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AbstractÐIn designing cost-effective video-on-demand (VOD) servers, efficient resource management and proper system sizing are

of great importance. In addition to large storage and I/O bandwidth requirements, support of interactive VCR functionality imposes

additional resource requirements on the VOD system in terms of storage space, as well as disk and network bandwidth. Previous

works have used ªdata sharingº techniques (such as batching, buffering, and adaptive piggybacking) to reduce the I/O demand on the

storage server. However, such data sharing techniques complicate the provision of VCR functions and diminish the amount of benefit

that can be obtained from data sharing techniques. The main contribution of this paper is a simple, yet powerful, analytical modeling

approach which allows for analysis, system sizing, resource allocation, and parameter setting for a fairly general class of ªdata sharingº

techniques which are used in conjunction with the providing of VCR-type functionality. Using this mathematical model, we can

determine the proper amount of resources to be allocated for normal playback as well as for service of VCR functionality requests while

satisfying predefined system performance requirements. To illustrate the usefulness of our model, we focus on a specific data sharing

scheme which combines the use of batching, buffering, and adaptive piggybacking, as well as allows for the use of VCR functions. We

show how to utilize this mathematical model for system sizing and resource allocation purposesÐthat is, how to distribute the available

resources between the service of normal playback and VCR functionality requests under various workloads and resource price ratios,

so as to obtain the lowest system cost.

Index TermsÐVideo-on-demand, data sharing techniques, resource allocation, system sizing.
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1 INTRODUCTION

ADVANCES in information and communication technolo-

gies have made multimedia services feasible. Among

these services, interactive TV and video-on-demand (VOD)

have been identified as two important applications [8]. In a

VOD system, video objects are stored on a storage server

and delivered to users upon request. Unlike textual data,

video objects occupy large amounts of storage space and

require large amounts of I/O bandwidth for real-time

delivery. Thus, upon admission of a user, sufficient

amounts of resources have to be reserved in order to

provide an acceptable level of service to viewers. A

significant amount of research effort has been dedicated

to designing a fault-tolerant VOD server, as well as

investigating techniques for the efficient use of resources

in VOD servers [7], [11], [14], [19], so that the amount of

resources needed to satisfy predefined performance mea-

sures can be reduced. For a survey of such approaches,

please refer to [9].
Several techniques have been proposed for increasing

the number of concurrent viewers of popular objects through
the sharing of data and, consequently, the sharing of system
resources, such as I/O bandwidth and buffer space. One
such technique is batching (e.g., as in [6]), in which one I/O
stream is dedicated to servicing several viewers, for
instance, those that arrived within a predefined and
relatively short time interval. As long as viewers are willing
to wait for a small amount of time, where the maximum
waiting time is the length of this time interval, all requests
for the same object arriving within the time interval can be
serviced using one I/O stream, thereby reducing the overall
amount of I/O bandwidth necessary. Another technique for
reducing the amount of needed I/O bandwidth is buffering
(e.g., as in [22]), where careful buffer replacement algo-
rithms insure that viewers can fetch the needed data blocks
from the VOD system buffers instead of from the disk
subsystem. Last, the adaptive piggybacking method [10]
takes advantage of the fact that video display rates can be
modified (without the user noticing the change in video
quality) in order to dynamically merge ongoing displays of a
popular object into a single group which can be served by
one I/O stream, thereby reducing the overall I/O band-
width requirements. In general, the basic idea behind these
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approaches is to group users requesting the same object, so
as to increase the degree of data sharing and, thereby, reduce
the overall system I/O bandwidth demand.

Apart from normal playback, it is also desirable to
provide interactive VCR functions, such as fast forward
with viewing (FF), rewind with viewing (RW), and pause/
resume (PAU). Part of the difficulty here is that the
provision of VCR functions often requires additional system
resources and it is usually not desirable to reserve such
resources for each request in the system since VCR resource
reservation on a per-request basis may be utilized infre-
quently and, hence, these resources will not be utilized
efficiently. There are various schemes in the literature for
supporting interactive VCR functions in VOD systems, for
instance, [3], [13], [15]. However, among all these ap-
proaches, few have addressed the problem of incorporating
VCR functionality in a system which uses data sharing
techniques for the service of normal playback requests.

The basic problem with combining VCR type function-
ality with data sharing techniques is as follows: All data
sharing techniques (such as batching, buffering, and
adaptive piggybacking) improve the cost-effectiveness of a
VOD system by serving groups of clients requesting the
same video with a single set of resources. However, they all
suffer from the problem of where to obtain resources when
one of the viewers in a group requests a VCR-type
functionality and, thus, is no longer part of the data sharing
group since, in this case, resources are not reserved on a
per-client basis but only on a per-group basis. Even if some
resources are reserved for performing VCR-type functions,
another problem (and perhaps a more difficult one) is
where does the system obtain resources for a viewer that is
ready to go back to the normal playback but is no longer part
of a group. We refer to such viewer as a fallen out viewer.

The basic approaches to dealing with this problem
include: 1) combining data sharing techniques (such as
batching and buffering) in order to increase the probability
that a client that left a group to perform VCR-type
functionality will rejoin another group once they are ready
to return to normal playback (e.g., as in [18], [17]) and
2) setting aside a relatively small pool of resources to
provide for clients who need to perform VCR-type
functionality (e.g., as in [13], [2]) and/or for those that are
not able to rejoin another group. Once these basic
approaches are employed, the main difficulty is in the
setting of parameters, i.e., determining: a) the size of the
pool of resources (for VCR-type functionality), b) the
batching interval (or the number of I/O streams) to use
per video object, c) the amount of buffer space to use per
video object (or per group), etc., such that the probability of
allowing VCR-type functionality and the cost-effectiveness
of the whole system (given some QoS requirements) are
optimized.

Related work on allowing users in a data sharing group
to perform VCR functionality is as follows: In [25], the
authors propose a method for allowing users in a data
sharing group to pause and eventually resume back to
normal playback. This method uses additional buffer space
resources to gain improvements in the amount of I/O
bandwidth needed to support pause/resume of batched
requests. In [2], the authors propose a scheme for providing

interactive functionality to different multicast groups (each
multicast group can be viewed as a batch group). The main
idea there is to utilize the client-side resources, i.e., provide
enough buffer space in the viewer's set-top box in
conjunction with reserving some emergency channels in
the network during high loads such that the system is able
to service an interactive request by a viewer with a
reasonably high probability. In [18], the authors propose a
protocol which splits an interactive user from a batch and
serves the user using a dedicated I/O stream. This
interactive viewer is then ªattachedº back to a batch of
requests by using additional buffer space needed to bridge
the gap between a batched group and this interactive
stream. However, none of the approaches mentioned above
[2], [18], [25] solve the problem of system sizing, i.e., how
one should set design parameters and, hence, allocate
different resources to different types of display modes
(either normal or interactive) so as to provide a certain level
of QoS and, at the same time, reduce the overall system cost.

The contributions of this paper are as follows: The main
contribution is our analytical model which is used for
system sizing and for determining the amount of resources
needed for supporting normal playback and VCR function-
ality, while satisfying predefined system performance
requirements. This model allows us to maximize the
benefits of data sharing techniques in the presence of
interactive VCR functions. Consequently, our paper uses
the analytical model for system sizing purposes in interactive
VOD systems using data sharing techniques. Specifically,
we divide the overall resources into those required for
normal playback and those required for the service of a
VCR request. The goal is to reduce the probability of
viewers ªfalling outº of a group (after resuming to normal
playback), thereby increasing the benefits of data sharing,
but without significantly increasing the system costs. We
use our model to calculate the amount of resources required
for normal playback such that, upon resumption to normal
playback, additional resources (which were dedicated to the
VCR function) can be released with a prespecified prob-
ability, which reflects the system's QoS requirements. To
further increase this probability, we use the adaptive
piggybacking technique to facilitate the joining of an
existing group by the fallen out viewers. Hence, although a
fallen out viewer may have to hold on to additional
resources to resume normal playback, we attempt to reduce
this resource holding time. All this implies that the total
amount of resources reserved for service of VCR requests
can be reduced. Thus, another contribution of our work is a
novel data sharing technique that combines batching,
buffering, and adaptive piggybacking in order to improve
the cost-effectiveness of an interactive VOD system.

The organization of the paper is as follows: In Section 2,
we present the background information and a brief survey
of batching, buffering, and adaptive piggybacking techni-
ques. In Section 3, we describe our system and introduce the
model for VCR display. In Sections 4 and 5, we continue
with the exposition of our analytical model and describe
details of resource allocation for normal playback, as well as
VCR modes. In Section 6, we describe how to apply our
model to solving system sizing problems in interactive VOD
servers which employ data sharing techniques. Last, our
conclusions are given in Section 7.
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2 BACKGROUND ON DATA SHARING

AND VCR SUPPORT

In this section, we briefly describe several basic approaches

to reducing I/O demand on a VOD server through data

sharing. Note that these techniques are orthogonal, i.e., they

can be combined in order to better utilize the I/O resources

in a VOD system. Last, we also briefly survey several

approaches to providing VCR functionality in conjunction

with data sharing schemes.

1. Data sharing via batching (e.g., as in [6]). One way
to satisfy independent playback requests is to
dedicate an I/O stream to each request. However,
this (potentially) requires a large number of I/O
streams. Given that there will be a relatively large
number of requests for popular videos, we can batch
together requests separated by relatively small time
intervals and serve the entire batched group using a
single I/O stream. As long as the viewers are willing
to tolerate a certain latency, batching can help to
achieve a substantial reduction in the required
server I/O bandwidth capacity. However, this
reduction in I/O streams will increase the waiting
time of the viewers, thus, the trade-off is between the
I/O bandwidth utilization and the waiting time of
viewers. There are many batching policies that one
can consider. One simple approach is to start the
video periodically at predetermined time intervals.
In this case, we can easily evaluate the saving in I/O
bandwidth. For instance, if � is the average arrival
rate of requests for a particular video and b is the
batching time interval for that video, then the
average fraction of I/O savings is ��bÿ1�

�b , provided
�b > 1.

2. Data sharing via buffering (e.g., as in [5], [12], [20],
[23]). Buffering is a technique which attempts to
bridge the temporal gap between ªsufficiently closeº
successive requests for the same video using buffer
space. This is achieved by retaining the video frames
fetched by the previous stream in the buffer space
and allowing streams corresponding to subsequent
requests for the same video to be served from the
buffer space rather than by using an I/O stream. The
basic idea is to use buffer space to promote data
sharing and, hence, reduce the demand for I/O
bandwidth. Since even retaining a few minutes of
the video in the buffer is costly, it is important to
determine proper buffer replacement algorithms.
There are several existing research results for the use
of buffering techniques. In [5], [12], [20], [23], the
authors explore the benefits of caching continuous
media data to reduce the utilization of I/O band-
width. By making efficient use of the data already
fetched into the buffer space, the number of
concurrent viewers can be increased. In addition,
in [4], the cost-performance trade-offs of various
buffering and caching strategies is studied by
varying the buffer size, disk utilization, and disk
characteristics.

3. Data sharing via adaptive piggybacking (e.g., as
in [1], [10]). Adaptive piggybacking exploits the

fact that video display rates can be altered without
a user-perceived loss in the quality of that video,
to ªmergeº requests for the same video and, thus,
allow the corresponding viewers to share a single
I/O stream, thereby dynamically reducing the I/O
demand on the VOD system. Although the
reduction in I/O demand is not as high as that
of ªtraditionalº batching, the advantage is that
viewers do not experience the additional latency
associated with batching nor is there a need for
additional buffer space required by buffering
techniques. This approach assumes that the storage
server is capable of altering the display rate of a
video. For instance, since the display proceeds at a
fixed rate, the slow down in the effective display
rate can be done by inserting additional frames;
similarly, the display rate can be effectively increased
by removing frames. It has been pointed out that
differences as large as �5 percent in the display rates
will not be perceivable by the viewers and, thus, will
not result in a degradation in video quality [10].
Thus, the basic idea behind this approach is to
dynamically merge two (or more) I/O streams into
one. Justifications of the feasibility and evidence of
the benefits of this approach are given in [10].

As already mentioned, these basic data sharing
techniques are orthogonal and can be combined into
a variety of data sharing policies. As an example of
one combination of batching and buffering, we now
briefly describe the static partitioning scheme pro-
posed in [22]. Here, we choose this particular scheme
as this is our point of departure for the remainder of
the paper.

4. Data sharing via static partitioning (e.g., as in [22],
[17]). Static partitioning is one of the partitioned
buffer management strategies proposed in [22],
which combines the use of batching and buffering
and is developed based on a buffer refreshing
process. This method is similar to batching schemes
in which an I/O stream for a particular video is
restarted periodically at predefined time intervals. In
addition, some amount of buffer space, termed a
partition, is associated with each of these I/O
streams. This allocated buffer space allows for the
retaining of the video frames in memory for a certain
period of time, which is termed the viewer enrollment
window. Thus, this scheme allows for the sharing of
data between requests which arrive during the
viewer enrollment window; these requests are
served using a single set of resources, i.e., a single
I/O stream [6] plus the buffer space associated with
it. This facilitates a reduction in the additional
latency associated with ªpureº batching at the cost
of additional buffer space. Fig. 1 illustrates a scenario
for the static partitioning scheme, where each batch
of viewers is served using an I/O stream and a
partition of buffer space. Viewers that arrive before
the closing of the viewer enrollment window read
the frames from the buffer partition (we call these
type 2 viewers). Viewers that arrive after the
window is closed (we call these type 1 viewers) are
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queued up to wait for the next restart of the video.
The longest time a viewer has to wait occurs when
he/she arrives just after the viewer enrollment
window is closed. In this case, the maximum waiting
time equals the batching interval b (the interval
between initiations of two consecutive I/O streams)
minus the length of the viewer enrollment window y.
An interesting approach which provides an optimal
value of the viewer enrollment window when VCR
functionality is not used is given in [23].

Let us briefly survey schemes for combining data
sharing techniques with VCR functionalities.

5. Data-sharing with VCR support (e.g., as in [25], [2],
[18]). In [25], the authors propose a method for
allowing users in a data sharing group to perform
pause/resume type functionality only. This method
uses additional buffer space resources to gain
improvements in the amount of I/O bandwidth
needed to support pause/resume functionality for
batched requests. In [2], the authors propose a
scheme for providing interactive functionalities to
different multicast groups, where the basic techni-
que is to utilize client-side resources, i.e., to provide
buffer space in the viewer's set-top box in conjunc-
tion with reserving some emergency channels in the
network during high loads such that the system is
able to service an interactive request by a viewer
with a reasonably high probability. In [18], the
authors propose a protocol which ªsplitsº an
interactive user from a batch and serves him/her
by using a dedicated I/O stream. This interactive
viewer is then ªattachedº back to a batch of requests
by using additional buffer space needed to bridge
the temporal gap between a batched group and this
interactive stream. We should note that part of the
motivation for us considering the addition of the
adaptive piggybacking scheme to the set of data
sharing techniques used (refer to Section 5) is to be
able to deallocate such additional resources (i.e.,
such as those used to aid a viewer in joining an
existing batch) before the user exits the system
and, thereby, improves the cost-effectiveness of the
system. Most of these approaches mentioned are
evaluated through extensive simulations to cover a
wide range of possible design parameters. Thus,
partly what is desirable here is a better methodol-
ogy for making design decisions and evaluating
resulting schemes.

3 SYSTEM MODEL

For ease of exposition as well as ease of illustration of the

mathematical model, we focus on the partitioned buffer
management strategy termed static partitioning [22] as a

specific combination of data sharing techniques. The static
partitioning scheme, proposed in [22], addresses normal
playback functionality only. However, VCR functions such
as fast-forward (FF), rewind (RW), and pause (PAU) are
important and necessary features, which need to be
provided to the viewers. A fundamental problem in
providing such interactive features in conjunction with
data sharing techniques is the need for additional resources
not only for servicing VCR requests, but also for allowing
viewers to resume from a VCR mode to normal playback.
The difficulty here is that, at this resume point, viewers are
no longer part of a group of requests sharing the I/O and
buffer space resources, i.e., the resources are reserved on a
per-group rather than per-viewer basis. In this paper, we
present a model which facilitates the calculation of
distribution of resources between normal playback and
VCR functionality, so as to reduce the additional load
resulting from the users resuming from a VCR operation to
normal playback. In addition, this model aids in making
system sizing decisions, such that the overall cost-effective-
ness of the system can be improved.

3.1 VCR Functionality

The service of VCR requests can be divided into the
following two phases.

Phase 1. Displaying the VCR-version of the video.
When a viewer issues a VCR requests, other than a pause,
additional resources have to be allocated so that the viewer
can watch the VCR-version of the video. Let �V CR denote
the mean time spent in phase 1.

Phase 2. Resuming to normal playback. When resuming
from a VCR operation to normal playback, the possibility of
releasing the resources allocated during Phase 1 depends on
the time point in the video at which the viewer resumes. If
the frames the viewer needs are already in the VOD system
buffer when the viewer resumes, i.e., in one of the existing
partitions, then the viewer can read the data directly from
the partition in which he/she resumes. In this case, the
viewer is said to join that partition, and the resources
allocated in Phase 1 can be released. We denote the
probability of a viewer resuming from a VCR operation at
an existing partitions by P �. On the other hand, if the viewer
cannot resume at any of the existing partitions, then to
continue normal playback without any delay, the viewer
has to make use of the resources allocated in Phase 1 until a
viewer can join an existing partition (if that is possible).
Thus, a viewer is said to have a hit if he/she can join an
existing partition when resuming to normal playback after a
VCR request, such that additional resources allocated to
that viewer in Phase 1 can be released in Phase 2.
Otherwise, the viewer is said to have a miss if he/she
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resumes at a gap between partitions. The hit and miss events
and their corresponding probabilities are illustrated in
Fig. 2. Let �hold denote the mean time before the resources
allocated in Phase 1 can be released. In this paper, the
allocation of resources for normal playback ensures that
there is a minimum probability of P � for the viewers to
resume at an existing partition after a VCR request.
Therefore, with the probability of �1ÿ P ��, the viewer must
hold on to the resources intended for VCR requests when
he/she resumes. Thus, the expected time spent in Phase 2 is
given by �1ÿ P ���hold.

3.2 Normal Playback

As already stated, the allocation of resources in Phase 1 of
performing a VCR operation is usually inevitable. On the
other hand, whether or not these allocated resources can be
released depends on the resuming position of the viewer.
Therefore, our goal is to maximize the probability of
releasing the allocated resources at a resume point so as
to reduce the consumption of reserved resources. Conse-
quently, more resources will be available for serving future
requests, such as forthcoming VCR requests or even
requests for nonpopular videos. Clearly, the size and the
number of partitions used for servicing normal playback,
together with the duration of VCR requests will greatly
affect the probability of resuming at an existing partition.
The normal playback scheme, derived based on the static
partitioning technique, is used to calculate the amount of
resources allocated to each video so as to ensure the
following: When a viewer resumes from a VCR request, there is a
probability of at least P � that the additional resources allocated in
Phase 1 can be deallocated in Phase 2.

Since our goal is to maximize the probability of a hit, it is
natural to consider the behavior of VCR requests in determin-
ing the configuration of the system, i.e, in determining how
muchbufferresourcesandI/Ostreamsshouldbereservedfor
normal playback. We study the behavior of each VCR
operation as a function of its respective probability density
function (pdf), f�x�, wherex is the amount of video time spent
in a VCR request. The pdf of VCR requests can be obtained by
collecting statistics and is defined in the interval �0; l�, where l
is the length of the video (in units of time). Note that a pause of
x time units where x > l is equivalent to a pause of xmod l
time units, e.g., the situation where l � 120 minutes and x �
130 minutes is equivalent to pausing for 10 minutes since a
video is restarted periodically.

Based on the distribution of the duration of VCR
requests, we perform resource allocation for normal play-
backs such that the probability of holding on to the
resources upon resume can be minimized. This resource
allocation is calculated based on the mathematical model
we propose, which is presented in Section 4. In this model,
we assume that the arrivals of requests for a popular video
are distributed according to a Poisson process with rate �.

This is a reasonable model of the arrival process since we
expect the VOD system to have a large user population.
Based on the above principles, we determine the expected
hit probability upon resume to normal playback under
various system configurations. Intuitively, increasing the
size of the partitions will increase the hit probability
because the fraction of a video residing in buffers can be
increased. Consider the extreme case where the entire video
is buffered, thus increasing the hit probability to 1.
However, this may not yield a system with the lowest
operating cost if relatively little time is spent in a VCR
request, in which case, buffering the entire video would be
too costly. Therefore, we use our model to determine a
ªconfigurationº which yields the lowest cost for supporting
a given number of concurrent viewers for both normal
playback and VCR functions.

3.3 Model for VCR Display

In this paper, we model the additional I/O resources
needed for VCR functionality by an M=M=m queue, so as to
provide VCR service with a predefined level of QoS
guarantee. For instance, we could ensure that the average
time that a viewer has to wait to switch to VCR mode is less
than three seconds. The details of QoS guarantees are
presented at the end of this section. The notation related to
normal and VCR control is summarized in Table 1. For
simplicity of presentation, let us concentrate on the
derivation of resource distribution based on a single video.
We assume the arrival rate of VCR requests to be Poisson
with a rate of �VCR per minute for each viewer, i.e., if, on the
average, a viewer issues z VCR requests per video of length
l minutes, we have:

�VCR � z=l: �1�
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TABLE 1
Major Notations Involved in VCR Model

and Normal Playback Model



Since we assumed that the arrival rate of the normal

playback follows the Poisson distribution of rate �, the total

arrival rate of VCR requests to the VOD system, �v, is given

by �l�V CR. Using (1), we have �v � �z. The time spent in

utilizing the servers in the M=M=m queue corresponds to

the time spent by the viewers utilizing additional resources

for servicing VCR requests and for continuing normal

playback (in case of a miss) before these viewers can join an

existing partition. It is assumed to be exponentially

distributed with mean �v. As mentioned in Section 3.1, a

VCR function is a two-phase process. Therefore, �v is

calculated by summing up the mean time spent in each

phase:

�v � �V CR � �1ÿ P ���hold: �2�
To simplify the calculation of the average time for releasing

the hold on resources, �hold, we also assume that each

position of the video has the same probability to be the

point of resume. We obtain the probability of queuing

(Prob�queueing�), the expected queue length (Nq) and the

expected waiting time for service (Tq) as follows:

Prob�queueing� �
�m��m
m!

� �
1

1ÿ�

� �

Pmÿ1
k�0

�m��k
k! �

�m��m
m!

� �
1

1ÿ�

� �h i ;
�3�

Nq �

�

1ÿ �

�m��m
m!

� �
1

1ÿ�

� �

Pmÿ1
k�0

�m��k
k! �

�m��m
m!

� �
1

1ÿ�

� �h i

0
B@

1
CA;

�4�

Tq � Nq=�v; �5�
where � � �v�v=m. In applying the above results of the

M=M=m queue in calculating the additional I/O resources

needed, we have to ensure that the service performance of

handling VCR requests reaches a certain satisfactory level.

In other words, when the viewer issues a FF/RW request or

when he/she resumes from any VCR request, it is not

desirable if the viewer has to wait for a long time for the

display of the VCR-version of the video or for normal

playback to resume. Therefore, one of the following

performance levels has to be satisfied. They are:

1. When the viewer issues a VCR request, the prob-
ability that a viewer has to wait for the VCR request
to be serviced must not be greater than �.

2. If the viewer has to wait, we ensure that the expected
waiting time is within the tolerance level of the
viewers, t�.

3. The average number of viewers waiting for their
VCR requests to be serviced is no more than l�.

Given (3), (4), and (5), the above three performance
requirements can be formulated using the following
equations:

Prob�queueing� � �; �6�

Tq � t�; �7�

Nq � l�: �8�
These three inequalities will ensure that the system
provides service at a predefined performance level. Note
that the system utilization is � must be less than 1, therefore
the smallest possible value of m is b�v�vc � 1. To determine
the number of servers needed to ensure a performance
level, the value of m is incremented until one of the above
three inequalities is satisfied.

4 RESOURCE ALLOCATION

FOR NORMAL PLAYBACK

In this section, we present the derivation of our model for
determining the configuration of the system for normal
playback. Specifically, we want to determine the allocation
of resources which, under various VCR operations (e.g., FF,
RW, PAU), will insure the probability of a viewer resuming
from a VCR request at any existing partitions to be greater
than or equal to P �, where P � is a given system design
parameter.

To maintain the I/O reduction benefit of the data sharing
technique, we use the adaptive piggybacking with buffering
techniques to join a fallen out viewer with an existing
partition. Let us first describe the criteria for one stream to
catch up with another (for simplicity of illustration, we will
use streams rather than partitions). An example situation is
illustrated in Fig. 3a. We denote RFF as the rate of fast
forwarding and RPB as the rate of normal playback.
Suppose viewers X and Y are viewing the movie at a rate
of RFF and RPB, respectively, and X lags behind Y by
� minutes (in movie time). Since RFF is greater than RPB, X
will eventually catch up with Y at the catch-up point,
denoted by a cross in the figure. Similarly, Fig. 3b illustrates
a scenario where viewer Y rewinds to catch up with viewer
X. Thus, the amount of movie time, t, through which
viewer X must fast-forward (or viewer Y must rewind)
before a catch-up is accomplished is as follows:
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Fig. 3. Scenarios for catching up to viewers (a) in front (b) behind.



t �
� ��; where � � RFF

RFFÿRPB
for fast forward

 ��; where  � RRW

RPB�RRW
for rewind:

(
�9�

In what follows, we derive the buffer and I/O resource

requirements for normal playback under static partitioning.

After formulating the problem, we present the derivation of

our mathematical model for predicting the probability of

deallocating an I/O resource upon a resume from a VCR

operation (which will be used later in the paper for system

sizing). This probability is derived by first considering the

conditional probability of a hit for a viewer at a particular

point in the movie, which is unconditioned to obtain the

general probability of a hit for any type of a VCR request.

The notations used are summarized in Table 1.

4.1 Mathematical Model

The static partitioning model adopts the idea of batching

requests for a popular movie such that I/O streams are

initiated periodically. If n is the number of I/O streams

that are available, then for a movie with a length of

l minutes, one way to guarantee that the viewers have the

same maximum waiting time is to start the movie every

l=n minutes. Assume that the total amount of buffers

allocated for normal playback for a popular movie can

store B0 minutes of the movie. Then, the size of each

partition is B0=n, and, in the worst case, a viewer arriving

at the closing of the viewer enrollment window has to

wait for the next restart of the movie. The length of the

viewer enrollment window is equal to B0=nÿ �, where �

is the reserved amount of buffer space, which insures that

when the first viewer in a partition replaces the frames in

the buffer, the system will not overwrite the frames not

yet viewed by the last viewer in the same partition [22].

Thus, the maximum waiting time, w, is equivalent to the

gap between partitions, which is equal to lÿB0
n � �. Let

B � B0 ÿ n�, then we have:

w � lÿB
n

; where n � 1; 2; . . . ;
l

w
: �10�

Note that n � l
w would imply that B � 0, which corre-

sponds to the pure I/O or pure batching case, where each
batch is served by a single I/O stream. However, in this
case, the hit probability is always equal to zero (unless n is
infinitely large). Rearranging the above equation gives n,
the number of I/O streams needed is l

wÿ B
w , where B � l.

The difference between using buffering in conjunction
with batching and pure batching lies in the amount of I/O
and buffer resources required.1 When we dedicate
B minutes worth of buffer space for normal playback, then
we can save B

w I/O streams which can be used to service
VCR requests or requests for other movies, where we
consider using w minutes of buffer space as a tradeoff for
one I/O stream.

Let Vc denote the position of our tagged viewer currently

viewing the V th
c frame2 of the movie. Furthermore, the

positions of the first and the last viewer that can exist in a

partition are denoted by Vf and Vl, respectively. These two

viewers may be virtual, in the sense that there not be any

actual viewers viewing the V th
f and V th

l frame of the movie,

yet they are the two extreme positions in the partition in

which a viewer can possibly exist. The maximum difference

(in time units) between these two extreme viewers is B=n,

which is illustrated in Fig. 4. The idea behind this model

formulation is to determine the probability of a hit when a

viewer resumes from a VCR request. We define

P �hitjVc; Vf� be the conditional probability of a hit given

that a viewer is at position Vc and that the first possible

viewer in the same partition is at position Vf . Among the

three types of VCR requests (FF, RW, and PAU), let us first

consider the FF operation.
In order to determine P �hitjVc; Vf� given that the VCR

function is FF, we need to know the probability density

function (pdf) of the duration of a FF request. The main

difficulty in handling VCR requests lies in their inherently

nondeterministic nature [13], where the retrieval pattern is

not known. Rather than assuming a particular distribution,

we allow a general distribution in our model and we let the

pdf of the duration of FF requests be denoted by f�x�,
where x 2 �0; l�. Note that, our goal is not to obtain the exact

distribution or model for VCR behavior, but rather we

assume that the VCR behavior has a general distribution

and construct a model which is able to handle a general

probability distribution and, thus, not be limited by any

particular distribution. Given this general probability

distribution, f�x�, we derive the probability of a hit. We

subdivide a hit into the following two mutually exclusive

cases: 1) a hit within the same partition i.e, within the

partition in which the VCR operation is initiated and 2) a hit

in another partitions.

4.1.1 Hits Occurring within the ªSameº Partition (hitw)

The event hitw occurs if a viewer can resume in the same
partition in which the VCR request is issued. Our aim is to
calculate the probability of a hitw when a viewer resumes
from any VCR request, denoted by P �hitw�. We begin by
considering the FF situation. The longest fast forward
duration which can still result in a hitw is the distance
between the viewer, Vc, and the first possible viewer in his/
her partition. This is illustrated in Fig. 5a in which the
viewer must resume in the shaded region of the partition.
The probability of a hitw, given that: 1) the viewer is at
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1. We will consider the pure buffering in the later section of the paper.
2. Note that we model the movie as a continuous segment. We use the

term frame for ease of exposition.

Fig. 4. Relative positions of viewers at Vc, Vf , and Vl in a partition.



position Vc, 2) the first viewer is at position Vf , and 3) the
requested VCR function is FF is as follows:

P �hitwjFF; Vc; Vf� �
Z ��w

0

f�x�dx where �w � Vf ÿ Vc

and the upper limit is the time to enable a catch-up, as
defined in (9). The remainder of this section is dedicated to
determining how to uncondition on Vf and Vc so as to
obtain P �hitwjFF �, which is the expected probability of a
hit within the same partition after a viewer resumes from a
FF request.

1. Unconditioning on Vf . Recall that Vf is the
position of the first possible viewer that can exist
in the same partition as the viewer at position Vc.
Thus, we can uncondition on Vf with respect to Vc.
Since Vc can be any position within the partition, it
can range from being the position of the first
viewer in the partition (in which case Vf � Vc) to
being the position of the last viewer in the
partition (in which case Vf � Vc � B

n ).
Note that there are boundary cases where the

viewer at position Vc may not be able to catch up
with all the possible viewers ahead of him in the
same partition. As shown in (9), the time t, elapsed
before a catch-up is accomplished, is equal to the
initial distance, �, times a constant greater than 1. If
the catch up point is after the end of the movie, or
Vc � t > l, then the viewer at position Vc cannot catch
up with the target viewer before the movie ends. Thus,
we divide the unconditioning of Vf into two cases.

Case A. Viewer Vc can accomplish a catch-up with all
possible positions of the first viewer in the same partition,
i.e., the largest value of Vf is equal to Vc � B

n .
In this case, even if Vc corresponds to the last

possible viewer, he/she will be able to catch up with
the first possible viewer, who is B

n units of time
ahead, before the movie ends. Thus, Vf ranges from
Vc to Vc � B

n , and clearly, we have:

Pa�hitwjFF; Vc� �
Z Vc�Bn

Vf�Vc
P �hitwjFF; Vc; Vf�P �Vf�dVf ;

�12�
where P �Vf� is the probability that the first viewer,
who is in the same partition as Vc, is at the V th

f

minute of the movie. Here, we approximated P �Vf�
to be equal to 1

B=n . Note that, this quantity is only an

approximation since those viewers who arrive
before the next restart of the movie all become ªpart
ofº the first viewer of the partition. Another reason
why this is an approximation is that after viewers
have resumed from VCR requests, the position of
viewers may not be uniformly distributed within a
partition. Nevertheless, we will show in a later
section that results obtained using our mathematical
model match well with those obtained through
simulation.

Case B. Viewer Vc cannot catch up with the farthest

possible position of the first viewer in the same partition,

i.e., the largest value of Vf that the viewer can catch up to

is equal to l���ÿ1�Vc
� .

In this case, we need to handle the boundary
condition which ensures that Vc � t � lÐthat is, a
catch-up to some viewers within the same parti-
tion is still possible before the end of the movie. In
other words, consider the scenario where, given a
viewer at position Vc, there exists a viewer at
position Vt, (where Vt � Vc) such that when the
former viewer catches up to the latter, both
viewers are at the lth minute of the movie. Using
(9), we can describe a relationship between Vt and
Vc by the equation Vc � ��Vt ÿ Vc� � l, which gives
the upper bound for Vt:

Vt �
l� ��ÿ 1�Vc

�
: �13�

Note that the viewer at position Vc will not be able
to catch up with a viewer at position Vf , where Vf >
Vt for Vf 2 �Vc; Vc � B

n�. The furthest position Vf with
which the viewer at position Vc is able to catch up is
Vt, as given by (13). Fig. 5b illustrates the region
where a hitw is ensured for Vf � Vt. Therefore, we
have a second equation for unconditioning on Vf .
The first term below corresponds to one case where
Vt � Vf . The second term corresponds to the case
where Vt < Vf � Vc � B

n , and the event hitw is
ensured for the duration 0 to ��Vt ÿ Vc�.

Pb�hitwjFF; Vc� �
Z Vt

Vf�Vc
P �hitwjFF; Vc; Vf�P �Vf�dVf

�
Z Vc�Bn

Vf�Vt

Z ��VtÿVc�

0

f�x� dxP �Vf�dVf :

�14�

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. XX, XXXXXXX 2001

Fig. 5. Two cases of hitw for viewer Vc: (a) catching up with all viwers ahead in the same partition and (b) catching up with viewers between Vc and Vt

for Vt < Vc � B
n .



Again, we use the assumption made in Case A, that
is, P �Vf� is equal to 1

B=n .

2. Unconditioning on Vc. As long as Vc � B
n is smaller

than Vt, a viewer at position Vc would be able to
catch up with a viewer at all possible positions of Vf
in the same partition. Otherwise, the farthest
possible position of Vf will be at Vt (refer to
Fig. 5b). Here, we also uncondition on Vc based on
the two cases used for unconditioning on Vf .

Case A. Vc � B
n � Vt (or Vc < lÿ B�

n , using (13)),
we have:

Pa�hitwjFF � �
Z lÿ B�

n

Vc�0

Pa�hitwjFF; Vc� P �Vc� dVc:

�15�
Here, the only unknown is P �Vc�, which is the
probability that a viewer is at the Vcth minute of the
movie. Since a viewer can be at any position of the
movie, we assume that P �Vc� � 1

l . In other words,
we assume that all positions of the movie have an
equal probability of being viewed.

As Vc is always smaller than or equal to Vf , in the
second case, we have the farthest Vf to which a
viewer at position Vc can catch up equal to Vt. In this
case, we uncondition as follows:

Case B (Vc � Vf and Vf � Vt (or Vc � Vt which
gives Vc � l)). Therefore, unconditioning on Vc,
where lÿ B�

n < Vc � l gives the following equation
for Pb�hitwjFF �, where P �Vc� is equal to 1

l , as in
Case A.

Pb�hitwjFF � �
Z l

Vc�lÿ B�
n

Pb�hitwjFF; Vc� P �Vc� dVc:

�16�
Hence, given that the VCR request is a FF, the
probability of a hit within the same partition,
P �hitwjFF �, is obtained by summing up the two
expressions in (15) and (16).

4.1.2 Jump to Other Partitions (hito)

Beside the possibility of being able to resume in his own
partition, a viewer can also resume in another partition such
that the I/O resources allocated in Phase 1 for serving his/
her VCR request can be released. We refer to this event as a
hito. As illustrated in Fig. 6, if a viewer is to resume at the
ith partition ahead of its current position, then he/she must
fast forward long enough to at least catch up with the last

possible viewer in the ith partition ahead, namely, at
position Vli . Let us denote by Vfi the position of the first
possible viewer in the ith partition, then the event hito can
be divided into two cases, namely, the complete hitio and the
partial hitio. As illustrated in Fig. 6a, a complete hitio is an
event corresponding to a viewer being able to catch up not
only to the viewer at position Vli but also to the first possible
viewer, i.e., viewer at position Vfi . Fig. 6b depicts the event
of a partial hitio, which illustrates a viewer who is not able to
catch up with the viewer at position Vfi before the movie
ends. Since the movie is started every l

n minutes, viewers at
the same relative position in different partitions have a
phase difference which is a multiple of l

n , e.g., viewers at
position Vl and Vli have a phase difference of i � ln minutes.
Let us denote the shortest and longest duration a viewer
must fast forward to have a hitio by �i

jumpl
and �i

jumpf
,

respectively. To make our derivation consistent with that of
P �hitw�, we express these two quantities in terms of Vf and
Vc as follows:

�i
jumpl

� Vli ÿ Vc �
il

n
� Vf ÿ Vc ÿ

B

n
; �17�

�i
jumpf

� Vfi ÿ Vc �
il

n
� Vf ÿ Vc: �18�

The probability of a hito at the ith partition ahead, denoted
by P �hitio�, is shown below.

Case 1. The ability to catch up with both viewers at
position Vli and Vfi (a complete hitio). In this case, a viewer at
position Vc is able to catch up with viewers at both, position
Vli and Vfi in the ith partition ahead:

Pc�hitiojFF; Vc; Vf� �
Z ��i

jumpf

��i
jumpl

f�x�dx; �19�

where the upper and lower limit of the integral are derived
based on (9), (17), and (18).

Case 2. The ability to catch up with a viewer at position

Vli but not all at the ith partition (a partial hitio). In

boundary cases, a viewer at position Vc may not be able to

catch up with all viewers between position Vli and Vfi .

However, as long as the viewer is able to catch up with a

viewer at position Vli , we will classify this event as a partial

hitio. As before, we define Vti to be the position of the last

viewer in the ith partition with which a viewer at position

Vc can catch up. Constraining Vc � ��Vti ÿ Vc� � l and
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Fig. 6. A hit in another partitions (hito). (a) A complete hitio and (b) a partial hitio.



Vt � Vti ÿ il
n , results in Vt � l���ÿ1�Vcÿil�n

� . Then, the probabil-

ity of a partial hit in this case is:

Pp�hitiojFF; Vc; Vf� �
Z ��VtiÿVc�

��i
jumpl

f�x�dx �
Z ��iln�VtÿVc�

��i
jumpl

f�x�dx �
Z lÿVc

��i
jumpl

f�x�dx:

�20�
Unconditioning on Vf . When unconditioning on Vf , we

consider a complete hitio and a partial hitio separately. For a

complete hitio, we uncondition on Vf using cases a and b as in

the derivation for event hitw. For event hitio, Vt �
l���ÿ1�Vcÿil�n

� :

P1�hitiojFF; Vc� �
Z Vc�Bn

Vf�Vc
Pc�hitiojFF; Vc; Vf�P �Vf�dVf ; �21�

P2�hitiojFF; Vc� �
Z Vt

Vf�Vc
Pc�hitiojFF; Vc; Vf�P �Vf�dVf : �22�

Observe that a viewer at position Vc can have a complete

hito, as well as a partial hito, depending on the value of Vf .

Given a viewer at position Vc, (22) gives the probability of a

complete hito for Vc � Vf � Vt. But, Vt < Vf < Vc � B
n can

also result in a partial hito; this is shown in (23) below.

Equation (24) corresponds to those viewers who can only

have a partial hito for all values of Vf , where the largest Vf

with respect to Vc is defined as Vt0 � l���ÿ1�Vcÿ��ilÿBn �
� .

P3�hitiojFF; Vc� �
Z Vc�Bn

Vf�Vt
Pp�hitiojFF; Vc; Vf�P �Vf�dVf ; �23�

P4�hitiojFF; Vc� �
Z Vt0

Vf�Vc
Pp�hitiojFF; Vc; Vf�P �Vf�dVf : �24�

Unconditioning on Vc. The range of Vc is calculated

using the same technique as in the hitw case to yield the

following four equations:

P1�hitiojFF � �
Z lÿ B�

n ÿ il�
n

0

P1�hitiojFF; Vc� P �Vc� dVc; �25�

P2�hitiojFF � �
Z lÿ il�

n

lÿ B�
n ÿ il�

n

P2�hitiojFF; Vc� P �Vc� dVc; �26�

P3�hitiojFF � �
Z lÿ il�

n

lÿ B�
n ÿ il�

n

P3�hitiojFF; Vc� P �Vc� dVc; �27�

P4�hitiojFF � �
Z lÿ �ilÿB��n

lÿ il�
n

P4�hitiojFF; Vc� P �Vc� dVc: �28�

Hence, the probability of resuming at the ith partition ahead

for a FF request, P �hitiojFF �, is calculated by summing (25),

(26), (27), and (28):

P �hitiojFF � �
X4

a�1

Pa�hitiojFF �: �29�

The number of partitions to which a viewer at position Vc
would be able to jump ahead, resulting in hito, depends on

which partition this viewer is before the initiation of the FF,

e.g., it would be impossible for a viewer in the last partition

of the movie to jump ahead to another partition. Also, the

existence of Vt limits the number of partitions to which a

viewer can jump ahead. To find the range of i, we refer back

to (25), which indicates that the upper limit on Vc, namely,

lÿ B�
n ÿ il�

n , must be greater than or equal to 0. Therefore,

we have to satisfy the condition lÿ B�
n ÿ il�

n � 0. Rearran-

ging the equation, we have:

i � n�l� w�� ÿ l�
l�

� �
: �30�

4.1.3 Fast-Forwarding to the End of a Movie

Recall that our goal is to maximize the probability that the

resources allocated for a VCR request will be released upon

resume to normal playback. Consider the case where a

viewer is at position Vc. Then, the longest FF duration is

given by ��Vt ÿ Vc�. As the pdf of a FF duration is defined in

the interval �0; l�, there is a nonzero probability that a viewer

issuing a FF request will fast-forward to the end of the

movie. In this case, the resources allocated to him/her in

Phase 1 can also be released. We define the probability of

fast forwarding beyond the end of a movie to be P �end�; it is

given by the following equation:

P �end� �
Z l

0

Z l

0

Z l

lÿVc
f�x� dx 1

l
dVc

�
Z l

0

Z l

lÿVc
f�x� dx 1

l
dVc:

�31�

Finally, P �hitjFF �, the probability of a hit given that the

VCR request is a FF operation is:

P �hitjFF � � P �hitwjFF � �
Xbn�l�w��ÿl�l� c

i�1

P �hitiojFF � � P �end�:

�32�
The first term of the RHS corresponds to the probability

of a hit within the same partition, i.e., the partition in

which the FF request was initiated, and the second term

corresponds to the total probability of hit in the ith

partition ahead, where i � 1. We assume that the

probability of a hit in partition i, where i is less than

the current partition is defined to be zero. The last term

corresponds to the probability of a fast-forward to the

end of a movie. All three terms sum up to the probability

of releasing the I/O resource upon resume from a

FF request. For VCR requests like rewind and pause,

we derive P �hitjRW� and P �hitjPAU� in a manner

similar to the derivation of P �hitjFF �. Due to limitation

of space, we do not repeat the derivations here. The

detailed derivations can be found in [16].
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4.1.4 The Expected Hit Probability P �hit�
Whenever a viewer issues a VCR request, there is some
probability that the request is of FF, RW, or PAU type; we
denote these probabilities by PFF , PRW , and PPAU ,
respectively. Note that the values of these probabilities
can be determined by measuring user behavior using
statistical techniques. Given these probabilities, we can
obtain the probability of a hit of a resume from a VCR
request to normal operation, P �hit�, which can be expressed
as follows:

P �hit� �
P �hitjFF �PFF � P �hitjRW�PRW � P �hitjPAU�PPAU :

�33�
The quantity, P �hit�, is a function of seven system

parameters. Specifically,

P �hit� � ��l; B; n; w;RFF ; RPB; RRW �:
Our goal is to determine the proper values ofB (the total size
of buffer space needed for normal playback) and n (the
number of I/O streams needed for normal playback) such
that P �hit� is greater than or equal to P �, which is a given
design parameter. To determine the values ofB andn, we use
the following two constraints: (C1)w � lÿB

n , (C2)P � � P �hit�.
The first constraint, �C1�, corresponds to the maximum
waiting time that a viewer might experience before the movie
restarts. The second constraint, �C2�, ensures that the average
probability of a hit conforms to a specified probability P �.
Substituting the system parameters into the two constraints
will yield two equations in two unknowns, namely,B and n.
By solving these two equations numerically, we can
determine the size of the system buffer, B, and the number
of I/O streams, n, which need to be preallocated for playback
of a popular movie in order to satisfy the performance (or
quality of service) requirements of P � and w. Although the
above formulation only deals with a single movie, we will
show how to apply our model to handle multiple movies in
solving the system sizing problem in Section 6.

4.2 Model Verification

In this section, we verify our mathematical model using
simulation. We first describe the system parameters used in
this section. The arrivals of viewer requests for a popular
movie are modeled as a Poisson process with a rate �. As
VCR requests are usually of relatively short duration as
simple cases for illustration purposes, we use an exponen-
tial distribution and a skewed gamma distribution to
represent the duration of the VCR functions.

In the following examples, the rates of fast forward and
rewind, RFF and RRW , are three times that of normal
playback, RPB, and the movie length l is equal to
120 minutes. In the first three experiments, we simulate a
system with two types of requests, normal playback and one
of the VCR functions, namely, either fast forward with
viewing (FF), or rewind with viewing (RW), or pause
(PAU). In the last experiments, the requests can be of type
normal playback or any of the three VCR functions, where
the probability of a request for a VCR function r is equal to
Pr, and r can be FF, RW, or PAU. In these experiments, we

vary both the arrival rate of requests and the mix of FF, RW,
and PAU. Also, in each experiment, we vary the maximum
waiting time, w. The probability of a hit is plotted as a
function of the number of partitions, n, where each curve
corresponds to a specific value of the maximum waiting
time, w. The results obtained from our mathematical model
and from simulations are plotted in Figs. 7a, 7b, and 7c.
These figures illustrate both the theoretical and the
simulation results where the only type of a VCR request
issued is either FF, RW, and PAU, respectively. Results for a
mix of all three VCR requests plus requests for normal
display are depicted in Fig. 7d. These figures illustrate that
the theoretical results, for the most part, closely match the
simulation results, which verifies the accuracy of our
mathematical model.

5 RESOURCE ALLOCATION FOR VCR MODE

In this section, we present the computation of resources
needed to handle VCR requests so as to satisfy the
performance level defined by (6) and (7). Notice that � is
defined by �v�v=m, and it denotes the fraction of time any
one of the reserved I/O resources is busy. Therefore, we
aim to decrease the value of �. Since 1) the total VCR arrival
rate to the system, �v, is beyond our control (unless we want
to lower the quality of service) and 2) maximizing the
number of I/O resources for VCR functionality, m, is not
favorable because it implies a more expensive system; we
are going to reduce � by minimizing �v. If we examine �v in
(2), we see that �v is comprised of two components. The first
component cannot be reduced because it denotes the mean
time a viewer will spend in the fast forward, rewind, or
pause operation whenever the viewer issues a VCR request,
which depends solely on the users' behavior. For the second
component, it denotes the expected time a viewer spends
holding onto additional resources, allocated to him when he
resumes to normal playback before he can rejoin an existing
partitions, if normal playback is expected to resume
immediately. Notice that this amount of time greatly
depends on how the system handles the fallen out viewers.
So, in devising methods for how to handle VCR requests,
we aim to implement a method which minimizes the value
of �hold. In the remaining section, we will present two
schemes for handling VCR requests, both of which ensure
that the resumption to normal playback from a VCR
operation is immediate and show the derivations of the
corresponding values of �hold.

Scheme 1 (No merging). If a viewer cannot resume at
any of the existing partitions after a VCR request, i.e.,
resume with a miss, the system will not do anything to
facilitate the release of resources. In other words, for these
viewers to resume to normal playback without any delay,
they will have to continue utilizing I/O resources (allocated
during the VCR phase) after the resume, until they finish
viewing the movie. Assume that each point of the movie
has an equal probability of being the point of resume, we
obtain the value of �hold by calculating the expected time to
hold on to the VCR resource when the viewer resumes with
a miss. Thus, we have �hold � l=2 and this value also serves
as an upper bound on �hold.
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Scheme 2 (Merging through piggybacking and buffer-
ing). This scheme is to reduce the value of �hold by applying
the techniques of adaptive piggybacking and buffering. The
adaptive piggybacking approach [1], [10] alters display rates
of requests in progress, for the purpose of merging their
respective I/O streams into a single stream, which can serve
the entire group of merged requests. After two viewers are
ªmerged,º one of them can release his/her resources. Thus,
the idea is similar to that of batching except the grouping is
done dynamically while the displays are in progress so no
latency is experienced by the user.

Using adaptive piggybacking, we will alter the display
rate of the fallen out viewer such that this viewer can
eventually catch up with either the partition ahead or the
partition behind. In particular, the viewer will either slow
down to enable a catch-up by the partition behind or speed
up to catch up with the partition ahead, depending on
which partition he is closer to. In this case, the probability of
releasing the allocated VCR resources before the viewer
finishes the movie can be increased, thereby decreasing the
value of �hold.

Fig. 8 illustrates two scenarios where the viewer
resuming with a miss at position Vc of the movie and
consumes the content of the movie at altered rates as

compared to the viewers in the partitions, who are
consuming movie content at the normal rate. Let us denote
the normal rate of consumption by RPB. Fig. 8a illustrates
that the fallen out viewer will speed up the consumption at
a rate of �1� f�RPB in order to catch up with the last
possible viewer, Vl, in the partition ahead. Fig. 8b illustrates
that the viewer will be consuming the movie content at a
slower rate of �1ÿ f�RPB in order to enable a catch-up by
the first possible viewer, Vf , in the partition behind. In each
case, the elapsed movie time, Ct, until a join of the fallen out
viewer with either of the partitions can be accomplished
through adaptive piggybacking is 1

f �, where � is the initial
distance between Vc and the target viewer.

Since the calculation of �hold depends on different values
of Ct for viewers resuming at different positions of the
movie, it would be desirable to further reduce this quantity.
Thus, in addition to adaptive piggybacking, we can also
make use of the buffering technique to reduce the catch-up
time. The motivation here is that a viewer resuming with a
miss ªnearº to an end of an existing partition, can reduce
his catch-up time by ªbridgingº the gap between him and
the partition through the use of additional buffer space, i.e.,
to merge with that partition earlier. After the merge, the
allocated I/O stream can be released since the partition and
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Fig. 8. Catch-up through adaptive piggybacking when the viewer resumes with a miss.

Fig. 7. Comparing simulation and theoretical results for normal playback and various VCR requests wherein the interarrival times are exponential

and 1=� � 2 minutes; duration of VCR requests is drawn from a skewed gamma distribution with a mean = 8 minutes (� � 2;  � 4). (a) Only fast-

forward VCR request, (b) only rewind VCR requests, (c) only pause VCR requests, and (d) all types of VCR requests with PFF � 0:2; PRW and



the additional buffer space will now be treated as one
extended partition. This additional buffer space can be
gradually released by continuing to apply adaptive piggy-
backing until the viewer can join in the original (i.e., rather
than the extended) partition. Furthermore, viewers resum-
ing with a miss ªfarº from the ends of the partitions can
perform adaptive piggybacking until they are ªclose
enoughº to the partition to utilize additional buffer space
in order to perform an early merge (as suggested above). In
this case, the catch-up time, or Ct, can be further reduced
and by using buffering, the allocated I/O streams can be
released as soon as possible upon resume, thereby enhan-
cing the availability of I/O streams for other VCR requests.
The combined use of buffering and adaptive piggybacking
techniques is accomplished in the following manner.

We define a threshold of k minutes (ahead of behind a

partition) within which the use of buffering will enable a

merge with the partition. Also, adaptive piggybacking will

be used simultaneously to further facilitate the joining with

the partition. Thus, we divide the handling of resume with a

miss into two cases, namely, resume within the threshold k

and resume beyond that threshold.

Case A: Resuming within the threshold (� � k). When

the viewer resumes with a miss at a position which is

within the k minute threshold ahead or behind a partition,

we will use � minutes of buffer space to join the viewer

with the existing partition. Since that viewer is now

consuming movie frames that have either not been fetched

yet into the buffer (in the case of a resume within k minutes

ahead of a partition) or have been already replaced (in the

case of a resume within k minutes behind a partition), we

will have to continue utilizing the I/O stream until the

partition and the additional buffer space can be merged

together as a single extended partition. At this point, the

merge is said to be completed and the I/O stream allocated

to the viewer can be released. Meanwhile, we will

1) continue performing adaptive piggybacking so the

viewer can continue to catch up with the original partition

and 2) release the additional buffer space gradually.

If the viewer resumes at a point R that is � minutes in

front of a partition, he will continue to use the allocated I/O

stream to fetch the movie frames, which will be retained in

the additional buffer space. The maximum size of the

additional buffer space is determined by � since the first

viewer in the partition behind takes � minutes to reach

point R. Similarly, the maximum size of additional buffer

space and the time needed to enable a merge for a viewer

resuming behind a partition is given by �=�1� f� minutes

as the viewer is adopting a slightly faster rate with respect

to the normal playback rate.

Given a viewer at position Vc of the movie, the average

time to release the I/O stream for a resume ahead of the

partition and a resume behind the partition is given byR k
��0 � d�

lÿB
n

and
R k

��0
�

1�f
d�
lÿB
n

, respectively, where lÿB
n is the

length of the gap between partitions. Therefore, to calculate

the average time to release the I/O stream, we further

uncondition by taking the probability of resuming at any

position of the movie to be equal to 1=l. Here, we separate

the calculation into two cases. The first case corresponds to

a viewer resuming at a position which is � units behind a

partition, that is, this viewer will catch up with Vl in the

partition ahead. Therefore, the average catch-up time is

given by:

T1k �
n

lÿB
� � 1

l

� �
1

1� f

� �

Z lÿ k
1�f�k� �

Vc�0

Z k

��0

�d�dVc �
Z l

Vc�lÿ k
1�f�k� �

Z lÿVc
2

��0

�d�dVc

" #
:

�34�

The first term corresponds to the average time to catch up

with the partition ahead when resuming at any position of

the movie from the 0th position to the lÿ k
1�f � k
� �� �

th

position. The second term is needed for handling boundary

case of resuming at any position within the range of the

lÿ k
1�f � k
� �� �

th position to the end of the movie. Therefore,

the distance of the resuming viewer from the partition ahead

only ranges from 0 to lÿVc
2

ÿ �
minutes.

The second case corresponds to a viewer resuming at a
position of � units ahead of a partition. This viewer will
slow down the consumption to enable a catch-up by Vf in
the partition behind. The average time to release the I/O
stream is calculated in a similar manner and is given by:

T2k �
n

lÿB
� � 1

l

� �

Z lÿk

Vc�0

Z k

��0

�d�dVc �
Z l

Vc�lÿk

Z lÿVc

��0

�d�dVc

� �
:

�35�

Case B: Resuming beyond the threshold (� > k). When
the viewer resumes at a position which is more than
k minutes away from a partition, the viewer will perform
adaptive piggybacking [1], [10] until the separation distance
reduces to k minutes. At this point, we can handle the
situation as in previous cases. For resuming at a position
beyond the threshold, we consider the average time for
releasing the I/O stream through the following three cases:

Case 1: Catch up with Vl in the partition ahead. The
viewer resuming at position Vc of the movie will speed up
the consumption of movie frames at a rate of �1� f�RPB to
catch up with the last viewer in the partition ahead. The
time elapsed before a merge can be accomplished is
��ÿ k�=f , which is the time needed to decrease the
distance between the viewer and the partition to k minutes.
At this point, k=�1� f� more minutes are needed for the
merge to complete. This scenario is illustrated in Fig. 9.
Therefore, the total time, Ct, needed to release the I/O
stream is given by ��ÿ k�=f � k=�1� f�. However, Ct must
not be greater than the time for Vl to finish the movie;
otherwise, it simply means that the viewer cannot release
the allocated I/O resource before finishing the movie. In
other words, Ct must not be greater than �lÿ Vl�. In this
case, the following inequality must be satisfied:
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� �
lÿ Vc ÿ k 1ÿ 1

f�1�f�

� �

1
f � 1

: �36�

Case 2: Catch up with Vf in the partition behind. The

viewer resuming at position Vc of the movie will slow down

the consumption of movie content at a rate of �1ÿ f�RPB to

facilitate the catch-up by the first viewer, Vf , in the partition

behind, as illustrated in Fig. 10. Using the same calculations

as in the above case, we can see that the time elapsed before

a merge can be accomplished and must not be greater than

the time for Vf to finish the movie, i.e.,

1

f
��ÿ k� � k � lÿ �Vc ÿ��:

However, if the time taken to merge with the partition

behind is greater than that taken to finish the movie by Vc,

we cannot benefit from performing adaptive piggybacking.

Therefore, the following inequality has to be satisfied

instead:

� � lÿ Vc ÿ k 1ÿ 1

f

� �� �
f: �37�

Case 3: Cannot catch up with either of partitions. In this

case, viewer Vc cannot perform a merge before he finishes

the movie. Then, the time elapsed before the I/O resources

can be released and is given by lÿ Vc.
The average time to release a resources, given that the

viewer is at position Vc of the movie, is computed using

(38). The first term below corresponds to the average time a

viewer takes to catch up with the partition ahead while the

second term below corresponds to the average time a

viewer takes to enable a catch-up by the first possible

viewer in the partition behind. In this equation, k1 denotes

the largest distance from Vl in the partition ahead where a

catch-up to the partition ahead can be accomplished before

the end of the movie and k2 denotes the largest distance

from Vf in the partition behind where a catch-up from

behind is still possible. The last term of the equation

corresponds to the average time spent to release an I/O

resource when a viewer cannot perform adaptive piggy-

backing in order to enable a catch-up with either of the

partitions:

Z k1

��k

1

f
��ÿ k� � k

1� f

� �
d�
lÿB
n

 !

�
Z k2

��k

1

f
��ÿ k� � k

� �
d�
lÿB
n

 !

� �lÿ Vc�
lÿB
n ÿ k1 ÿ k2

lÿB
n

 !
:

�38�

To find the average time to release resources at any

position of the movie, we uncondition on Vc in the three

cases as stated above, which corresponds to the three terms

given in (38). The range of Vc is determined by the range of

�. When the viewer resumes at a distance of lÿB2n from either

of the partitions, i.e., half way between two partitions, it

takes the same amount of time for him to join either the

partition ahead or the one behind. In each of the three cases,

we determine the range of Vc by setting the inequality: lÿB2n �
� to equality for Cases 1 and 2 using (36) and (37),

respectively.
For Case 1:

Vc � lÿ k
1

f�1� f�

� �
ÿ 1

f
� 1

� �
lÿB

2n

� �
� �1: �39�

For Case 2:

Vc � lÿ k 1ÿ 1

f

� �
ÿ 1

f

� �
lÿB

2n

� �
� �2: �40�

Let us consider the unconditioning of Vc in (38) term by

term.
Case 1. For Vc � �1, this corresponds to the viewer

resuming at the maximum distance of lÿB
2n from the end of

the partition where a merge with the partition ahead can

still be accomplished before the end of the movie. However,

for Vc > �1, the maximum distance from the end of the

partition is given by (36). Thus, we have the following:

T1 �
n

lÿB
� � 1

l

� � Z �1

Vc�0

Z lÿB
2n

��k

1

f
��ÿ k� � k

1� f

� �
d�dVc

"

�
Z lÿ k

1�f�k� �
�1

Z 1ÿVcÿk 1ÿ1
f� �

1
f
�1

��k

1

f
��ÿ k� � k

1� f

� �
d�dVc

3
75:

�41�
Case 2. The equation given below is derived in the same

manner as in Case 1 with reference to (37) and the range of

Vc defined in (40):
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Fig. 10. Slow down to enable a catch-up by Vf until the distance between

the two is reduced to k.

Fig. 9. Speed up to catch up Vl until the distance between the two is

reduced to k.
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n
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l

� � Z �2

Vc�0

Z lÿB
2n

��k

1

f
��ÿ k� � k

� �
d�dVc

"

�
Z lÿk

Vc��2

Z lÿVcÿk 1ÿ1
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��k
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f
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d�dVc

#
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�42�

Case 3. The following equation is calculated with respect
to (34), (35), (41), and (42). Making use of the upper bound
of � in each equation and uncondition on the correspond-

ing values of Vc, the average time to release the I/O stream
when adaptive piggybacking cannot be performed to
facilitate the joining of partitions is given by the following
equation:

T3 �
n

lÿB
� � 1

l

� �

Z �2

Vc��1

�lÿ Vc�
lÿB
n
ÿ lÿB

2n
ÿ

1ÿ Vc ÿ k 1ÿ 1
f

� �
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0
@
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A dVc
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dVc
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�43�
Thus, the average time to release the I/O stream for

Case 3 is given by (43). The first two terms are derived with

reference to (41) and (42); the last two terms are derived

with reference to the second term in (34) and (35).
Therefore, the average time to release the I/O stream,
�hold, in this scheme, is given by the following equation:

�hold � T1k � T2k � T1 � T2 � T3: �44�

5.1 Verification

In the previous section, we have derived the equations for
calculating the value of �hold for Scheme 2. These equations
help to calculate the overall time the viewers will hold on to
the I/O resources before they can join an existing partition.
In this section, we will verify our derivation using
simulation. We carry out our simulation using two popular
movies, 1 and 2, with movie length l being 60 and 90
minutes, respectively. We also set the maximum time that
the viewers can wait for the start of the movies, w to be 0:5
and 0.25 minute, respectively. The duration of VCR requests
of movie 1 and 2 are drawn from an exponential
distribution with a mean equal to five minutes and
two minutes, respectively. Let the performance requirement
of P � of each movie be equal to 0:5. We apply our
mathematical model to calculate the amount of buffer and
I/O resources for normal playback; these are summarized
in Table 2.

The arrival rate of viewers into system, �, is 15=min and
the simulation is run for 50,000 viewers. The average time
for a fallen out viewer to hold on to the allocated resources,
(�hold), is calculated for different values of the threshold k.
The respective values of �hold obtained by simulation and
through our derivation of both movies are plotted in Fig. 11.
From Fig. 11, we can see that the calculated values of �hold
match closely the simulation results, which verifies our
derivation. Yet, the values of �hold obtained from simulation
are smaller than the calculated counterparts, which can be
explained as follows: In our derivation, we try to calculate
the time taken for the viewers to join an existing partition.
However, in the simulation, there also exist other fallen out
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TABLE 2
Parameters of the Two Popular Movies for Simulation

Fig. 11. Simulated and calculated results of �hold for different values of the threshold k. (a) Movie 1 and (b) movie 2.



viewers trying to piggyback on an existing partition and
they may have already formed an extended partition. These
extended partitions reduce the time for other fallen out
viewers to join an existing partition, which explains why
our derivation slightly overestimates the values of �hold as
compared with the simulated values.

6 APPLICATIONS TO SYSTEM SIZING

Let us illustrate how we apply the mathematical model
described in Sections 4 and 5 to making system sizing
decisions. In determining the amount of resources required
for a VOD system, we divide the system resources into two
categories. The first category of resources is for handling
normal playback and is calculated by applying the
mathematical model described in Section 4, while the
second category of resources is for servicing VCR requests
and is calculated by the model described in Section 5. Our
goal is to optimize the performance of a VOD system by
reducing the demand of system resources while providing
an acceptable level of quality of service to the viewers. The
total system cost is determined by the amount of buffer
space and I/O streams (both for servicing normal and VCR
playbacks) needed to ensure a required level of perfor-
mance. Thus, the overall cost of resources will be a function
of the costs for 1) memory buffers per minute of a movie
denoted by Cb and 2) an I/O stream denoted by Cn.

Although the two categories of resources serve different
purposes, the resources allocated for normal playback will
directly affect the amount of resources required for
handling VCR requests while the amount of resources for
servicing VCR requests will affect the QoS. Thus, in
calculating the system resources required for normal play-
back, we also consider the behavior of viewers in issuing
VCR requests. This is achieved by ensuring a minimum
probability of a hit, P �: Whenever a viewer resumes from a
VCR request, we can ensure that the VCR resources will not
be consumed for normal playback with a probability greater
than or equal to �1ÿ P ��. Therefore, if we can design our
system such that the probability of a hit upon resume from
a VCR request is high, then the amount of resources which
need to be reserved for serving VCR functions can be
reduced. If the probability of hit is very small, it is unlikely
that the viewer can release the I/O stream upon resume
until he finishes viewing the whole movie. However, to
ensure a high probability of a hit requires more resources to

be reserved for normal playback, which also implies a
higher system cost. Therefore, it is very important to
determine the optimal probability of a hit which will yield
a system with the lowest overall cost, but one that still
satisfies the required performance and quality of service
levels. In the remaining section, we will show how to
determine the cost of resources for normal playback as well
as those for servicing VCR requests.

6.1 Cost of Resources for Normal Playback

For a movie of length l and a given maximum waiting time,
w, we can calculate the amount of resources needed for
normal playback as follows: Using our mathematical model,
we calculate the corresponding hit probability for each
possible number of I/O streams needed for normal play-
back, n (where n � 1; 2; . . . lw ). The respective buffer size, B,
for each n can be obtained by using (10). We can then
determine the cost of resources for normal playback, CPB,
for each �B; n� pair, by solving Cb B� nCn, which on
rearranging gives CPB � Cn�'B� n�, where ' � Cb

Cn
and can

be viewed as a price ratio of one minute of memory buffer
to one I/O stream. For each possible �B; n� pair, there is a
corresponding probability of a hit, P �, and cost, CPB. We
express each possible configuration of resources for normal
playback as a PB-tuple, which is in the form of
�B; n; P �; CPB�.

6.1.1 Experiment 1

A movie is of length, 60 minutes, and the maximum time
a viewer is willing to wait before a movie starts is 30
seconds. Assume that the time a viewer spends in a VCR
function follows an exponential distribution with the
mean equal to 1 minute of movie time. By applying our
mathematical model, the respective probability of a hit is
plotted in Fig. 12a. We also assume that a 2G-SCSI disk is
used in this experiment and that the cost of each disk is
around $700 and that its transfer rate is 5 MB/sec. The
data rate of an MPEG-2 stream is assumed to be 4 Mbps,
and the cost of 1 MB of main memory is $24. We
calculate Cb and Cn as follows: Cb � 60s�4Mbps

8 � $24 � $720
and Cn � US$700

5MBytes=sec�8=4Mbps � $70. Given the above equa-
tions, we can see that the amount of buffer space
required to store one minute of an MPEG-2 movie is
approximately 10 times as expensive as one I/O stream,
i.e., ' � 10. The cost for normal playback is plotted in
Fig. 12b. From Fig. 12a, we can see that decreasing the
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Fig. 12. Calculating the resources for normal playback. (a) The relation between the probability of hit and number of I/O streams required for normal

playback. (b) The relation between the cost of resources for normal playback and the probaility of a hit.



number of partitions will increase the probability of a hit.
More buffer space is utilized to compensate for the saved
I/O streams, which means that a larger portion of the
movie will reside in the buffer space thereby increasing
the probability of a hit. However, we can see from Fig. 12b
that the cost of resources for normal playback also increases
with the probability of a hit. So, it may seem that adopting a
lower probability of hit will yield a lower system cost. We
will show, in the next experiment, that this is not true
because we are trying to reduce the overall system cost. In
determining how much resources need to be allocated for
normal playback, we have to consider the overall system
cost to obtain the required P �.

6.2 Cost of Resources for VCR Functions

As mentioned in Section 3.3, the provision of VCR
functionality should ensure the satisfaction of a certain
performance level, given by (6), (7), and (8). As in the
normal playback case, we express each possible configura-
tion of resources for servicing VCR requests as a VCR-tuple,
which is in the form of �Bv; m; �v; �V CR; 1ÿ P �; Cv�, where
Cv is the cost of resources needed for servicing VCR
requests.

6.2.1 Experiment 2

Consider the system in Experiment 1. The system will make
use of adaptive piggybacking only to facilitate the joining of
fallen out viewers with existing partitions. In other words,
we will adopt Scheme 2 but set the threshold value k � 0.
We also assume that the average waiting time for servicing
any VCR request is less than three seconds. This perfor-
mance level is chosen because the waiting time is a measure
that is noticeable to the viewers as compared to the queue
length and probability of waiting. The arrival rate of VCR
requests, �v is assumed to be 200/min. For a movie of
60 minutes, the expected number of viewers in the system is
900. Therefore, each viewer will, on average, issue a VCR
request once every 4:5 min. We will show later in this
section the effect of altering VCR arrival rates. Fig. 13 shows
the relationship between the cost of resources for servicing
VCR requests and the probability of a hit. From Fig. 13, we
can see that the cost of resources decreases with the increase
of probability of a hit, which is opposite to the effect
observed in Fig. 12b. A lower probability of a hit will
increase the average time a viewer spends in holding on to
the additional resources, which implies that more resources
are needed to be reserved for servicing VCR requests.
Therefore, in making system sizing decisions, we have to

consider both the cost of resources for normal playback as
well as the cost of resources for servicing VCR requests (the
overall system cost) before we can determine how much
resources are to be allocated for normal playback and for
servicing VCR requests.

6.3 Overall System Cost

The overall system cost is calculated by summing up the
cost of 1) resources for normal playback and 2) resources for
servicing VCR requests. Let us describe how to determine
the optimal system configuration by considering the overall
system cost. The overall system costs for a system using
Scheme 1 and Scheme 2 are compared. In addition, we also
show that our proposed mathematical model, together with
Scheme 2 adopted for servicing VCR requests, will yield a
lower cost as compared with systems using pure I/O and
pure buffer space resources. Last, we describe how to
choose the right value of a hit probability, P � and of the
threshold k.

Assume that we want to determine the amount of system
resources which need to be allocated for a single movie, we
have to calculate the overall system cost in the following
manner:

Step 1. Generate all the PB-tuples by determining all the
possible configurations for normal playback by applying
the model presented in Section 4 and calculate the
respective hit probabilities and cost.

Step 2. Obtain �hold for each of the configurations
generated in Step 1 using (44). With reference to the hit
probability in each PB-tuple obtained in Step 1, we can �v
by (2). Then, we can determine a corresponding VCR-tuple
by applying the M=M=m queue model.

Step 3. For each pair of PB-tuple and VCR-tuple, obtain
the overall system cost, C, by summing up CPB in the PB-
tuple and Cv in the VCR-tuple.

Step 4. The optimal choice of system resources allocation
is the tuple pair with the lowest cost.

6.3.1 Experiment 3

Consider the system in Experiment 1 and 2. The total cost of
the system is plotted against the number of I/O streams
needed for normal playback and is shown in Fig. 14. In this
figure, we can see that the overall cost of the system
decreases initially for the smaller number of I/O streams
and increases toward the larger number of I/O streams. The
system yields the lowest cost when the number of I/O
streams for normal playback lies within the range of
20ÿ 30. With reference to Fig. 12a, the probability of a hit
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Fig. 13. Cost of resources for servicing VCR requests. Fig. 14. Total cost of the system.



lies approximately within the range of 0:75ÿ 0:85. This
illustrates that in determining the proper amount of
resources to be allocated for normal playback, we should
also consider the cost of resources for VCR requests. The
allocation of corresponding resources should yield a system
with the lowest cost while satisfying a predefined perfor-
mance level.

6.4 Comparison of Different Schemes

Let us now demonstrate the effectiveness of our approach
by running several experiments to determine the overall
system cost. First, we incorporate Scheme 1 and Scheme 2
into our normal playback model, where their total system
cost is plotted against different arrival rates of VCR requests
while other parameters remain the same as those described
in the previous experiments. Second, we examine two other
systems, namely, a system using only I/O streams for
normal playback (referred to as pure I/O hereafter) and a
system using only buffer space for normal playback
(referred to as pure buffer hereafter). These are the two
extreme cases where only I/O streams or only memory
buffers are used for normal playback. We aim to show that
a proper balance between I/O and memory resource will
yield a system with a lower cost.

6.4.1 Experiment 4

In this experiment, we determine the overall system cost of
each scheme for different arrival rates of VCR requests,
ranging from very low arrival rates to very high arrival
rates. We assume that the arrival rate of a normal playback
request is 15=min, so that the expected number of viewers in
the system is given by 15� 60 � 900. We plot the overall
system cost of each scheme against the number of I/O
streams needed for normal playback with the average VCR
arrival rates �v of 15=min, 100=min, 200=min, and 400=min in
Figs. 15a, 15b, 15c, and 15d, respectively. From these
figures, we can see that different arrival rates will yield a
system with the lowest cost occurring at different positions
on the cost curve. For Scheme 1, except for very low VCR
arrival rates, the minimum cost is always located at the
smallest value of I/O streams, that is, with the largest
amount of buffer space for normal playback. This can be
explained as follows: Recall that �hold for Scheme 1 is l

2,
which is 30 minutes in this case. That is to say, if the mean
time for a fallen out viewer to hold on to the additionally
allocated resource is large, more resources need to be
reserved for servicing VCR requests and handling the fallen
out viewers. This amount of resources becomes so large that
it is more beneficial to allocate more buffer space for normal
playback, such that the probability of a hit can be increased.
By increasing the probability of a hit, the mean time a
viewer spends in utilizing the additional resources can be
reduced, and we can make sure that the reserved resources
are used for servicing VCR requests rather than servicing
the normal playback of the fallen out viewers. The same
rational applies to Scheme 2 when the VCR arrival rate is
very high. On the contrary, for low VCR arrival rates in
Scheme 2, the lowest cost is located at the largest value of I/
O streams, that is, when the least amount of buffer space is
used for normal playback. A low arrival rate of VCR
requests means that not many viewers will be issuing VCR

requests. Even if the viewers fall out of a partition upon
resume, Scheme 2 can facilitate the joining of these viewers
with existing partitions and, in turn, the release of allocated
resources in a very short time. Therefore, only a small
amount of resources is needed for servicing VCR requests
and handling the fallen out viewers. In this case, using a
large amount of buffer space for normal playback to ensure
a larger probability of a hit is not beneficial.

When we compare Scheme 1 and Scheme 2, we can see that
Scheme 2 always outperforms Scheme 1 in the sense that the
minimum cost for a system using Scheme 2 is more smaller
than that of a system using Scheme 1. To further demonstrate
the effectiveness of Scheme 2, we plot the percentage of total
system cost saved by using Scheme 2 as compared to using
Scheme 1. The percentage saved through Scheme 2 for
different arrival rates, as shown in Fig. 16 is calculated by
comparing the minimum overall cost in each of the two
schemes, with reference to Scheme 1. The percentage saved
by Scheme 2 as compared to Scheme 1 ranges approximately
from 13 percent to as high as 70 percent.

6.4.2 Experiment 5

In this experiment, we compare the overall system cost of
our proposed system with that of pure I/O and pure buffer.
We assume that the arrival rate of normal playback requests
is 15=min, thus, a total of 900 I/O streams are needed for
normal playback in the pure I/O case. The rate of fast-
forward or rewind is assumed to be three times faster than
that of normal playback. The percentage of system cost
saved by Scheme 2 for the case where the total cost is
dependent on the VCR requests arrival rate is plotted
against the different VCR requests arrival rates and is
shown in Fig. 17a, while the independent case is plotted in
Fig. 17b. The percentage saved is determined by the
difference between the minimum cost of Scheme 2 and that
of the pure I/O and the pure buffer schemes.

As shown in Fig. 17a, the cost curve decreases rapidly as

the VCR arrival rate increases and nearly levels off for very

high VCR arrival rates. Scheme 2 outperforms the pure I/O

method by at least approximately 21 percent and can

outperform it by as high as 83 percent. Scheme 2 can also

outperform the pure buffer scheme by upto 75 percent for low

to moderate VCR arrival rates, although beyond a VCR

arrival rate of around 220=min, pure buffer has a lower cost

than Scheme 2, which is demonstrated by a negative

percentage in the graph. As for the independent case

illustrated in Fig. 17b, the cost curves also decrease rapidly

at first from around 80 percent until the VCR arrival rate

reaches around 200=min, after which the decrease is slowed

down. In contrast with the dependent case, both the pure I/O

and the pure buffer method perform better than Scheme 2

when the VCR arrival rate increases beyond a certain point.

The percentage saved becomes negative when the VCR

arrival rate increases to around 200=min and 290=min for

pure buffer and pure I/O, respectively. Furthermore, instead

of leveling off as in the dependent case, the negative

percentage continues to drop for very high VCR arrival rates

because when the VCR arrival rate increases, more and more

resources are needed in Scheme 2, which means the cost also
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increases. On the other hand, since the cost of pure I/O

and pure buffer is independent of the VCR arrival rate,

this means that their cost is fixed, thereby resulting in the

continuous decrease in the percentage saved. We also plot

the same graphs for two more system settings, where the

movie is of length 90 min and 120 min; these are shown in

Figs. 18 and 19, respectively. From these figures, we can see
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Fig. 15. Total cost of system for Scheme 1 and Scheme 2 for different VCR arrival rates. (a) Average arrival rate of VCR requests � 15=min.

(b) Average arrival rate of VCR requests � 100=min. (c) Average arrival rate of VCR requests � 200=min.

(d) Average arrival rate of VCR requests � 400=min.



that the percentage saved by Scheme 2 becomes more

significant as the movie length increases.
The percentage saved by Scheme 2 is more significant at

lower VCR arrival rates because for systems using pure I/O

or pure buffer method, the cost is dominated by the
resources allocated for normal playback. However, as the
VCR arrival rate increases, the requirement of VCR I/O
resources becomes larger and larger, until it becomes the
dominant factor in the case of Scheme 2. In spite of that, we
can claim that Scheme 2 outperforms the pure I/O and pure
buffer methods in a VOD system. This can be explained as
follows: Consider the movie of length 60 min and the
range of VCR arrival rates where the percentage saved by
Scheme 2 is positive, i.e., at most 200=min, where the
expected number of viewers in the system is 900 in this
example. That means that approximately 1

4 of the viewers
are doing VCR functions per minute or the viewers are
issuing VCR requests once every 4:5 minutes on the
average, and this is a very high VCR rate for viewing
movies. In a VOD system, relatively less time will be
spent in doing VCR functions as compared with normal
playback. For a movie of length 60 minutes, we expect
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Fig. 18. Percentage of system cost saved by Scheme 2 as compared to pure I/O and pure buffer for a movie of length of 90 min. (a) VCR arrival rate

dependent and (b) VCR arrival rate independent.

Fig. 19. Percentage of system cost saved by Scheme 2 over pure I/O and pure buffer for a movie of length of 120 min. (a) VCR arrival rate

dependent and (b) VCR arrival rate independent.

Fig. 17. Percentage of system cost saved by Scheme 2 over pure I/O and pure buffer. (a) VCR arrival rate dependant and (b) VCR arrival rate

independent.

Fig. 16. Percentage of system cost saved by Scheme 2 as compared to

Scheme 1.



the range of VCR arrival rates to be far less that 200=min.
In this region, we can have a substantial reduction in the
cost of resources by using Scheme 2. In addition, the
percentage saved as compared to the pure I/O method is
greater than the percentage saved as compared to the
pure buffer method, which means that the cost of using
pure buffer is lower than that of using pure I/O. This is
mainly due to the fact that the cost of the pure I/O
method will depend on the arrival rate of normal
playback requests, whereas that of pure buffer is fixed
for any arrival rate. As both the pure I/O and the pure
buffer method require the same amount of VCR resources
(since they have the same �v in the dependent case), the
main difference lies only in the cost of normal playback
resources. Therefore, the pure I/O method will have a
lower cost than the pure buffer method for smaller values
of arrival rates.

6.4.3 Experiment 6 (Different Values

of Threshold Buffer k)

As mentioned before, the use of additional buffers can
further facilitate the joining of the fallen out viewer with
existing partitions. In this experiment, we plot the overall
system cost against different values of k for different arrival
rates, as depicted in Fig. 20. For different values of k, we
determine the corresponding values of �hold and calculate
the lowest cost of supporting such a system. We plot the
total cost of the system with different values of k by varying
the VCR arrival rate. In this figure, we can see that the
minimum point of the cost curve occurs at different values
of k for different values of VCR arrival rates. For smaller
VCR arrival rates, the minimum cost occurs at the smallest
k. When VCR arrival rate increases, the minimum cost shifts

to larger values of k. For large VCR arrival rates, the
minimum cost occurs at the largest k. This means that the
use of more buffer space is beneficial when the VCR arrival
rate is high. The use of buffer space has reduced the time for
the viewers to join an existing partition, which implies that
fewer I/O streams are needed for servicing VCR requests.
For a system with very high VCR arrival rates, we can
anticipate that a large amount of I/O streams are needed for
handling VCR requests. Although the use of additional
buffer space will impose more cost on the VCR resources,
this cost can be compensated by the reduction in I/O
streams. This reduction becomes very significant when the
VCR arrival rate is high. On the other hand, if the VCR
arrival rate is small, only a small amount of additional I/O
streams are needed. Thus, the use of additional buffer space
cannot be compensated for by the cost of the I/O streams
saved. Therefore, for systems with small VCR arrival rates,
using only I/O streams for servicing VCR requests can yield
a lower cost.

6.4.4 Experiment 7: Different Values

of Memory-I/O Cost Ratio, '.

In the previous experiments, we have assumed that the cost
of memory buffers per minute of a movie is approximately
10 times that of one I/O stream needed to retrieve that
movie from the disk subsystem. However, as technological
changes occur, the cost of memory may decrease faster (or
slower) than the cost of I/O bandwidth; thus, the minimum
cost might occur at other positions on the cost curve, as
illustrated in Fig. 21. In this experiment, we vary ' as
follows: 3; 8; 10, and 11. Figs. 21a and 21b illustrate the
situation where the cost of the memory decreases faster
than the cost of I/O bandwidth while Fig. 21d illustrates the
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Fig. 20. Total system cost for different values of k. (a) VCR arrival rate � 15=min. (b) VCR arrival rate � 100=min. (c) VCR arrival rate � 200=min.

(d) VCR arrival rate � 400=min.



situation where the cost of I/O bandwidth decreases faster
than the cost of memory. As we can see from the graph, the
minimum cost tends to shift to the right as ' increases, i.e.,
more I/O streams should be used instead of memory
buffers for large values of ', but more memory buffers
should be used for smaller values of '. Smaller values of '
indicate that the use of more buffer space can increase the
probability of a hit and, consequently, causes a reduction in
the amount of VCR resources to be reserved. Recall that, in
normal playback, we are using w minutes of buffer space as
a trade-off for one I/O stream, therefore, the decrease of '
simply means that we can trade-off one I/O stream with an
even lower cost. Therefore, in choosing an optimal system
configuration, our model aids system designers in making
proper system sizing decisions and, at the same time, allows
them to meet the performance requirements.

7 CONCLUSIONS

Determining the proper amount of resources to be allocated
is crucial for optimizing the performance of VOD systems
so as to maintain the benefits of data sharing techniques. In
this paper, we choose specific combinations of data sharing
techniques (e.g, batching with static partitioning) which
result in a reasonably representative of data sharing
scheme. We then present our mathematical model so as to
illustrate how we can perform system sizing. The mathe-
matical model we present can help designers to perform
efficient resource management and system sizing for a large
scale VOD system. Although the amount of resources
needed will also depend on the arrival rate of normal
playback requests and the arrival rate of VCR requests, our
mathematical model is general enough so that it can be
applied in solving the system sizing problem. The amount
of resources calculated ensures that the service to be
provided satisfies a given performance level, such as

ensuring that the maximum waiting time for starting or
resuming the movie is within the viewers' tolerance level.
Furthermore, we use our model in determining the optimal
distribution of resources for normal playback and servicing
of VCR requests, so as to reduce the overall system cost. We
show, through experiments, that different arrival rates of
VCR requests will affect the overall costs and the distribu-
tion of resources for servicing normal playback requests
and VCR requests. Using the mathematical model we
proposed, system designers can make proper system sizing
and resource distribution decisions. Our future research
work includes extending the proposed mathematical model
to encompass other data sharing and VCR functionality
schemes. For instance, one promising direction seems to be
the possibility of including, in the model, schemes which
utilize client-side resources to improve overall system
performance, e.g., such as buffering of video data at the
client's set-top box for provision of VCR functions (as
proposed in [2]).
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