms,
including x-kernel and Click, predominantly support compiled
software modules implemented in C/C++, which can be quite
hard to safely compose and reuse. Java-based software routers
have been described in [11]. Our work in supporting J-Sim
and ACA components goes further than simply using Java.
Java by itself is susceptible to the hyper-spaghetti object
and subsystem phenomenon, which can make it exceedingly
difficult to extract objects from one system for reuse in another
system.

Our generalized multicast service realizes adaptive stream-
ing of scalable video to a set of heterogeneous receivers.
While this is conceptually similar to previous work in scalable
video streaming [5], our work is distinguished in two respects.
First, we have carefully detailed the impact of our service
in the increasingly important area of energy adaptation for
mobile clients. We have also performed careful analysis of
the energy impact on different system components, including
display, network interface, and local processing, on a pocket
PC. Second, our implementation demonstrates directly the
feasibility of leveraging and reusing software components
previously developed for a different goal (namely, network
simulation) in actual router deployment. Not only does it
validate the software engineering benefits and accompanying
performance impact of our work, but it also opens up inter-
esting possibilities of mixing matching software components
for hybrid network simulation, emulation, and real deployment
between machines. There has been similar work to extend the
NS network simulator to support network emulation [2].

Luby et al. [7] have studied negotiation protocols that adapt
application performance to available network bandwidth. Our
work similarly targets resource-aware applications, but gen-
eralizes such adaptation to include receiver system resources
such as CPU and energy capacities.

II. ASSIMILATING J-Sim ROUTER COMPONENTS

J-Sim [12] is a compositional network simulation environ-
ment. It is built upon a component-based software architecture,

called the autonomous component architecture (ACA), and a
packet-based network modeling framework, called the exten-
sible internetworking framework (EIF). In ACA, a software
system is composed of a collection of components. ACA
organizes the components with the interface of Ports to
communicate with the outside. The ability to handle data in
independent execution contexts, along with the fact that com-
ponents are bound to one another only at system configuration
time, enables a component to be autonomous (hence the name
of the architecture), and be reused in other software systems.

The EIF model in J-Sim is built upon two layers: the core
service layer (CSL) and the upper protocol layer (UPL). CSL
includes the common internetworking services to the clients
such as routing table services, interface services, etc. The
component modules in UPL, such as application, transport,
and routing protocols use the CSL services. Many of the J-
Sim service components (e.g., routing protocols components in
UPL, common services components in CSL) are in principle
detailed enough to fully function in a real system as discussed
in [12]. One of our tasks is to provide a generic mechanism for
the simulation modules to run seamlessly on a router platform
in practice.

An initial design issue for deploying J-Sim components
is to enable the components to communicate over an actual
network. We have defined a physical network access socket
component, called JSocket, that interfaces the CSL of J-Sim
with a physical network. JSocket is implemented in Java,
and is designed to conform to the specification of an active
ACA component. An ACA component is considered to be
active if it is a data source that generates data inside the
component and sends the data to other components through
its connecting ports. JSocket may be considered a data source
when receiving data from the actual network. JSocket can
interface with other ACA components through its input and
output ports. These ports can be connected to the down port
of a Packet Dispatcher component of CSL to send/receive
data. Hence, a pair of CSL components running on different
machines are able to communicate with each other through
their corresponding JSockets.

A second issue we faced is that in J-Sim, simulation
messages are frequently sent between nodes in a simplified
format (e.g., without full protocol headers, or by passing buffer
pointers instead of the data themselves) for efficiency reasons.
Such optimizations will not work for real communication
between machines, since the message packets sent by the J-Sim
service and routing protocol components will be known to J-
Sim only, and are different from the standard routing protocol
message formats. Thus, the messages cannot be recognized
and used by a peer router talking the same protocol. To handle
the problem, we incorporate a packet format conversion func-
tion into JSocket, which converts packets between the J-Sim
formats and the standard network packet formats, including
full header encapsulation. The packet conversion function,
Packet convert, is shown in Figure 1 which illustrates
the internal structure of a JSocket.

3

OutPort

InPortOutgoing Data

Incoming Data

JSocket Component

_Start()

Process()

Packet_convert

Packet_convert

Client_Socket

Server_Socket

Fig. 1. Internal structure of the JSocket component.

CROSS RouterHost

SWITCH

Process

Integrated Javasim routing services on host Integrated Javasim routing services on CROSS router

Process

OSPFControl

CSL

JSocket

IGMP

JSocket

CSL

IGMP
DVMRP

Fig. 2. CROSS/Linux routers configured with JSockets.

Also shown in Figure 1 are two special methods that make
JSocket conform to the ACA specification for active compo-
nents: (1) Process() that processes incoming data, and (
2) start() that generates outgoing data. In Process(),
we use a client socket to send J-Sim messages generated by
other J-Sim components to the actual network, after packet
conversion. In start(), a server socket listens for and
receives data from the actual network. Received data are
converted into J-Sim message objects. and then sent to other
J-Sim components through JSocket’s output port.

Apart from message conversion, a runtime environment in
J-Sim automatically establishes connections between compo-
nents according to certain simulation scripts. All the compo-
nents of UPL and CSL are automatically instantiated and con-
nected by the simulator runtime according to the description
of a router node in a simulation script. In actual deployment,
we do not have the simulation runtime. Therefore, we need to
explicitly configure each component with other components,
through the correct ports. Figure 2 illustrates an example
router configuration that runs IP multicast as adapted J-Sim
components between two actual machines.

III. GENERALIZED MULTICAST SERVICE

Our router implementation is based on CROSS/Linux [3].
CROSS/Linux uses Click elements for service composition.
Beyond Click, CROSS/Linux has significantly enhanced re-
source management capabilities, such as flow-based schedul-
ing (Click scheduling is element based), fine grained pre-
emption of packet processing, and QoS-aware provisioning

of various router resources (e.g., CPU cycles and network
bandwidth). Whereas the forwarding plane of CROSS/Linux
processes packet flows, its control plane runs supporting
services such as routing (e.g., OSPF, RIP and DVMRP) and
signaling (e.g., SIP and RSVP) daemons. We now explain
the leveraging of certain J-Sim components (e.g., DVMRP
and IGMP) on CROSS/Linux to support heterogeneous video
multicast.

A. Paradigm of generalized multicast service

As motivated in Section I, heterogeneous end systems
have access to different system resources, including CPU
capacity, network bandwidth, and energy capacity in the case
of mobile devices. Large-scale data distribution (e.g., video
streaming) over such heterogeneous networks is especially
challenging because it must be scalable to a large number
of receivers to be economically viable and, at the same time,
be amenable to customization to cater to different customer
needs. Scalability suggests that resources should be shared by
receivers whenever feasible to amortize distribution costs. On
the other hand, the need for customization suggests that, when
receivers are heterogeneous, their payloads should be properly
differentiated along the distribution pathways. To satisfy the
dual goals of sharing and differentiation, we define a paradigm
of generalized multicast service (GMS).

In GMS, a single transmission along a shared link can be
used to satisfy a group of receivers, similar to traditional IP
multicast. In addition, it allows flow group specific operations
to be defined at branch points in a distribution tree. These
features together enable receiver differentiation to be applied
not only at the sender, but also at routers corresponding to
strategic places inside the network infrastructure. In-network
deployment gives two benefits. First, prior to differentiation,
transmissions can be shared, claiming multicast economy of
scale. Second, differentiation may be unforeseen at the sender,
such as response to congestion on selected network paths, and
so must be performed at network routing points.

B. Implementation on CROSS/Linux by leveraging J-Sim com-
ponents

We have implemented GMS for wavelet video streaming
[5]. Each GMS client can request to receive a certain qual-
ity level of video consistent with its capability and current
operating conditions (e.g., CPU load, remaining battery, and
available network bandwidth). On the CROSS/Linux router
control plane, we reuse the J-Sim IP multicast components,
including DVMRP and IGMPv2, to maintain the routing and
video quality information of members in a wavelet video mul-
ticast group. The IGMP component maintains the local mul-
ticast group information (e.g., member join/leave). DVMRP
maintains the multicast routing information among routers.
Both components rely on services from the CSL, like routing
table management, packet dispatching, etc. Each protocol
message augmented with video quality level information is
sent to the PacketDispatch component of CSL, from which the
packets are passed to JSocket. JSocket converts the messages

4

to actual protocol packets and sends them on to the destination
machines.

In addition, we build a separate component for clients
to negotiate the desired quality of video with appropriate
routers. As part of IP multicast routing, each router maintains
a routing table of the current set of downstream recipients
(which is either a next-hop router or a client) for the multicast
group. We augment the multicast routing table to include the
video quality requested by each recipient. For example, our
system supports Discrete Wavelet Transform (DWT) encoded
video, which consists of a base layer of low frequency video
information, and progressive enhancement layers of higher
frequency information. The video is encoded in 33 progressive
layers and therefore supports 33 video quality levels. The
best quality level is level one consisting all the 33 layers.
The lowest quality level of 33 has the base layer only. For a
router, say

�
, assume that there are currently � downstream

recipients. We denote by ��� the quality level requested by
recipient ���	��
��
�� . If

�
has an upstream router � for

the multicast group, it will then request a quality level of������� �����	��
���
���� from � .
Using the routing and video quality information maintained

by the control plane, the CROSS/Linux forwarding plane
is responsible for forwarding received video data to each
downstream recipient, after appropriate scaling of the video
quality to that requested by the downstream. The function of
duplicating and scaling received packets for the downstream is
implemented as a standard CROSS/Linux element, called gmc,
on the multicast data path of the forwarding plane.

The gmc element manages a local forwarding table that
records the downstream recipients of a video being streamed,
together with the video quality levels currently requested by
each of the recipients. Whenever there is any change in the
GMS routing table managed by the control plane (e.g., when
clients join/leave or change their desired video quality level),
gmc updates its local forwarding table accordingly through a
kernel write file handler associated with GMS routing table.
Also, a 7-bit tag in each video packet identifies the layer of
the carried video information. By comparing the 7-bit tag of a
video packet with the quality level requested by a downstream
recipient, gmc can efficiently decide whether the packet should
be forwarded to that recipient or not.

C. Adaptation mechanism of GMS

In practice, the video quality level requested by a client
should change according to the current network conditions,
local system resource availability, etc. For example, network
congestion or signal interference may cause excessive drop of
video packets for a wireless client, and may lead to severe
degradation of the video quality. Also, the battery of a PDA
device may be running low and cannot support the highest
quality for the whole duration of the video. It is important
that GMS provides feedback control to monitor and adapt to
these variations over time.

Our adaptation mechanism runs on the control plane of
CROSS/Linux. At each end system, a negotiate client
process monitors in real time the available system resources –

currently, CPU utilization, battery power, and network band-
width. When the estimated availability of a resource changes
by more than a certain threshold, an end system may request
a new video quality level from the routers. On receiving the
new requested quality level, a negotiate server daemon
process running on a CROSS/Linux router will update the GMS
routing table, which will in turn change the gmc forwarding
table as discussed above. The new video quality information
will also eventually be propagated to relevant upstream routers
through DVMRP augmented to handle the additional quality
information.

Consider, for example, adapting to available network band-
width. For our wavelet video experiments, we have a per-video
profile of the expected data rate for each quality level. The
profile is contained in a table called rate table accessible
to the video clients. When an end system measures an achieved
packet arrival rate (averaged over a time window currently
set to be one second and denoted as sample rate) that
is lower than expected by the current quality level, say � ,
the end system will use rate table to look up the highest
quality level, say � , that can be supported by the measured
actual packet arrival rate. Through negotiate client, it
will then request a quality level of � (� ���) from the routing
infrastructure. The algorithm for reducing the video quality if
necessary is specified as algorithm degrade:

1 algorithm_degrade(sample_rate){
2 for (level = 1; level <= MAX_LEVEL; level++){
3 if(rate_table[level] < sample_rate){
4 return level;
5 }
6 }
7 return MAX_LEVEL;
8 }

More generally, we also need to adapt to increased available
network bandwidth (e.g., when congestion eases). This will
require us to discover the extra available bandwidth, and to
improve the requested video quality accordingly. Algorithm
algorithm adapt is designed to perform this more general
adaptation. It is called when a new sample rate value
is obtained. The algorithm calculates the difference, diff,
of sample rate minus the expected data arrival rate. If
the difference is negative and exceeds a threshold value, we
conclude that there is not sufficient bandwidth to sustain
the current video quality, and use algorithm degrade to
reduce the quality of the requested video. Otherwise, if we
record sufficient bandwidth for more than MAX DELAY sample
periods, we optimistically assume that there is extra bandwidth
available, and attempt to achieve the highest “ideal” video
quality, ideal level, desired by this client. If this ideal
quality cannot be sustained, then algorithm degrade will
soon be triggered again to reduce the video quality. Otherwise,
the client enjoys its desired video quality, and no further
control actions are needed.

1 algorithm_adapt(sample_rate){
2 diff = sample_rate - rate_table[current_level];
3 if (diff < 0) {
4 if (|diff| < threshold *

rate_table[current_level]) {
5 if (recover_delay++ < MAX_DELAY) {
6 new_level = current_level;
7 } else {
8 new_level = ideal_level;

5

9 recover_delay = 0;
10 }
11 } else {
12 new_level = algorithm_degrade(sample_rate);
13 }
14 } else {
15 if (recover_delay++ < MAX_DELAY) {
16 new_level = current_level;
17 } else {
18 new_level = ideal_level;
19 recover_delay = 0;
20 }
21 }
22 return new_level;
23 }

IV. EXPERIMENTAL RESULTS

We report experimental results using our system prototype
to quantify the performance of our router and the GMS service.
Our experimental router is a Pentium III/866 MHz machine
with 128 MBytes of RAM and running Linux RedHat 2.2.4.
All the J-Sim components run with IBM JDK 1.3 for Linux.
The version of J-Sim used in the experiments is v1.0. The
CROSS/Linux router version is v1.0. End systems include Sun
Ultra-10s running SunOS 5.6, Pentinum III PCs running Linux
2.2.4, iPAQ H3600s running Familiar Linux 2.4.18. Because
of limited space, we will only present selected performance
results; further results can be found in [6].

A. Microbenchmark performance of J-Sim components

The easiest way to implement JSocket is to use the default
Java TCP socket API to encapsulate J-Sim routing messages.
However, since most routing protocols run at the IP layer, TCP
encapsulated routing messages will not work with standard
peer routers. We have therefore implemented JSocket in Java
native methods using raw sockets to convert J-Sim routing
messages into their standard formats. We aim to quantify the
processing overhead of such packet conversion.

Our experiments measure the round trip time (RTT) of
IGMP messages sent between an IGMP client and an IGMP
server. The time is measured as the delay between when the
client sends a join message to the server and when the server
sends back a reply. To factor out the effect of the network
link, we run both client and server as separate processes on
the same machine, and connect the two through a loop-back IP
address. We compare the achieved RTT of a C implementation
with two Java implementation versions: one using original Java
TCP sockets and another using our implementation of native
raw sockets. For Java TCP socket, the default configuration is
with Nagle’s algorithm enabled. We have also experimented
with Nagle’s algorithm disabled to greatly reduce the delay
for small message transfers as in our experiments. Our delay
measurements are obtained with a native Java method, called
gethrtime(), that we implemented to return timestamps in
� s resolution and with an overhead of about 60 ns.

Breakdown of the RTT time into different components is
shown in Table I. Reported numbers are averages over 1000
request-reply messages sent back to back between client and
server.

From Table I, the Java implementation with raw sockets is
significantly more efficient than the Java implementation with

TCP sockets. It achieves an RTT slightly more than twice that
of the C implementation. There are two reasons why the Java
implementation is not quite as efficient as C: (1) the overhead
induced by JNI (the package to create Java native methods)
that copies the IGMP packet data between the Java runtime
space and the native method runtime space, and (2) the “server
processing delay” for the Java IGMP server implementation
is higher than its C counterpart (see Table II). However, we
believe that the achieved efficiency is adequate for a control
service like IGMP, and is a reasonable price to pay for the
software engineering advantages of ACA components.

For the IGMP server processing overhead, the breakdown is
shown in Table II. The time of “receive IGMP packet” is only
measured for the default Java implementation. It is the time
to retrieve an IGMP packet from the DataInputStream
of the Java socket after the TCP connection is accepted.
“Process IGMP data” gives the time for the IGMP server to
process the IGMP data and extract group membership and
video quality level information after a raw IP packet has been
received. “Update routing table” is the time to update the
kernel multicast routing table interfacing with the gmc element
on the forwarding plane. The time used to send back a reply
to the IGMP client is given in “Send reply”.

B. Impact of GMS on video playback

A wavelet video decoder runs at each end system to play
back scaled video forwarded by a CROSS/Linux router. We
demonstrate how GMS may impact video playback at a re-
ceiver, especially the energy capacity for the mobile handheld
devices.

We expect some GMS clients to be mobile devices, for
which energy is an important system resource. We measure
the energy consumption of wavelet video playback at different
quality levels, when running on an iPAQ H3600 pocket PC
fitted with an IEEE 802.11b wireless interface card. For the ex-
periments, the video playback rate is fixed at 3 frames/second,
to match the relatively limited processing capacity of the iPAQ,
which does not have a hardware floating point unit to perform
calculation-intensive image processing.

The energy used, � , in playing back a video is then
calculated as:

�������	��
����������������� �������! "�$# (1)

where � �$��
 denotes the average current drawn, ��������� denotes
the voltage of the power supply, and � ����� �% "�	# denotes the
playback duration that is always 100 seconds in this experi-
ment.

The total energy consumption in Table III shows the re-
duction in energy consumption as we go from high to low
video quality. We notice that at level one, the iPAQ is actively
processing data for a larger fraction of the playback time,
whereas for level 33, the iPAQ is idle longer between playback
of consecutive frames. This explains the energy reduction
between different quality levels.

There are three major consumers of energy during video
playback: the video display, the network interface, and iPAQ
local processing (CPU, memory, etc), denoted as �'& , �)(,

6

and ��� , respectively. We have further estimated the relative
energy use of these components during video playback. These
estimates are given in Table III. For a baseline comparison,
the row labeled “idle” corresponds to the estimates when the
iPAQ is simply turned on but not doing video playback. From
the table, notice that much of the energy saving as we go from
high to low video quality is a result of reduced processing by
the network interface.

To get an idea of the maximum energy saving that can
be potentially achieved, we may deduct the idle energy use
for the three components from the corresponding energy use
during playback at the different quality levels. By doing so, we
compute the percentage energy saving achieved over level one.
The results in Table III show that much of the energy saving
would still come from the network, but significant energy
saving would then be possible for the other two components
also.

C. End-to-end GMS adaptation performance

We measure the end-to-end performance of GMS adapta-
tion. We use the traffic controller (TC) as a tool to limit the
bandwidth of end systems to emulate network congestion. The
experimental setup is shown in Figure 3. In the setup, cordoba
is the wavelet video server, sevilla is a CROSS/Linux router
supporting GMS, cadiz is a machine running TC to limit its
egress bandwidth when forwarding the scaled wavelet video
destinated for madrigal, the video client.

wavelet video
stream

traffic controllerCROOS/Linux Routerwavelet video server

video display

cordoba

madrigal

sevillla

cadiz

802.11b

iPAQ

video display

Limited BW

Scaled video

Scaled video

Fig. 3. Experimental setup for adaptation mechanism.

Our adaptation strategy allows clients to decide the video
quality level desired locally, without relying on the routers
(i.e., the approach is client-driven). The advantages are: (1)
reduced control messages – end systems only send requests
when necessary, without the need for periodic heartbeat mes-
sages that inform the routers of the available bandwidth, and
(2) reduced load on routers, each of which may be shared by
a large number of clients.

In the experiment, the client initially requests a video
quality level of one. The playback duration is 20 seconds
for total 300 frames. (The video frame rate is 15 frames/s.)
The quality can be sustained when the network bandwidth
is not restricted (100 Mbit/s). Then, we use TC to limit
the available bandwidth to 100 Kbit/s. Fig. 4 profiles the
achieved PSNR (Peak Signal Noise Ratio, a higher value
of which means less distortion of image) with and without
the adaptation mechanism, immediately after the reduction of

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20

P
S

N
R

 (
dB

)

Time (second)

No adaptation
With adaptation

Fig. 4. PSNR profile of video playback with available bandwidth of 100
Kbit/s, with and without adaptation.

network bandwidth to 100 Kbit/s. Notice that in the case of
no adaptation, the video playback essentially fails (only 19
frames are successfully displayed with average PSNR of 0.93
dB). With adaptation, however, the client finds out about the
bandwidth reduction after a delay of about 1.5 seconds and
changes the quality level to 26. The new video quality is still
too high to be sustained. About one second later, the client
further adjusts the video quality level to 33, which then allows
the video to be played back at an appropriately degraded
quality. As a result, 213 frames are successfully displayed,
with an average PSNR of 13.78 dB. The sudden drop of PSNR
after 18 seconds happens because the bandwidth requirement
of the video increases due to a scene change around 18
seconds. The required bandwidth is significantly larger than
the current available network bandwidth, and causes the video
quality degradation. Such a problem could be mitigated by
certain image processing techniques of error concealment, but
is beyond the scope of the present work.

V. CONCLUSION

We have presented the design and implementation of a
software router supporting Java-based ACA components as
building blocks of router services. The use of ACA compo-
nents simplifies code development, achieves platform inde-
pendence, and facilitates module composition and reuse. In
particular, through our JSocket design, we are able to provide
a generic means of adapting and leveraging a significant base
of Internet, IntServ, and DiffServ protocol simulation modules
for actual deployment on our router platform. As a case study,
we have reused the J-Sim DVMRP and IGMP modules in
realizing a generalized multicast service (GMS) for adaptive
video streaming to heterogeneous users. We show that the use
of J-Sim components, while not quite as efficient as native C
implementations, has acceptable performance for control plane
services. We also detailed how GMS may impact video clients
in terms of CPU processing, network bandwidth, and energy
requirements. Our results show that wavelet video scaling can
be highly effective in gracefully matching the video playback
quality to varying availabilities of these resources. Finally,

7

GMS allows the video quality to be automatically negotiated
in response to changing system conditions. In future work,
we aim to further detail our router’s performance (transfer
throughput, detailed processing overheads for each component,
etc) and to realize a component-based software environment
for hybrid simulation, emulation, and synthesis of network
protocols.

VI. ACKNOWLEDGEMENTS

The authors wish to thank the editor and the anonymous
reviwers for their constructive comments and detailed sugges-
tions to improve the paper’s presentation. Thanks are also due
to Professor J. Hou of the University of Illinois at Urbana-
Champaign for helpful discussions on the materials presented
in this paper.

REFERENCES

[1] D. Descaper, Z. Dittia, G. Parulkar, and B. Plattner. “Router Plugins:
A Software Architecture for Next Generation Routers,” In Proc. ACM
SIGCOMM, Vancouver, Canada, Sept. 1998.

[2] K. Fall. “Network Emulation in the Vint/NS Simulator,” In Proc. Fouth
IEEE Symposium on Computers and Communications (ISCC’99), Red Sea,
Egypt, June 1999.

[3] P. Gopalan, S. C. Han, D. K. Y. Yau, X.Jiang, P. Zaroo, and J. C. S. Lui,
“Application Performance on the CROSS/Linux Software-Programmable
Router,” CS TR-01-019, Purdue University, West Lafayette, IN, November
2001.

[4] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The Click
Modular Router,” ACM Transactions on Computer Systems, 18(3):263-297,
August 2000.

[5] R. Keller, S. Choi, D. Decasper, M. Dasen, G. Fankhauser, and B. Plattner.
“An Active Router Architecture for Multicast Video Distribution,” In Proc.
IEEE Infocomm, March 2000.

[6] Y. Dong, D. K. Y. Yau, and J. C. S. Lui, “Composition of Java-based
Router Elements and Its Application to Generalized Video Multicast”,
Technical Report, Dept of Computer Science, Purdue Univeristy, West
Lafayette, IN, January 2004.

[7] M. Luby, V. K Goyal, S. Skaria, and G. B. Horn, “Wave and Equation
Based Rate Control Using Multicast Round Trip Time,” In Proc. ACM
SIGCOMM 2002, Pittsburgh, PA, August 2002.

[8] S. W. O’Malley and L. L. Peterson. “A Dynamic Network Architecture,”
ACM Transaction on Computer Systems, 10(2):110-143, May 1992.

[9] C. Pfister and C. Szyperski, “Why Objects Are Not Enough,” In Proc. of
the First International Component Users Conference (CUC’96), 1996.

[10] T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb. “Building a Robust
Software-based Router Using Network Processors,” In Proc. of the 18th
ACM Symposium on Operating Systems Principles (SOSP), Oct. 2001. to
appear.

[11] P. Tullmann, M. Hibler, and J. Lepreau. “Janos: A Java-oriented OS for
Active Networks,” IEEE JSAC, March 2001.

[12] H. Tyan and C. Hou, “Design, Realization, and Evaluation of
A Component-based, Compositional Network Simulation Environment,”
2002 SCS Western Multiconference on Computer Simulation – communica-
tion networks and distributed systems modeling and simulation conference,
January 2002.

[13] B. F. Webster. “Pitfalls of Object-Oriented Development,” M&T Books,
New York, 1995. ISBN 1-55851-397-3.

VII. AUTHORS’ BIOGRAPHIES

Yu Dong received the B.E. degree from the School of Automation
and Information Engineering, University of Science and Technology
Beijing (USTB), China in 1995, the M.E. degree in Information
System Engineering from Osaka University, Japan in 2001, and
the M.S. degree in Computer Science from Purdue University,
U.S.A. in 2003. He is currently working towards his Ph.D degree
at Purdue. His research interests are in networking, including
wireless ad-hoc and overlay networks, multimedia systems, and
VLSI design. Since 1999, he has been a student member of the IEEE.

David K. Y. Yau received the B.Sc. (first class honors) degree
from the Chinese University of Hong Kong, and the M.S. and
Ph.D. degrees from the University of Texas at Austin, all in
computer sciences. From 1989 to 1990, he was with the Systems
and Technology group of Citibank, NA. He was the recipient of an
IBM graduate fellowship, and is currently an Associate Professor
of Computer Sciences at Purdue University, West Lafayette, IN.
In 2004, he is on the faculty of the Department of Computer
Science and Engineering, The Chinese University of Hong Kong.
He received an NSF CAREER award in 1999, for research on
network and operating system architectures and algorithms for
quality of service provisioning. His other research interests are in
network security, value-added services routers, and mobile wireless
networking. David is a member of the ACM and IEEE. He serves
on the editorial board of the IEEE/ACM Transactions on Networking.

John C. S. Lui received his Ph.D. in Computer Science from
UCLA. He worked in the IBM T. J. Watson Research Laboratory
and in the IBM Almaden Research Laboratory/San Jose Laboratory
before taking up an academic position at the Chinese University of
Hong Kong. Currently, he is leading a group of research students
in the Advanced Networking and System Research Group. His
research encompasses both systems and theory. His current research
interests are in theoretical/applied topics in data networks, distributed
multimedia systems, network security, OS design, mathematical
optimization, and performance evaluation. John received the Vice-
Chancellor’s Exemplary Teaching Award in 2001. He is an associate
editor of the Performance Evaluation Journal, a member of the
ACM, a senior member of IEEE, and an elected member of the IFIP
WG 7.3. John serves as the TPC co-chair of ACM Sigmetrics 2005.
His personal interests include films and general reading.

8

TABLE I

BREAKDOWN OF IGMP REQUEST RTT IN � S.

Java Java w/o Nagle’s Java raw socket C

Send IGMP packet 31 509 117 61
IGMP server processing 9995 131 79 23
Average RTT 10026 640 186 84
Slowdown over C 119.4 7.6 2.2 1

TABLE II

BREAKDOWN OF IGMP SERVER PROCESSING OVERHEAD IN � S.

Java Java w/o Nagle’s Java raw socket C

Receive IGMP packet 9881 45 - -
Process IGMP data 22 21 19 11
Update routing table 53 42 44 4
Send reply 22 16 12 6

TABLE III

ENERGY CONSUMPTION AND RELATIVE SAVING FOR EACH VIDEO QUALITY LEVEL IN J.
���

(% saving)
���

(% saving)
���

(% saving)
���	��
���

Level 1 471.7 (0) 55.5 (0) 273.9 (0) 801.1
Level 5 437.5 (21.5) 50.9 (30.8) 272.8 (9.2) 761.2
Level 15 366.7 (65.9) 49.8 (38.3) 271.8 (17.5) 688.3
Level 25 337.8 (84.1) 51.1 (29.5) 271.3 (21.7) 660.2
Level 33 326.7 (91.1) 47.8 (51.7) 270.9 (25) 645.4

idle 312.5 (-) 40.6 (-) 261.9 (-) 615

