
Constructing Communication Subgraphs and Deriving an
Optimal Synchronization Interval for Distributed Virtual

Environment Systems
�

John C.S. Lui
Department of Computer Science & Engineering

The Chinese University of Hong Kong
Shatin, NT

Email:cslui@cse.cuhk.edu.hk

Abstract

In this paper, we consider problems of constructing a communication subgraph and deriv-
ing an optimal synchronization interval for a distributed virtual environment system (DVE). In
general, a DVE system is a distributed system which allows many clients who are located in
different parts of the network to concurrently explore and interact with each other under a high
resolution, 3-dimensional, graphical virtual environment. Each client in a DVE system is rep-
resented by an avatar in the virtual environment, and each avatar can move and interact freely
in the virtual environment. There are many challenging issues in designing a cost-effective
DVE system. In this work, we address two important design issues, namely, (a) how to con-
struct a communication subgraph which can efficiently carry traffic generated by all clients in
a DVE system and, (b) how to guarantee that each participating client has the same consistent
view of the virtual world. In other words, if there is an action taken by an avatar or if there is
any change in the state of an object in the virtual world, every participating client will be able
to view the change. To provide this consistent view, a DVE system needs to perform synchro-
nization actions periodically. We present several algorithms for constructing a communication
subgraph. In the subgraph construction, we try to reduce the consumption of network band-
width resources or reduce the maximum delay between any two clients in a DVE system. Based
on a given communication subgraph, we then derive the optimal synchronization interval so
as to guarantee the view consistency among all participating clients. The derivation of the
optimal synchronization interval is based on the theory of Markov chains and the fundamental
matrix.

Keywords: distributed virtual environment, optimal synchronization interval, Markov chains, fun-

damental matrix.
�

This work is supported in part by the CUHK the RGC Research Grant CUHK4220/01E.

1

1 Introduction

Recent advances in computer graphics, multimedia systems, parallel/distributed systems and high

speed networking technologies enable computer scientists and engineers to build distributed vir-

tual environment (DVE) systems. A DVE is a distributed system that allows many clients who

are located in different parts of the network to concurrently explore and interact with each other

under a high-resolution, 3-dimensional, graphical virtual environment (or virtual world). Clients

who are exploring the virtual environment can (1) extract relevant information about the virtual

environment (e.g., by sending database queries to the DVE system and inquiring about the state of

any object in the virtual environment), and (2) communicate in real time with other clients who are

also exploring the same virtual environment. Like any computer technology, DVE will change the

way people work, interact, and share information.

To see how this may affect daily life and business operation, let us consider the following sce-

nario. A group of people, who are located in different parts of the world, need to hold a business

meeting to discuss the design and finance issues of a new high-rise office complex. Instead of

requiring that all these people meet in a particular place, the meeting will be held under a DVE

system. Under this DVE system, those participating in the meeting can interact in a virtual world

of the new high-rise office complex that they are proposing to build. In this virtual environment,

each participant of the meeting is represented by a 3D object, which is known as an avatar. These

avatars can walk around in this virtual office building, and in the process, rearrange any 3D object

(e.g., rearranging furniture and paintings, or selecting different kinds of wallpaper) in the virtual

environment. Any change to a 3D object in this virtual environment will be visible to all partici-

pants. Also, participants will be able to interact with each other in real time, and they will be able

to inquire and receive relevant information about the virtual world that they are exploring.

To design a cost-effective, scalable DVE system, many research issues need to be addressed.

For example:

� Designing an efficient backend database engine which can provide high throughput and low

response time for any relational, spatial, and temporal query submitted by a client, who wants

to know some relevant information about the virtual environment that he/she is exploring.

� Designing an efficient communication protocol which has low network bandwidth consump-

2

tion and low communication delay for all users in a DVE system.

� Ensuring that each user has a consistent view of the virtual world. In other words, if there is

an action taken by any user in the virtual world or if the state of any object in the virtual world

is changed, every participating client should be able to view the change either immediately,

or with a small and acceptable delay. In order to provide this consistent view, a DVE system

needs to periodically perform some form of synchronization action.

The first of these research issues (the design of a backend database engine which can efficiently

process relational, spatial, and temporal queries submitted by users) was presented in [5]. The au-

thors demonstrated a prototype system known as VINCENT, which can support various database

queries for DVE applications. For the second research issue, one can utilize some of the recent

work on Internet real time protocols, such as the RSVP[15] and RTP[11], to design a commu-

nication protocol for a DVE system that allocates an appropriate amount of network resources

for realtime communication. In this paper, we address the third research issue, that is, deriving

the optimal synchronization interval so that every client will have a consistent view of the virtual

world. Our work is divided into two parts. In the first part, three algorithms are presented for

constructing a communication subgraph between all clients in a DVE system. Depending on the

network environment as well as the degree of dynamics of the user’s membership, we can con-

struct a communication subgraph which has low network bandwidth resource consumption, or a

communication subgraph that has a minimum maximal delay between any two clients in a DVE

system. In the second part of this paper, we derive the optimal synchronization interval based on

the communication subgraph which we constructed. We present the mathematical model and il-

lustrate how we can derive the optimal synchronization interval using the theory of Markov chains

and properties of the fundamental matrix[2, 8].

We start with a brief review of the published literature on DVE systems. In [14], the authors

describe many interesting DVE applications, including a prototype system called the Diamond

Park, which is a scalable DVE system for a large networking environment. In [10], the authors de-

scribe some possible architectures for DVE systems, as well as certain techniques used to reduce

the amount of traffic sent across the network, such as the dead-reckoning and the area-of-interest

(AOI) approaches. In [3, 7], the authors illustrate how to design and implement a storage server for

different classes of multimedia applications such as video-on-demand and virtual walk-through.

This storage server can be used as a basic building block of the DVE applications that we men-

3

tioned. One example of the virtual world in [13] is a model of the city of Los Angeles, where

clients can freely traverse from one location to another location. One limitation of this system,

however, is that it only allows one user in its virtual environment at any one time (although dif-

ferent users may explore the same virtual world but under different sessions). Issues of designing

a backend database for a DVE system are described in [5], where a backend database engine and

query processing techniques are proposed so as to support spatial and relational queries submitted

by clients who are exploring the virtual world. In [6], the authors describe and solve the workload

partitioning and processor assignment problems for a large scale DVE system.

The outline of the paper is as follows. In Section 2, we present the system model of a DVE

system, as well as some synchronization techniques to reduce the synchronization update overhead.

In Section 3, we present three algorithms for constructing a communication subgraph for a DVE

system. In Section 4, we present our synchronization model and derive the optimal synchronization

interval. Experiments are carried out in Section 5 to illustrate the network bandwidth consumption,

reduction of transmission delay and the cost of synchronization. Finally, conclusions are given in

Section 6.

2 System Model

In this section, we describe the model of a DVE system. Specifically, we formulate the problem of

finding a communication subgraph for all participating clients in a DVE system. We also describe

various synchronization techniques as well as some approaches to reduce the amount of commu-

nication traffic for object synchronization. In Appendix I, we list the common notation we use in

this paper.

Since a DVE system can be deployed in a LAN, a private network or in a WAN environment

(such as the Internet), we use graph theory notation to describe the underlying general network

setting. The network is represented by a connected graph
���������
	��

, where
�

denotes the set

of nodes of the network. Assume that � ���
such that

� � �������
�������������
��� �
, where

��!
is a

router or an individual computer that participates in the same DVE session. Letting " be the set

of computers that participate in a DVE session, we have "$# �
and "% �'&)(*�

. Let
	

be the

set of edges in the graph
�

. An edge + !-, .0/1	
is a communication link between

��!
,
�2.3/1�

. For

each communication link + !4, . , there is an associated upper bound on transmission delay, which is

4

denoted by � � + !-, .������ . One special case occurs when all nodes in
�

are participating computers

in the same LAN. In this case, the graph
�

is a fully connected graph with
�

�
� �������

edges, and

all these edges have the same upper bound on transmission delay.

Assume that at time 	 , there are
 (where
 (&
) clients who are exploring the same virtual

environment. Let � � 	 � # " denote the set of these participating DVE clients at time 	 . It is im-

portant to point out that the system model allows a DVE system to have the dynamic membership

property, that is, the number of participating clients in the same virtual environment can change at

any time (e.g., clients can join or leave the virtual world session at any time). Note that this model

allows us to present DVE applications which have the inherent dynamic membership characteris-

tic. For example, clients may want to login to a virtual world session and participate in Internet

shopping and then leave the session after the transaction is finished. For other DVE applications,

membership can be static, for example, the business meeting describe in Section 1.

Given a graph
� � � � ��	%�

, we need to derive a communication subgraph
�� � 	 � . In general, a

communication subgraph
� � � 	 � � � � � 	 ����	 � � is a connected graph where � � 	 � # " and

	 � # 	
.

All data and control message will be carried on this communication subgraph. Therefore, a given

subgraph
� � � 	 � dictates the network bandwidth consumption, as well as the delay between any pair

of participating clients. Note that, in general, there can be a large number of possible subgraphs� � � 	 � . Depending on whether a DVE application is operated on a LAN or on a WAN environment

and whether a DVE application has the dynamic membership property, we may want to construct

a communication subgraph so as to reduce the total network bandwidth consumption or to reduce

the maximum delay between any two clients. In Section 3, we propose some approaches for

constructing such a communication subgraph
��� � 	 � based on the underlying network (LAN or

WAN) as well as the dynamic membership characteristics of a DVE application.

Let
��� � 	 � � � � � 	 ����	��-� denote a derived communication subgraph(details of the subgraph

construction will be presented in Section 3). Let let � !-, . be a loop-free shortest path between node��!
and

��.
where

��! �
�2. / � � 	 � , and � � � !-, .�� be the transmission delay for the path � !-, . . In other words,

if � !-, . � � + !4, ��� + � , ����������� +�� , .�� , then � � � !4, . � � � � + !-, ����� � � + ��, � ����������� � � +�� , .�� . Letting ��� ��� ��� � � 	 � � be

the maximum delay for the subgraph
�!� � 	 � , we have

�"� ��� ��� � � 	 � � � #%$'&
(*) , (,+�-�.0/2143 � � � !-, . � (1)

5

Once a communication subgraph
�!� � 	 � is given, the maximum delay � � � � � ��� � 	 � � between any

two clients can be determined by Equation (1). Given the communication subgraph
� � � 	 � , we can

address the issue of how to maintain a consistent view for every client in the virtual world.

In general, a virtual world is populated by many objects. For example, a piece of furniture

in a virtual environment is one kind of object. An avatar, which is a representation of a client in

the virtual environment, is another type of object. Each object has a set of attributes, and each

attribute has a set of values. One possible attribute is the object’s coordinates in the virtual world.

Another possible attribute is the directional velocity of a moving object. The state of an object at

time 	 is defined by values of the object’s attributes at time 	 . In general, objects in a virtual world

can be classified into two categories, static and dynamic. The values of the attributes of a static

object are fixed and do not vary in time. For example, a mountain has its fixed coordinates in the

virtual world. The values of the attributes of a dynamic object can be time varying. For instance, a

dynamic object like an avatar may traverse from one region to another region in the virtual world,

and therefore its coordinates change accordingly. For a given object � ! , let
���) � ��� ��) ��� ��) �����������

be the set representing all possible states of object � ! in a DVE system.

Since all clients who are exploring a virtual world should share the same view, it is important

that they should have a consistent view of all objects in the virtual world. For example, if a client

�	� views an object � ! which is in state
��
�) (e.g., the coordinates of � ! are � ��� �����), then another

client ��� should also view object � ! in state
�
�) (e.g, object � ! should be at the same coordinates

� ��� ����� when seen by ���). To visualize a dynamic object, let
���) � 	 � be the state of object � ! at

time 	 . If client � wants to view the dynamic object � ! , then the computer at which client � resides

has to render a sequence of state changes of object � ! , starting at the same time 	 . To maintain a

consistent view for all clients in a virtual world, this implies that every computer at which clients

reside needs to render the same sequence of state changes, starting from the same time 	 . Note

that, in general, an absolutely consistent view of a dynamic object may not be possible due to the

following reasons:

� Different computers may render the sequence of state changes at different rates. This is due

to the fact that different computers may have different workloads and/or different processing

power.

� Not all clients can start the rendering of state sequences at the same time. This may be

6

due to the variation of network delay in delivering the ”start-rendering” message to all

clients. The purpose of the start-rendering message is that upon receiving this message,

each participating client should update the state of the corresponding object.

Let us now give the definition of object synchronization and phase difference.

Definition 1 Let �
. �) � 	 � be the state of object � ! that client � . is viewing at time 	 . If � ��) � 	 � � � ��)

and � � �) � 	 ��� � � � ��) , then we say that the phase difference between client � � and client � � , denoted

by
� ��� �
& �

, is
�

.

For example, assume that the set of all possible states of object � ! is
� �) � ��� ��) ��� ��) �������2��� ����) � and

the rendering of a sequence of state changes of object � ! is � +
	 � ��� ��) ���
� �) ���
� �) �����) ���
� �) � . If client

� � starts the rendering sequence at time
�

and client � � starts the same rendering sequence at time
�
, then the phase difference

� ��� �
& � � �
. The object synchronization procedure in a DVE system

is a process to guarantee that the absolute value of the phase difference between any clients and

any object in a virtual world is less than or equal to a pre-defined system threshold
�

.

Some of the approaches to maintain object synchronization are:

� Aggressive Object Synchronization Technique (AOS):

Under the AOS approach, each object � ! is assigned to a master process � �) in a DVE sys-

tem. For every period with length ��	 , the process � �) will broadcast the state of the object � !
to all participating clients in a DVE system. Upon receiving the state information of object
� ! , every client will render the state of � ! . Figure 1 illustrates the AOS technique wherein

the master process � �) sends the start-rendering message to all participating clients, then

periodically sends a synchronization-message to all participating clients. A major disad-

vantage of this approach is that there is the resulting high volume of synchronization message

traffic, and this leads to a scalability problem in a DVE system. Note that even though the

process � �) broadcasts a synchronization message every � 	 time units, the synchronization

can still be off by ��� ��� � � � � 	 � � time units due to the network delay of transmitting the syn-

chronization message.

� Dead Reckoning Synchronization Technique (DRS):

In the AOS technique, extremely high network bandwidth will be consumed by sending the

7

δt

participating
site

object

start-rendering

synchronization-message

Synchronization interval dmaxmaximum network delay

δt
dmax(G’(t))

Master Poi

Figure 1: Aggressive Object Synchronization (AOS) Technique with � � ��� ��� � � being the maximum

network delay

synchronization-message. However, it is important to observe that in most cases, the state

of an object at the current time step is very similar to the state of the object in the previous

time step. Therefore, it is not necessary for the process � �) to send a synchronization mes-

sage every � 	 time units. Consider the following example: if a ball in the virtual environment

is undergoing a free fall from a 1,000 foot tall building and if the initial position of the ball is

known to all clients, then every participating client should be able to calculate the trajectory

of this ball and render the corresponding sequence of state changes. That is, each participat-

ing machine renders the object’s coordinates for every time step
�

and updates the object’s

state in its local machine. This is the main principle behind the dead-reckoning synchroniza-

tion (DRS) technique [12]. Under the DRS technique, the initial state as well as the equation

governing the trajectory of the object are available to all participating clients. Each of the

participating client’s machine performs the local computation and updates its local display.

The DRS technique is illustrated in Figure 2, where the start-rendering message encodes

the object’s initial position and directional velocity.

participating
site

τ

start-rendering

Synchronization interval τ

Master Poi

Figure 2: Dead Reckoning Synchronization Technique for which only the start-rending message

is sent

8

� Dead Reckoning with Periodic Synchronization Message (DRPS):

Note that even if the DRS technique is used, it is still necessary for the master process � �) of

object � ! to send a synchronization message from time to time. This situation occurs if there

is an external event that will affect the trajectory of the object � ! . For example, a participating

client catches the free-falling ball before it reaches the floor. Another reason for sending a

synchronization message periodically is the fluctuation of workload at participating comput-

ers. Some computers may not be able to render the next state of the object on time, and if this

is not adjusted, it will create a view inconsistency problem in the long run. Therefore, the

DRPS technique employs the dead-reckoning synchronization technique and every synchro-

nization intervals with length
� �

, a ”synchronization-message” is sent. Upon receiving

the synchronization message, each computer will immediately update the state of the object

(or, in effect, reset the phase difference to zero). The DRPS technique is depicted in Figure

3 (with �"� ��� � � � � 	 � � being the maximum network delay). Note that, in general, the larger the

participating
site

τ

start-rendering synchronization-message

dmax(G’(t))

Master Poi

Figure 3: Dead Reckoning Synchronization Technique with Synchronization Message

value of the synchronization interval (e.g.,
� �

), the larger the degree of the phase difference

between any two clients. Thus for large enough
�

the view consistency between these two

clients may become unacceptable. On the other hand, if the synchronization message is sent

too often (equivalently, the value of the synchronization interval is too small), a DVE sys-

tem needs to send many synchronization messages to all participating clients and therefore

consumes more network bandwidth. In Section 4, we illustrate how to derive an optimal

synchronization interval.

9

3 Construction of communication subgraph

In this section, we first describe various issues which affect design choices of communication

subgraphs. Depending on the performance criteria, we present several algorithms for constructing

a communication subgraph. Based on the derived communication subgraph, we can obtain the

maximum end-to-end delay between any two clients in a DVE system. We then use this maximum

end-to-end delay as an input parameter for maintaining object synchronization.

As we have discussed in Section 2, the underlying network is represented by a connected

graph
� � � � ��	��

. Given the current client set � � 	 � , we need to find a connected subgraph� � � 	 � � ��� � ��	 � �
such that � � 	 � # � � # �

and
	 � # 	

where
� �

is a set that contains the current

client set, and possibly any node (or router) in the graph
�

that makes the subgraph connected.

Since there are many possible communication subgraphs
� � � 	 � , we may want to optimize the

subgraph construction based on one of the following metrics:

� minimize the maximum end-to-end delay between any two clients in � � 	 � , or

� minimize the total bandwidth consumption of the communication subgraph by minimizing

the total edge cost of the subgraph where the edge cost represents the propagation delay of

the corresponding edge.

The first metric ensures that there is a high degree of object synchronization in a DVE system. As

described in the previous section, absolute object synchronization may not be possible due to the

non-negligible network delay of sending the ”start-rendering” message. Therefore, reducing the

maximum end-to-end delay between any two clients implies reducing the phase difference of any

object in a DVE system. The second metric ensures that the number of packets in transit across

the communication links (or edges) is minimized and therefore reduces the network bandwidth

resource consumption. Note that reducing the number of edges in the graph
�

may not reduce the

average number of transit messages because some edges may have a longer propagation delay than

another edge. Formally, minimizing the maximum end-to-end delay requires finding a connected

subgraph
�
�� 	 � such that:

��� ��� ���
 � 	 � � � # ���� � � 	 �
� # $'&
(*) , (+�-�.0/2143 � � � � !-, .������ (2)

10

where � � � !-, .�� is the delay in the communication path between client
� !

and client
��.

, for ������
.

For the second criteria of subgraph construction, let ��� � /2143 � � � denote the total number of synchro-

nization messages in transit across edges at time
�

for the communication subgraph
� � � 	 � . In this

work, finding a subgraph that minimizes the network bandwidth consumption refers to finding a

connected subgraph
�
�� 	 � such that :

� � #	�
� � 	��� � � ��� / 143 � �� � # ���
� � /2143

� � � #	�
�� � 	��� � � � � / 143 � �� �
(3)

where the limit of the above expression represents the average number of total synchronization

messages which are in transit across some communication edges in the corresponding subgraph� � � 	 � .
In this paper, we consider two factors that may affect the design metrics of the communica-

tion subgraph: 1) the underlying networking environment, and 2) the type of membership of DVE

clients. We classify the underlying networking environment into two major classes: LAN and

WAN environments. Under a LAN environment, the transmission bandwidth is high and the data

transmission is usually reliable and has a small propagation delay. For a DVE system to operate in

a LAN environment, the number of participants is usually small. Thus, it is possible to use a cen-

tralized algorithm to construct a communication subgraph so as to minimize the maximum delay

or to minimize the bandwidth consumption. On the other hand, a WAN is a large networking envi-

ronment which consists of many routers and sub-networks. The communication delay between any

two clients is non-negligible. The transmission bandwidth of a WAN environment, as compared

to the transmission bandwidth of a LAN environment, is usually scarce and expensive. Moreover,

the number of DVE clients in a WAN environment can range from tens to thousands. Due to the

size of the network and the number of possible participating DVE clients, we need a distributed

algorithm for the construction of a communication subgraph.

Another factor that influences design choices of communication subgraphs is the type of mem-

bership. As discussed in Section 2, we classify the membership of DVE clients into two types,

static membership and dynamic membership. Under static membership, a DVE system can con-

struct a communication subgraph before admitting all participating clients. At the end of the DVE

session, all resources allocated for a communication subgraph can be deallocated. For dynamic

membership, a communication subgraph is created at the beginning of a DVE session. Whenever

a client joins or leaves the virtual environment session, a DVE system may have to re-construct a

11

new communication subgraph. Usually, this construction can be based on the previous subgraph,

so that the subgraph construction can be accomplished in a short period of time.

Consideration the above factors for the construction of a communication subgraph, we discuss

three subgraph construction algorithms. They are: 1) the minimum diameter subgraph (MDS), 2)

the core-based tree (CBT), and 3) the spanning tree (ST).

Minimum diameter subgraph (MDS):

A minimum diameter subgraph (MDS) is a natural choice when we want to construct a multicast

communication subgraph, since an MDS provides a guarantee on the delay bound between any

two nodes. An MDS ensures that, for every pair of nodes, there exists a path between these two

nodes which has a length that is less than or equal to the diameter of the graph. In the context

of our DVE application, the diameter corresponds to the maximum delay between any pair of

clients. Since every DVE client can be both a sender and a receiver of synchronization messages,

as a consequence, the diameter provides a delay bound for all possible synchronization message

transmissions. Formally, the diameter of a graph
�*� ������	%�

is

diameter(
�

)
� #%$ &(*) , (+ -�� � � � (*) , (+ �

where � (*) , (+ is a shortest path between
��!

and
��.

and � � � (*) , (+ � is the delay associated with this path.

Therefore, to obtain the diameter of a graph, we have to consider all pairs’ shortest paths of a graph

and then take the maximum value. One way to find an MDS of a connected graph
� � � � ��	��

is to consider a subset of edges
	 � # 	

that forms a connected subgraph
� � ��� � � ��	 � �

, where

� � 	 � # � �
and the diameter of

� �
is equal to the diameter of

�
. It is important to note that, given

the diameter of a graph
�

, the derived MDS
� �

may not necessarily be unique.

Aside from finding an MDS of a connected graph
�

, one interesting question is whether we can

find an MDS which also has minimal total edge cost (i.e., find an MDS which is also a minimum

spanning tree of the graph
�

) so as to minimize the network bandwidth consumption. To answer

this question, we have the following theorem:

Theorem 1 Let
� � � � ��	��

be a connected graph, and for each edge + / 	
let � � + � /�� � be the

edge cost. The problem of finding a spanning subgraph
� � ��������	 � �

for the graph
�

such that

diameter
����� �0�

diameter
� �%�

and the sum of the cost of all edges in
	�

does not exceed a real

number � is NP-complete.

12

Proof: Please refer to [9].

Because the problem is NP-complete, we relax the constraint of minimizing the total edges

cost, in order to find a minimum diameter subgraph (MDS) in polynomial time. In general, to find

an MDS of a graph
�

, we perform the following steps:

1. Find all shortest paths between all pairs of vertices in � � 	 � .
2. Take the union of all nodes and edges from these shortest paths and form a new node set

� �
and new edge set

	 �
.

3. For the new node set
��

and edge set
	��

, we form the minimum diameter subgraph
�����

��� � ��	 � �
.

The above steps give a general idea of the construction of an MDS from a given connected

graph
�

. Note that for a DVE application, the set of participating clients � � 	 � may not be equal

to
�

, the set of nodes in the network. Therefore, we want to construct a subgraph
� � � � �!�-��	!� �

which satisfies the following:

1. � � 	 � # ���
and

�!� # �
. The first condition ensures that all participating clients are included

in the communication subgraph. The second condition ensures that some nodes, although

they are not participating clients, may be included in the subgraph so as to provide the

connectivity.

2. To construct a minimum diameter subgraph, we have to ensure that diameter
��� � ���

diameter
��� �

.

Therefore, to derive
� �

, we want to minimize the largest delay among all shortest paths be-

tween any two clients, that is,

� � � #%$ &
(*) , (+�-�.0/2143 � � � �(*) , (+ � �

where � �(*) , (+ is a shortest path between client
��!

and client
��.

with respect to the subgraph
� �

.

The algorithm for finding an MDS is given below.

13

——————————————————————————————
1

� ��� �

2
	 ��� �

3 for each pair of clients
��! �
�2. / � � 	 � do

4 find a shortest path � �() , (+ between
��!

and
�2.

5 where � �(*) , (+ is a set of edges that constitutes the shortest path;
6 for each edge +�� / � �(*) , (+ do
7

	 ��� 	 ��� � +�� �
8 Let

�
�
�

and
�
�
�

be two vertices that are the endpoints of the edge +	�
9

� ��� � �
� ���
�
��� � ���

�
���

10 end for
11 end for
12 The MDS is

����� �����-��	!� �
——————————————————————————————

Theorem 2 The MDS algorithm given above guarantees that
� �

is a minimum diameter subgraph.

Proof: Let us prove the above claim by contradiction. Assume that the constructed subgraph� �
based on the above algorithm is not a minimum diameter subgraph and there exists another

connected graph
��� �

which has a smaller diameter. Let � �(*) , (+ be the longest shortest path between

node
��!

and node
��.

in the connected graph
�!�

, in other words, diameter
���!� � � � � � �(*) , (+ � . We also

let � � �(*) , (,+ be a shortest path between node
��!

and
�2.

in graph
��� �

. Since � � �(*) , (+ may not be the longest

shortest path in
�!� �

, we have � � � � �(*) , (+ � (diameter
����� � �

. Because we assume that
� �

is not an MDS,

we have the following inequality:

� � � � �() , (,+ � (diameter
��� � � ���

diameter
� � � � � � � � �(*) , (+ ���

However, based on the proposed algorithm, the path � �(*) , (+ is guaranteed to be the shortest path

between node
��!

and
��.

in graph
�

(e.g., line 4 and line 5 ensure this condition). Consequently,

it is not possible to find another path � � �(*) , (+ which has a lower value than � �(*) , (+ and therefore a

contradiction occurs.

One important point about the proposed algorithm is that the total edge cost of the derived

communication subgraph
� �

may be high. As stated above, to minimize the total edge cost in
� �

is an NP-complete problem. However, we can try to reduce the total edge cost of the connected

14

graph
���

by the following heuristic. Try to delete some edges from
���

such that, for each edge

deletion, the diameter of
� �

remains unchanged and the resulting graph is still connected. If the

removal of edge + will cause the diameter of
���

to increase, we do not remove this edge. We can

apply this heuristic a finite number of times, e.g., try to remove a finite number of edges from
� �

so as to have a communication subgraph that has a minimum diameter and, at the same time, a

reasonable total edge cost.

Figure 4 shows an example of finding a minimum diameter subgraph. Figure 4(a) is a graph
�

that represents a model of a network in which all nodes are participating nodes. Figure 4(b) is an

MDS
� �

corresponding to the connected graph
�

in (a). It is worthwhile to mention that the MDS

may contain cycles, and usually the total cost of edges is larger than the total cost of edges in the

corresponding minimum spanning tree.

1

2 3

45

6

7
2

3 1

4

8

2 1

2 3

45

2

3 1

2

4

(a) (b)

Figure 4: An MDS example: (a) the original graph
�

, (b) the corresponding MDS
� �

Core-based Tree (CBT):

The core-based tree (CBT) was proposed in [1] and is intended to provide a general framework for

subgraph construction in a large scale network where clients are located in different parts of the

Internet. The key features of CBT are: 1) there is a designated node called the core; 2) the path

between any node to the core node must be a shortest path; 3) the routing policy for each node

(or router) is efficient and easy to implement (e.g., based on the current Internet routing protocol);

4) the core-based tree is constructed in an incremental manner, such that any change to the client

membership imposes only small changes on the communication subgraph. However, it is important

to point out that the CBT does not guarantee a minimum diameter spanning tree. It only guarantees

that the path between any node and the core is the shortest.

A CBT is constructed in a distributed, incremental manner. The construction procedure of CBT

15

is as follows: initially, a core is chosen from the set of participating clients, either manually or via

a bootstrap mechanism as discussed in [1]. The core node is the only node of the communication

subgraph at this stage. Then, each participating client will send a JOIN REQUEST message to

the core (the IP address of the core node is advertised and is well-known). This join message is

sent through a shortest path from the participating client’s node to the destination core, which can

accomplished via the existing Internet routing protocol. Along this shortest path, the join message

may reach a node which is either part of the current communication subgraph (e.g., a node which

has already joined the CBT) or a node that is not part of the tree. If the join message reaches a

node which is a part of the multicast tree, the forwarding process will stop and the incoming link

will be added to the forwarding cache of the visit node. In this case, the visit node will send an

acknowledgment message (JOIN ACK) back to the participating client’s node via the incoming

interface. On the other hand, if the join message reaches a node which is not part of the multicast

tree, the visit node will redirect the message to the next hop along the shortest path toward the core

node and will cache the incoming interface and the incoming node in temporary storage. After

that, the visit node waits for an acknowledgment message. Once an acknowledgment is received,

the node adds the incoming interface to the forwarding cache and redirects the acknowledgment

to all nodes listed in temporary storage. Also, it sets the node which sent the acknowledgment to

be its parent node. Using this scheme, each participating client can reach the core node using the

shortest path.

Once the CBT is formed, multicast service can begin. When a client sends a multicast message,

it first reads the contents its forwarding cache, which is a list of its neighbor nodes in the CBT.

Therefore, to multicast a message, a client can simply send the message to all nodes listed in its

forwarding cache. When a node receives a message, it forwards the message to all the outgoing

interfaces listed in the forwarding cache, excluding the incoming interface from which the message

came. In this way, the message can reach every leaf node of the entire multicast tree.

The algorithm of CBT construction for our DVE application is given below. Initially, the CBT

consists of one core node only, and we assume that this core is one of the clients
��� / � � 	 � . The

initial CBT is
� � � � � � ��	 � �

, where
� � �)�����
�

and
	 � � �

. Temporary storage is associated

with each node
�
, and we denote it by 	 & � (. The temporary storage of each node is empty at the

beginning of the CBT construction procedure, i.e. 	 & � (� �
,
� �1/'� �

. A client
�

who wants

to join a DVE can send a JOIN REQUEST message to the adjacent node
� �

which is along the

16

R1

R2

R4

R3 C

3

2
4

1 6

R1

R2

R4

R3 C

3

2
4

1 6

R1

R2

R4

R3 C

3

2
4

1 6

(a) (b) (c)

Figure 5: An example of CBT construction

shortest path from
�

to the core node
� �

. When node
� �

receives a JOIN REQUEST from node
�
,

the following procedure will be executed:

——————————————————————————–
if
��� / ���

then
add

�
to the forwarding cache;

reply with a JOIN ACK message to
�
;

else
	 & � (� � 	 & � (� � ��� �

;
send a JOIN REQUEST message to the first node which is

along the shortest path from
� �

to the core
���

;
——————————————————————————–

When node
�

receives a JOIN ACK message from node
� �

, the following procedure will be exe-

cuted:

——————————————————————————–� ��� � � � ��� �
;	 ��� 	 � � � + � , where + is the edge connecting

�
and

� �
;

add
� �

to the forwarding cache in
�
;

set
� �

to be the parent of
�
;

reply with a JOIN ACK to all the neighboring nodes �
/ 	 & � (;

clear the temporary storage 	 & � (;
——————————————————————————–

An example of the CBT construction is depicted in Figure 5. Figure 5(a) shows a network

topology of one core node � and four additional nodes
� �

,
� �

,
� � and

���
. The number associated

with each edge is the cost (i.e., propagation delay) of the edge. The shaded nodes and the edges

with dotted lines are part of the multicast tree. In this example, node
� � wants to join the CBT, and

afterward node
� �

wants to join the CBT. Initially, core node � is the only node of the CBT. First,

17

node
� � sends a JOIN REQUESTmessage toward the core, as shown by the arrows in Figure 5(a).

Intermediate node
� �

receives the request message and processes it. Since
� �

is not part of the

multicast tree, it stores
� � on its forwarding cache, and then

� �
sends a request message toward

� . Core node � replies to
� �

with an acknowledgment and in turn
� �

sends an acknowledgment

to
� � . Because of the acknowledgment, � is added to the forwarding cache of

� �
and � is marked

as the parent of
� �

. Similarly,
� �

is added to the forwarding cache of
� � and

� �
is marked as

the parent of
� � . On completion of the above process, the forwarding caches of

� �
,
� � and �

are:
� � � � � � , � � ��� and

� � ���
respectively. Also,

� �
and

� � are now part of the multicast tree as

depicted in Figure 5 (b). Now, consider the case for which node
� �

wants to join the multicast tree.

It sends a join request message to
� �

. Since
� �

is already part of the multicast tree,
� �

replies to
� �

directly and adds
� �

in its forwarding cache. Node
� �

adds
� �

into its forwarding cache after

receiving the acknowledgment from
� �

, and marks
� �

as its parent.

Spanning Tree (ST):

Consider the following problem: let
� � � � ��	��

be a graph where each edge + / 	
is associated

with an edge cost � � + � . There is a subset of vertices � � 	 � , which is the set of DVE clients. Find a

subtree
� �

of
�

that includes all the vertices in � � 	 � such that the sum of all edge costs in the
� �

is

less than or equal to � .

The motivation for finding the above subgraph is to guarantee that the total edge cost is less

than or equal to � , in order to provide an upper bound on the network bandwidth consumption.

This problem is the Steiner tree problem, which is known to be NP-complete[4]. Therefore, we

propose to find an ST communication subgraph based on the following procedure:

� First, find a minimum spanning tree of the given graph
�

by some well known algorithm

(e.g., Kruskal’s algorithm or Prim’s algorithm), the resulting tree being denoted by
� � �

������	 � �
.

� For every node
� / �

with
� �/ � � 	 � , check whether removing

�
and its associated edges will

partition
� �

such that clients in � � 	 � are in different partitions. If this does not occur, then

remove
�

and its associated edges and consider the subgraph that contains � � 	 � . Otherwise,

the node
�

should not be removed.

� The resulting subgraph is the communication subgraph
� �

.

18

Note that the subgraph
�!�

generated by the above algorithm is also a tree. However, it does not

guarantee the total edge cost to be minimum, since only a subset of nodes (e.g., the participating

clients) are included in the subgraph.

In summary, the advantage of the MDS subgraph is that it can guarantee a low delay bound

between any client in a DVE system. The CBT subgraph can be deployed in a wide area network

such as the Internet, because it uses the existing Internet routing protocol. The ST subgraph can

guarantee a low bandwidth consumption when sending synchronization messages between clients.

The disadvantage of the MDS subgraph is that whenever a client joins or leaves the virtual world

session, the DVE system may incur the overhead of constructing another MDS subgraph (more

generally, the MDS construction procedure may be invoked after some fixed number of clients join

or leave the system). The CBT, on the other hand, may not have a good transmission delay bound

between two clients. Lastly, the ST subgraph may have a high client-to-client delay, and it will have

some computational overhead to accommodate clients with dynamic membership characteristics.

4 Optimal Synchronization Interval

In this section we describe synchronization issues and present the derivation of the optimal syn-

chronization interval. Without loss of generality, this is derived for one object, but the concept

can be easily extended to multiple objects in a virtual environment. Consider a particular dynamic

object � ! in a virtual environment, and let
� �) be the set representing all possible states of object

� ! . This dynamic object is associated with a master process � �) in a DVE system. For exam-

ple, � �) may be a process running on one of the DVE servers or on one of the client’s machines.

To instantiate or enable the animation of object � ! , the master process � �) needs to perform the

following:

1. Send the dead-reckoning information about object � ! to all participating clients who want to

view � ! .
2. Send the ”start-rendering” message to all participating clients.

3. Assume that we use the DRPS synchronization technique with
�

the basic period of state

update. For every period
� �

, the process � �) should send a ”synchronization-message” to

19

all clients who are viewing � ! . The synchronization message has to carry the object ID of
� ! , the current state of � ! , and if necessary, the new dead-reckoning information of object � !
(e.g., the new directional velocity so that object � ! can have a new trajectory).

For those clients who want to visualize the dynamics of object � ! , the rendering of � ! begins

when they receive the ”start-rendering” message. Since the trajectory of � ! can be computed

based on the received dead-reckoning information in step 1, each client can independently begin

the rendering process. That is, for every time step
�

, each machine will update the state of the

object � ! . When a client receives a ”synchronization-message”, if the state of the object � ! in

the client’s machine is equivalent to the state of � ! encoded in the synchronization message, then

no adjustment is necessary and the client can continue to render the object � ! based on its current

state. On the other hand, if the state of the object � ! in the client’s machine is different from the

state of � ! encoded in the synchronization message, then the current state of � ! is changed to the

new state according to the information encoded in the synchronization message. Again, based on

the dead-reckoning information embedded in the synchronization-message, each viewing client

can compute the new trajectory of object � ! independently.

In Section 3, we presented several algorithms to construct a communication subgraph. Assume

that we use one of the proposed methods and the resulting communication subgraph
� �

. We can

use Equation (1) to find the maximum communication delay � � � � ��� � � between any two clients.

Assume that there is a state update for every time step
�

and
�

is equal to � � � � ��� � � . Therefore, if

an object � ! has the sequence of state changes

� ��)�� � ��)�� � ��)�� � � �)�� �����

for every time step
�

, then a client who is viewing object � ! should render the state sequence of

object � ! such that:

� �) � �"� � ��� � � ��)�� � �) ��� �"� ������� � ��)�� � �) � � ��� ������� � ��)�� � �) �	� �"� � ��� � � � �)�� �����

where � �) � 	 � denotes the state of object � ! at time 	 in the client’s machine. Of course, if every

client can render the state of object � ! exactly for every time step
�

, then the phase difference (see

Definition 1) of object � ! between any clients is equal to zero. However, the phase difference of

object � ! between any two clients usually has a non-zero value. This can be explained by the fact

that (1) the start-rendering operation may not arrive to different clients at the same time due to

20

the network delay, or (2) the workloads at different clients’ machines are not the same, causing

some machines to miss the rendering operation at certain time steps. In this paper, we consider the

following synchronization problem:

Synchronization problem: Given the communication subgraph
��

with maximum delay � � ��� ��� � � ,
how often (e.g., in terms of number of time steps) should the master process � �) of object � ! send

the synchronization-message such that the condition:

	 � � � �	� � ��� � � (�
(4)

can always be guaranteed ? In Equation (4), � � and ��� are the two clients that are “furthest

apart” in the communication subgraph
�!�

(e.g., the communication delay between ��� and ���
is �"� ��� � ��� �), 	 � � � ��� � ��� � � is the expected absolute phase difference between the two clients

�	� and ��� , and
�

is a pre-defined system parameter of the maximum allowable phase difference

between any clients in a DVE system. Note that if Equation (4) holds, then the absolute phase

difference of object � ! between any two clients � ! and � . in a DVE system will be less than
�

, since the communication delay between � ! and � . is guaranteed to be less than or equal to

�"� ��� � ��� � .
To answer the question of how often the master process � �) needs to send a synchronization-

message, we use a homogeneous discrete time Markov chain (DTMC) to represent the phase

difference of � ! between clients ��� and ��� . To completely describe the DTMC, we need to

specify the state space and the one-step transition probability matrix of the DTMC. In our model,

a state of this DTMC specifies the phase difference of object � ! between clients ��� and ��� . For

example, if object � ! in �	� is in state � and the object � ! in ��� is in state
�
, then the state of the

DTMC (i.e., the phase difference between client ��� and ���) is equal to
� � � � � . We also assume

that all participating clients need to update the state of object � ! every � 	 where � 	 (�
. Since

the maximum propagation delay of the subgraph is � � � � � � � � , we assume this DTMC will make

a state transition every time step of length � � ��� ��� � � . Within a time step, each participating client

can make at most �
�������
	�� / � � 3 1 � state updates.

Formally, let � �*� � � �	� � ��� ��� � � � � � � be this DTMC where
� � ��� � ��� �2� � � represents the

phase difference between ��� and ��� at time step
�

. The state space of � is
� �����2��� � ���!� � � ��� � � � ����� �

.

For example, if
� � ��� � ��� ��� � � ���

, then client ��� is ahead of client ��� by 5 at time step
�

. Let

21

�
be the one-step transition probability matrix of � , where � !4, . (i.e., the

� � � � � entry of
�

) rep-

resents the transition probability from state � to state
�

in � or � !-, . � Prob � � � ��� � ��� �2� �%� ��� �� � � �	� � ��� �2� � � � � � . Because both computing nodes of � � and ��� may update the state of the

object � ! for every � 	 , at the end of every state transition of this DTMC, each computing node can

make at most �
� � ���
	�� / � � 3 1 � state updates where ��� ��� � � � � is the maximum network delay of the

communication subgraph
� �

.

The next issue is to derive expressions for the transition probabilities � !4, . in
�

. Let � � (� �) be

the probability that client ��� (���) misses a rendering operation of object � ! in one time step
�

of

� 	 . In general, � � and � � are functions of the workload in ��� and ��� . Also, let ��� � and ��� � be the

probability that the state of this DTMC increases or decreases by
 � � for each state transition.

We first derive the expression for � � . The intuitive idea is to sum up probabilities of all possible

cases with � state updates which result in no change in
� � � � � ��� � . For example, we may have

�

state updates that cause
� � ��� � ��� � to increase by

�
and, correspondingly,

�
other state updates that

cause
� � �	� � ��� � to decrease by

�
. The remaining �

� � �
state updates will not cause

� � � � � ��� �
to change. Based on this observation, we have:

� � � ��� 	�
�
� � �

���� � � � � � � � � � � ��� �� �2��� �� �2����� � � �� ���

(5)

where
� � � ����� � � � � � is the probability that

� � ��� � � � � increased by one (e.g, ��� updates the

state change of � ! while ��� misses the state update of � !), � � � � � � � � � � � is the probability that
� � �	� � ��� � decreased by one and

� � � � � � � � ��� � � � �2� � � � � � is the probability that
� � ��� � ��� �

remains unchanged (e.g, ��� and ��� are both able or both unable to update the state of � !).
Using a similar argument, the probabilities that the DTMC increases or decreases by
�� �

for

each state transition are :

��� � � � �����	�
�
� � �

������ �
 � � � � � � � � � �
 � � ��� � � �� ����� �� �2��� � � � �!� �� � �

for
� �
 (

� (6)

��� � � � �����	�
�
� � �

������ �
 � � � � � � � � � �
 � � ��� � � �� ����� �� ����� � � � �!� �� � �

for
� �
 (

� . (7)

"
For example, if client #%$ is viewing the object &(' at time) and if the client missed the rendering operation at time

step) , then * $+�,.-)0/�132546* $+�,.-)�2 .
22

The complete specification of the one-step transition probability matrix
�

is:

� !4, . � ����� ����
� � for � � �
��� � for

��� � �
 , for
� �
 (

�
��� � for

��� � �
 , for
� �
 (

��
otherwise

(8)

To illustrate, consider the example in Figure 6 which illustrates a DTMC for �
� �

state updates

for each state transition in the Markov chain. Each state � can make a transition back to state �
with probability � � , or make transitions to state ��� � and state ��� �

with probability ��� � and �	� �
respectively.

0-1-2 1 2

P+2 P+2 P+2 P+2 P+2
P+2 P+2

P-2 P-2 P-2 P-2
P-2 P-2 P-2

P-1

P+1 P0 P0 P0 P0 P0P+1 P+1 P+1 P+1 P+1

P-1
P-1 P-1 P-1 P-1

Figure 6: The Markov Chain with �
� �

To answer how we can maintain the condition of Equation (4) (e.g., how often a ”synchronization-

message” should be sent so that the expected value of the absolute phase difference between

clients ��� and ��� is less than or equal to
�

), we use the theory of the fundamental matrix [2, 8]

and analyze the underlying Markov chain � . Let state
��!

in � represent the value of the phase

difference � . We aggregate (see [2]) all states
��! � �� � �

, into one absorbing state (i.e., once the

Markov chain reaches that state, it stays in that state forever), and this yields a new Markov chain

� �
with

� � � �
states. The state space of � �

is

��� ��
 ��� ��
 � � �����������
���������2���
 � � ���
 � � � �����

where
���

is the absorbing state. The one-step transition probability matrix of � �
is denoted by

� �
and has the form: � � ���� �� ���
where Q is a sub-stochastic matrix describing the transition probabilities between the

� � � �
states

correspond to phase difference values of
� � � � � � � ��������� � � , C is a column vector representing

23

the transition probabilities between the
� � � �

transient states and the absorbing state, and � is a

row vector of
� � � �

zeros. Note that all entries in Q and C can be derived from
�

, the one-step

transition probability matrix of � . Given Q, the fundamental matrix � is:

�
� ��� � � � � � ��� � � � � � � � � � ����� � ��

� � � � � �
(9)

The fundamental matrix � contains much useful information about the underlying DTMC. For

example, we can use � to compute the average number of time steps (or the average number of

transitions in the DTMC) so that the absolute value of the phase difference in � is greater than
�

.

Theorem 3 Let �
!-, .

(
� � (� � � (�

) be the random variable representing the number of time

steps at which the DTMC � �
visits state

��.
before entering the absorbing state, given that the

DTMC � �
started from state

��!
. We have

	 � � !-, .�� � & !-, .
for
� � (� � � (�

where
& !-, .

is the
� � � � � element of the fundamental matrix � .

Proof: Please refer to [2].

Remark: The above theorem implies that the entry
& !-, .

of � represents the average number of

transitions (or average number of time steps) for the DTMC � �
to move to state

� .
, given that

the DTMC � �
starts from state

��!
, before entering the absorbing state

�'�
. Since states

��!
and

� .
represent the phase difference between � � and ��� for object � ! , by calculating the value of

& !-, .
we know the mean number of transitions (or average time) from state

��!
to state

� .
before the phase

difference exceeds the maximum allowable phase difference of
�

.

Corollary 1 Assume that the phase difference between client � � and ��� is initially zero. Let 	

be the number of time steps such that the expected value of the absolute phase difference between

�	� and ��� is greater than
�

. Then 	
 is given by the expression:

	
 �
�
� � ��
 & � � (10)

24

Proof: We can show this by directly applying Theorem 3. Since the phase difference between

clients �	� and ��� is initially zero, the DTMC starts from state
� �

. Given the fundamental matrix

� , the entry
& � .

is the average number of time steps for the DTMC to move to state
��.

, given

that the DTMC starts from state
� �

, before entering the absorbing state
� �

. Therefore, by summing& � � for all possible states
��.

different from
���

, we obtain 	
 .

Corollary 2 To ensure that the expected value of the absolute phase difference between client � �
and ��� is less than or equal to

�
for all time steps, the master process � �) of object � ! needs to

send the ”synchronization-message” every 	
 ���
� � ��
 & � � time steps.

Proof: This can be directly observed by applying Corollary 1.

Remark: Note that once the ”synchronization-message” is received by all clients, the phase

difference of object � ! between any clients is reset to zero. Therefore, in order to maintain the phase

difference between any two clients to stay within
�

, the master process � �) needs to periodically

broadcast the synchronization message with period 	
 � �
� � ��
 & � � .

5 Experiments

In this section, we carry out experiments to illustrate the maximum delay, the bandwidth consump-

tion and the synchronization interval for different communication subgraphs which are generated

by the MDS, CBT and the ST subgraph algorithms.

In our experimental study, we generate two graphs, namely,
�0�

and
� �

. Three parameters
�

,
�

and
&

are used for graph generation, which represent the number of nodes, the number of edges

in the graph and the number of participating clients, respectively. For each edge + in the graph,

there is an associated delay � � + � , which is generated uniformly between
�

and � � � � (the maximum

allowable delay in the graph). We use different values for these parameters to generate two graphs���
and

� �
, namely,

� & � � � � �
(total # of vertices) (total # of clients) (total # of edges) (max. delay)���

100 50 200 10� �
200 100 400 10

25

Given the graph
� �

or
�3�

, we construct the corresponding communication subgraph
��

using

the MDS, the CBT and the ST algorithms. Figure 7 illustrates the corresponding subgraph diameter

as well as the total edge cost in the corresponding communication subgraphs. It is interesting to

diameter total edge cost

MDS 30 415
ST 73 354

CBT 58 261

diameter total edge cost

MDS 37 751
ST 70 612

CBT 67 561

communication subgraph for
� �

communication subgraph for
� �

Figure 7: Communication subgraph diameter and total edge cost for (a)
� �

and (b)
�3�

point out that MDS guarantees a minimum diameter communication subgraph, while ST cannot

provide a subgraph with a minimum edge cost (as compared to CBT).

Given the communication subgraph
���

, the next experiment illustrates the tradeoff between

bandwidth consumption and the synchronization interval. For this experiment, each client broad-

casts a synchronization message at every fixed interval to other clients in a DVE system. Each

client uses these synchronization control messages to maintain a consistent view of the virtual

world. When the synchronization message passes through a communication channel (e.g., rep-

resented by an edge in the communication subgraph), it spends a fixed time equal to the delay

of the channel. The network bandwidth consumption is computed based on Equation (3). Fig-

ure 8 and Figure 9 illustrate the bandwidth consumption for the graph
� �

and
�3�

, respectively.

For each network topology, we construct various communication subgraphs
� � �

and
� � �

using the

MDS, CBT and ST algorithms. We can observe that the shorter the synchronization interval, the

higher the value of the network bandwidth consumption. Another important observation is that

the bandwidth consumption of the MDS subgraph is less than the bandwidth consumption of the

CBT and ST subgraphs. The reason is that the MDS subgraph is constructed based on an all pairs

shortest path algorithm. Therefore, the communication paths are much shorter and the time for

the synchronization control message to reside in the network is much smaller than the other two

communication subgraphs. In general, the CBT and the ST subgraphs do not guarantee the shortest

path between all pairs of senders and receivers. Therefore synchronization control messages stay

in the network for a longer period of time.

26

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60 70 80 90 100

B
an

dw
id

th
 C

on
su

m
pt

io
n

Synchronization Interval

Number of Nodes: 100, Number of Clients: 50

MDS
ST

CBT

Figure 8: Bandwidth Consumption vs Synchronization Interval for
�0�

The next experiment illustrates the effectiveness of finding the optimal synchronization interval

under various system parameters. We consider the graph topology
�0�

, and we use a homogeneous

system such that every machine will have the same probability � of missing a rendering computa-

tion. Figure 10 illustrates the optimal synchronization interval (the derivation is based on Corollary

2) versus
�

, the maximum allowable phase difference requirement. In general, the lower the value

of � , the more the system can afford a longer synchronization interval to maintain view consistency.

This implies that the lower the value of � , the lower the bandwidth consumption for sending the

synchronization control message. Another important point is that given a particular value of the

optimal synchronization interval, the MDS has less bandwidth consumption than other subgraphs

generated via the CBT and the ST methods. For example, if we consider Figure 10 with � � ��� �
and the maximum allowable phase difference

�
is equal to

�
, then the optimal synchronization in-

terval is equal to
���

. Using this synchronization interval, we can calculate the network bandwidth

consumption for various communication subgraphs. If we consider the network
� �

in Figure 8 as

an example, the bandwidth consumption for various communication subgraphs under the optimal

synchronization interval of
���

is given in the following table:

MDS ST CBT

BW consumption 295.826 624.247 461.127

27

0

2000

4000

6000

8000

10000

12000

0 10 20 30 40 50 60 70 80 90 100

B
an

dw
id

th
 C

on
su

m
pt

io
n

Synchronization Interval

Number of Nodes: 200, Number of Clients: 100

MDS
ST

CBT

Figure 9: Bandwidth Consumption vs Synchronization Interval for
���

Therefore, given this synchronization interval, we see that the communication bandwidth con-

sumption for the MDS subgraph has a factor of 2.11 and 1.35 reduction over the bandwidth con-

sumption for subgraphs generated by the ST and the CBT methods, respectively.

0

50

100

150

200

250

300

350

2 3 4 5 6 7 8 9 10

O
pt

im
al

 s
yn

ch
ro

ni
za

tio
n

pe
rio

d

Maximum phase difference

p=0.2
p=0.3
p=0.4

Figure 10: Optimal synchronization interval 	
 vs. maximum allowable phase difference
�

Figure 11 illustrates the relationship between � , the probability of missing a rendering oper-

ation (x-axis),
�

, the maximum allowable phase difference (y-axis) and the network bandwidth

consumption (z-axis). In general, the system will have a high bandwidth consumption if the syn-

chronization requirement is high (e.g.,
�

is small). Maximum bandwidth consumption occurs

28

5

6

7

8

9

0

0.2

0.4

0.6

0.8

1
20

40

60

80

100

120

140

160

180

y (max phase difference)x (probability p)

z
(b

an
dw

id
th

 c
on

su
m

pt
io

n)

Figure 11: Relation between � (-axis),
�

(
�
-axis) and bandwidth consumption (

�
-axis)

when � � ��� �
. In this case, the expected value of the absolute phase difference between the two

viewing clients is very high, and the system needs to broadcast the synchronization message more

often so as to maintain a given level of view consistency.

In the next experiment, we investigate the relationship between the optimal synchronization

interval 	
 under different values of synchronization threshold
�

and different values of the prob-

ability of missing a rendering operation for clients � � and ��� . We set � � � ���4�
and we vary � �

from
��� �

to
� � �

. We also vary the synchronization threshold
�

from
�

to
���

. Figure 12 illustrates

the result of the synchronization interval under different settings. In general, we observe that the

larger the difference between � � and � � , the smaller the synchronizing interval required to support

a given value of threshold
�

. This is because the skewness of � � and � � specifies the difference

in the behavior of these two computing nodes, which reflects the difference in the rate of state up-

dates. We also observe that the smaller the value of the threshold
�

, the smaller the synchronizing

interval required so as to maintain the view consistency of a DVE system.

Lastly, we investigate the effect of the magnitude of � � and � � on the optimal synchronization

interval and the values of the threshold
�

. We vary � � from
���4�

to
��� �

, and for a given value of

� � we set � � � ���4� � � � . We also vary the threshold value
�

from
�

to
���

. Figure 13 illustrates

the optimal synchronization interval 	
 under different system configurations. Notice that when � �

29

0.2
0.3

0.4
0.5

0.6 5

6

7

8

9

100

5

10

15

Thresh
old (Φ

)
O

pt
im

al
 S

yn
ch

ro
ni

za
tio

n
In

te
rv

al
 (

t*
)

|pA - pB|

Figure 12: Optimal synchronization interval vs. synchronization threshold
�

with � � � � � (��� �
.

and � � approach 0.5, the smallest synchronizing interval is required.

0.2
0.3

0.4
0.5

0.6 5

6

7

8

9

10

4
5
6
7
8
9

10
11
12
13

pA Thresh
old (Φ

)

O
pt

im
al

 S
yn

ch
ro

ni
za

tio
n

In
te

rv
al

 (
t*

)

Figure 13: Optimal synchronization interval vs. synchronization threshold
�

with � � � � � � ��� �

30

6 Conclusion

We consider synchronization issues for a large scale DVE system. Our work is divided into two

parts. In the first part, we propose several communication subgraph construction algorithms for

connecting all participating clients in a DVE environment. Our experiments show that the MDS

algorithm can guarantee the communication subgraph to have a minimum diameter, thereby min-

imizing the maximum delay between any two clients. From our experiments, the bandwidth con-

sumption of the communication subgraph constructed by the MDS is the lowest, when compared

with the communication subgraph generated by the CBT and ST algorithms. Given a communi-

cation subgraph
�!�

, we can easily find the corresponding maximum network delay � � ��� ��� �-� . We

then derive the optimal synchronization interval such that the expected phase difference between

any two clients in a DVE system is less than or equal to
�

. The approach for deriving the optimal

synchronization interval 	
 is to represent the phase difference of the two furthest clients with a

DTMC and use the theory of the fundamental matrix. Whenever there is a large deviation between

� � and � � , a DVE system needs to send the synchronization message more often to guarantee

that the phase difference between any two clients is less than or equal to
�

. Future work includes

studying how to track the probability of missing a rendering operation under a real-time environ-

ment. One possibility is to use a statistical approach wherein a process measures the number of

missing rendering operations for a given period. This estimate is then used as the probability � in

our proposed mathematical model to determine the synchronization interval.

Acknowledgments

We would like to acknowledge various anonymous referees for their insightful and constructive

comments.

31

APPENDIX I: notation

�0� � ��	��
= A connected graph

�
which represents the underlying network.

�
is the set

representing nodes in
�

and
	

is the set representing edges in
�

.��!
= A node in

�
which can represent a router or a participating client." = The set of computers (or nodes in

�
) that participates in a DVE session. We

have " # �
.+ !-, . = A communication link between node

� !
and

��.
.

� � + !-, .�� = Upper bound of the transmission delay for the communication link + !-, . .
� � 	 � = A set of participating clients at time 	 .� � � 	 � = A connected communication subgraph of the underlying graph

� � � � ��	��
. In

general, we have
� � � 	 � �$� � � 	 � ��	 � � where � � 	 � #1" # �

and
	 � # 	

.
� !-, . = A loop-free shortest path between node

� !
and

��.
.

� � � !4, .2� = Transmission delay for the path � !-, . .
�"� ��� � �%�

= The maximum delay between all pairs shortest paths in the connected graph
�

.� ! = An object in the DVE system.� �) = A set representing all possible states of object � ! in a DVE system.� �) � 	 � = The state of object � ! at time 	 .
�
. �) � 	 � = The state of object � ! at time 	 that client

�
is rendering.

� +
	 = Sequence of state changes for object � ! .�
= Maximal allowable phase difference for any object between any clients in a

DVE system.
� �) = A process that is responsible for sending the start-rendering and

synchronization-message for object � ! in a DVE system.�
= Basic synchronization period for the DRS and DRPS synchronization tech-

niques.� � � � 	 � = Total number of synchronization message in transit at time 	 for the communi-
cation subgraph

� � � 	 � .
� = A DTMC which represents the phase difference of two furthest participating

clients in a DVE system.� � �	� � ��� � = The random variable denoting the phase difference between the two furthest
clients �	� and ��� .

� 	 = The length of the time step wherein each participating node will update the
state of object � ! in its local display. In general, we have � 	 (�

.
� = Maximum number of state updates for a computing node for each state transi-

tion in the DTMC.��!
= The state in the DTMC � which represents the phase difference of � � and

��� is equal to � .���
= An absorbing state in the DTMC � �

.
�

= The fundamental matrix according to Equation (9).
�
!-, .

= A random variable representing the number of time steps that the DTMC � �
visits state

� .
before entering the absorbing state

� �
, given that the DTMC

started from state
��!

.
	
 = The optimal synchronization interval of maintaining view consistency.

32

References

[1] A. J. Ballardie, P.F. Francis, and J. Crowcroft, “Core based trees”, In Proceedings of ACM

SIGCOMM, pages 85–95, San Francisco, 1993.

[2] U. N. Bhat, Elements of Applied Stochastic Processes, John Wiley & Sons, New York, 1984.

[3] F. Fabbrocino, J.R. Santos, and R. Muntz. “An Implicitly Scalable, Fully Interactive Mul-

timedia Storage Server”, International Workshop on Distributed Interactive Simulation and

Real Time Applications (DIS-RT’98), 1998.

[4] M.R. Garey and D.S. Johnson, Computers and intractability: A guide to the theory of NP-

completeness, W.H. Freeman, San Francisco, CA, 1979.

[5] John C.S. Lui, M.F. Chan, T.F. Chan, W.S. Cheung, W.W. Kwong. “Virtual Exploration and

Information Retrieval System: Design and Implementation”.
��� �

International Workshop on

Multimedia Information Systems, 1997.

[6] John C.S. Lui, M.F. Chan, K.Y. So, T.S. Tam, “Balancing Workload and Communication

Cost for a Distributed Virtual Environment”, Fourth International Workshop on Multimedia

Information Systems, September 24-26, 1998.

[7] R. Muntz, J.R. Santos, and S. Berson. “A Parallel Disk Storage System for Realtime Mul-

timedia Application”, Special Issue on Multimedia Computing Systems of the International

Journal of Intelligent Systems, 13(12), pp. 1137-1174, December, 1998.

[8] E. Parzen, Stochastic Processes, Holden-Day, San Francisco, California.

[9] J. Plesník, “The complexity of designing a network with minimum diameter”, Networks, 11,

pp. 77-85, 1981.

[10] B. Roehle, “Channeling the data flood”, IEEE Spectrum, pp 32-38, March, 1997.

[11] H. Schulzrinne, GMD Fokus, S. Casner, R. Frederick, V. Jacobson “RTP: A Transport Proto-

col for Real-Time Applications”, RFC 1889, January 1996.

[12] S. K. Singhal, D. R. Cheriton. Using a Position History-Based Protocol for Distributed Object

Visualization, Technical Report, Stanford University, Department of Computer Science, CS-

TR-94-1505, Feb 1994.

[13] UCLA Virtual World Data Server Project (http://mml.cs.ucla.edu/).

[14] R. C. Waters, J.W. Barrus. “The Rise of Shared Virtual Environments”, IEEE Spectrum, pp

20-25, March, 1997.

33

[15] Lixia Zhang, Stephen E. Deering, Deborah Estrin, Scott Shenker, and Daniel Zappala,

“RSVP: A New Resource Reservation Protocol”, IEEE Network, 7(5):8-18, September 1993.

34

BIOGRAPHY

John C.S. Lui received his Ph.D. in Computer Science from UCLA. During the summer of 1990,

he participated in a parallel database project in the IBM Thomas J. Watson Research Center. After

his graduation, he joined a team at the IBM Almaden Research Laboratory/San Jose Laboratory

and participated in research and development of a parallel I/O architecture and file system project.

He later joined the Department of Computer Science and Engineering of the Chinese University of

Hong Kong. His current research interests are in communication networks, distributed multimedia

systems, OS design issues, parallel I/O & storage architectures and performance evaluation theory.

His personal interests include general reading and movies.

35

