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Abstract—Importance sampling (IS) is widely used in rare event
simulation, but it is costly to deal with many rare events simultan-
eously. For example, a rare event can be the failure to provide the
quality-of-service guarantee for a critical network flow. Since net-
work providers often need to deal with many critical flows (i.e.,
rare events) simultaneously, if using IS, providers have to simulate
each rare event with its customized importance distribution indi-
vidually. To reduce such cost, we propose an efficient mixture im-
portance distribution for multiple rare events, and formulate the
mixture importance sampling optimization problem (MISOP) to
select the optimal mixture. We first show that the “search direc-
tion” of mixture is computationally expensive to evaluate, making
it challenging to locate the optimal mixture. We then formulate
a “zero learning cost" online learning framework to estimate the
“search direction”, and learn the optimal mixture from simulation
samples of events. We develop two multi-armed bandit online
learning algorithms to: (1) Minimize the sum of estimation vari-
ances with a regret of (lnT)2/T ; (2) Minimize the simulation cost
with a regret of

√
lnT/T , where T denotes the number of simu-

lation samples. We demonstrate our method on a realistic network
and show that it can reduce the cost measures (i.e., sum of estima-
tion variances and simulation cost) by as high as 61.6% compared
with the uniform mixture IS.

I. Introduction

Rare events are events that occur rarely but have catastrophic
impacts or consequences. In power transmission networks, net-
work component damages caused by some sudden unforeseen
events (e.g., excessive load demands, lighting, or floods) can
result in large-scale blackouts [1]. In communication networks,
network component failures caused by some unwanted events
(e.g., equipment aging or power shortage) can significantly de-
grade the intended network service [2]. On the Internet, some
unexpected node and link failures can result in undeliveries of
some critical flows. To quantify such rare threats, one needs to
evaluate their risks accurately. For large networks, this is often
computationally expensive as shown below:
Example 1. Consider a large-scale network and a rare threat E ,
which corresponds to the failure to provide promised quality-
of-service (QoS) guarantees for a critical flow. The rare threat is
induced by a subset of potential causes, e.g., link and node fail-
ures, which are indexed bym,m∈[M] and may occur rarely. Let
xxx∈{0, 1}M denote an occurrence profile of all these causes, as-
sociating with a probability mass function P (xxx). The E is rep-
resented by a set of profiles xxx, which is often unknown and of a
large cardinality, say O(2M). For a given xxx, a black-box 1E(xxx)
can simulate the network to test the occurrence of E (i.e., xxx∈E),

but have no functional description of E . So as many as O(2M)
enumerations are needed to evaluate E’s occurrence probability.
Monte Carlo (MC) sampling is a typical method to address the
high computational cost problem illustrated in Example 1. It
estimates the occurrence of a rare threat E via generating sam-
ples xxx fromP (xxx). However, to obtain accurate estimations, MC
needs to simulate a large number of samples to capture suffi-
cient occurrences of E . Importance Sampling (IS) improves the
estimation efficiency of MC through a customized importance
distribution Q(xxx) to“boost” the occurrence of E . One limitation
of IS is that it has to simulate each rare threat with its custom-
ized importance distribution individually. This leads to an ex-
cessively high simulation cost, especially when dealing with a
large set of rare threats as shown below:
Example 2. Consider N critical flows in Example 1. The rare
threat En denotes the failure to provide promised QoS guaran-
tees for flow n, where n∈[N]. Each En is associated with a cus-
tomized importance distribution Qn(xxx), and a black-box 1En(xxx)
that tests whether xxx∈En. Suppose, using IS to estimate each En
requires T samples from Qn(xxx). To estimate all N events, we
need TN samples, which is expensive for a large network where
even simulating a single sample can take hours.

To reduce such simulation cost burden of IS, we consider the
mixture importance sampling (MIS) with mixture parameterwww:

Q(xxx;www)=
∑
n∈[N] wnQn(xxx),

where wn≥0, n∈[N] and
∑
n∈[N]wn=1. Through this, each

sample xxx drawn from distribution Q(xxx;www) can be used for “all"
rare threats {En}Nn=1. We aim to answer two questions:
(1) How to quantify the “simulation cost" for a mixture www?
(2) How to locate the optimal mixture www∗?
To design proper simulation cost metrics for www, one needs to
consider the simulation cost resulted from Q(xxx;www) for each En.
Such metrics (i.e., cost measures) are functions of Q(xxx;www). To
search www∗ minimizing the simulation cost, one needs to evalu-
ate the search direction by marginalizing xxx in the metric with a
sample space of size 2M . To solve this challenge, we formulate
a multi-armed bandit (MAB) online learning (OL) framework
to estimate the “search direction” and learnwww∗ from simulation
samples xxx drawn from {Qn(xxx)}Nn=1. One may use the classical
stochastic optimization (SO) method to derive www∗, but it has a
significantly larger sample cost than our framework. To guar-
antee the convergence speed, SO needs sufficient samples from
Q(xxx;www(t)) to locate an efficient “search direction” in each round



t, and www(t) is the estimated mixture in round t. Our framework
only needs a single sample xxx from one of {Qn(xxx)}Nn=1 in each
round. This makes it challenging to estimate the “search di-
rection” as well as learn www∗. Our contributions are:
• We formulate two metrics to quantify the simulation cost for

a mixture strategy and propose a mixture importance sampl-
ing optimization problem (MISOP) to select the optimal mix-
ture. We first show the search direction of mixture is costly
to evaluate, making it challenging to locate the optimal.

• We then formulate a MAB OL framework to estimate the
search direction and learn the optimal mixture from “sim-
ulation samples". So instead of using sufficient simulation
samples from Q(xxx;www(t)), our OL framework reduces the sim-
ulation cost by generating only a single simulation sample xxx
from one of {Qn(xxx)}Nn=1 in each round of learning. Hence,
achieving a zero cost on extra samples.

• We develop two MAB learning algorithms to efficiently learn
the optimal mixture www∗ under different cost measures, i.e.:
(1) SumVar, to minimize the sum of variances with a regret
of (lnT)2/T , and (2) SimCos, to minimize the simulation cost
with a regret of

√
lnT/T , where T is the number of samples.

For each algorithm, we provide:(1)convexity and smoothness
analysis; (2) algorithm to estimate the search direction of www
with zero cost on extra samples, as well as provable concen-
tration; (3) regret analysis and reveal the impact of key fac-
tors, e.g., similarity of {Qn(xxx)}Nn=1, on the regret.

• We demonstrate the efficiency of our methods on a realistic
network. And our SumVar and SimCos algorithms reduce the
associated cost measure by 37.8% and 61.6% respectively,
compared with the uniform mixture IS.

II. Problem Formulation

We first introduce the MIS model with a mixture parameter www.
We then formulate an optimization framework that selectswww to
minimize a general cost measure. To address the computational
challenge in locating the optimal mixture www∗, we formulate an
OL framework to estimate www∗. Finally, we present two import-
ant instances of the OL framework with specific cost measures.

A. Mixture Importance Sampling

Consider N rare events, and we aim to estimate the occurrence
probability for each individual event. Each event is induced by
a subset of M potential causes denoted by [M]. Let Ω,{0, 1}M.
We denote xxx=(x1, ..., xM)∈Ω as the occurrence profile of all
M causes, where xm indicates whether the cause m occurs (1:
yes, 0: no). Let xxx occur with a probability P (xxx)∈[0, 1], where∑
xxx∈ΩP (xxx)=1. We formally denote the event n∈[N] as En⊂Ω,

of which the occurrence is indicated by a membership oracle:

1En(xxx) ,
{

1, if xxx ∈ En,
0, otherwise. (1)

Given a sample xxx, 1En(xxx) can run a simulation with causes indi-
cated by xxx to test whether E occurs, i.e., xxx∈E . Yet, 1En has no
other functional description of En. And the occurrence proba-
bility is denoted by:

µn=Pxxx∼P [1En(xxx)=1]=
∑
xxx∈EnP (xxx). (2)

In many real-life applications, the exact value of µn is compu-
tationally expensive to evaluate due to a large cardinality of En.
For instance, consider an Internet-scale network with M phys-
ical links, where the m-th link fails with a probability of pm.
There are N competing flows, of which the undelivery of the
n-th flow is represented by En⊂Ω. For each xxx∈Ω, we have:

P (xxx)=
∏
m∈[M] p

xm
m (1−pm)1−xm . (3)

Due to the high complexity of traffic engineering, En is usually
unknown and with a large cardinality, resulting in a computa-
tional complexity of O(2M) to evaluate the exact value of µn.
The rare occurrence of En makes it costly to estimate µn via
simulating xxx with P (xxx), i.e., the classical MC method. One ty-
pical method to address this challenge is the IS method [3], [4].
Assume each En corresponds to a customised pure importance
distribution Qn(xxx). IS provides an efficient estimation of µn if
taking Qn(xxx) to simulate xxx, but Qn(xxx) may not work for other
events. The one-run variance for estimating µn with Qn(xxx) to
simulate xxx, which determines the simulation cost, is:

Vxxx∼Qn

[
1En(xxx)

P (xxx)
Qn(xxx)

]
, Exxx∼Qn

[
1En(xxx)

P 2(xxx)
Q2

n(xxx)

]
−µ2

n. (4)
Here {Qn(xxx)}Nn=1 can be obtained using IS or Sequential IS
methods proposed in [5].

Yet, given a limited simulation budget and a large N , one usu-
ally could not afford to estimate each µn individually with the
corresponding Qn(xxx). What one needs is an efficient sampling
distribution working for multiple interested events simultane-
ously. Assume we take a mixture distribution of {Qn(xxx)}Nn=1.
Formally, we have:

Q(xxx;www),
∑
n∈[N] wnQn(xxx), (5)

wherewww,(w1, . . ., wN), wn≥0 and
∑
n∈[N]wn=1. For the ease

of presentation, denote the set of all possible choices of www as
the probability simplex ∆,{www|wn≥0,

∑N
n=1 wn=1}.

Here we define the “ξ-similarity” as a metric to quantify how
well the occurrences of interested events {En}Nn=1 can be effi-
ciently estimated together by the following definition:
Definition 1 (ξ-similarity). Events {En}Nn=1 are ξ-similar if
their corresponding pure importance distributions {Qn(xxx)}Nn=1

satisfy: for ξ∈[0,∞], ∀xxx∈Ω,∀n, n′∈[N], 1
ξ ≤

Qn(xxx)
Qn′ (xxx) ≤ ξ.

To illustrate, consider {Qn(xxx)}Nn=1 have different (or even dis-
joint) supports, then ξ=∞. Figure 1 shows more examples with
different levels of ξ-similarities.

Fig. 1: Examples of different levels of ξ-similarities: an infinite ξ of
{En1 , En2} implies that even the optimal mixture Q(xxx;www∗) would not
work for both En1 and En2 ; a large ξ for {En1 , En4} implies a slow
convergence to Q(xxx;www∗); a small ξ for {En1 , En3} implies a fast
convergence to Q(xxx;www∗).



B. General Optimization & Learning Framework
Given Q(xxx;www) to simulate xxx, the one-run variance of En is:

σ2
n(www),Vxxx∼Q

[
1En(xxx)

P (xxx)
Q(xxx;www)

]
. (6)

One can evaluate the overall simulation efficiency associated
with the mixture parameter www by the cost measure L(σ(www))∈R
where σ(www),(σ1(www)σ2(www), ..., σN (www)) (Refer to Section II-C
for some examples). We formulate the following mixture imp-
ortance sampling optimization problem.
Problem 1 (Mixture Importance Sampling Optimization
(MISOP)). Given M causes, associated with a natural occur-
rence distribution P (xxx);N interested events, associated with ef-
ficient pure importance distributions {Qn(xxx)}Nn=1; and the cost
measure L(σ(www)). Selectwww to minimize the cost:

minwww∈∆ L(σ(www)). (7)
In general, Problem1 is a non-linear optimization problem.One
challenge in solving Problem 1 is both L(σ(www)) and ∇L(σ(www))
are computationally expensive to compute, i.e., the exact com-
putational complexities are O(2M) for the large state space of xxx.
To overcome this challenge, we use a MAB framework to esti-
mate (or online learn) www∗ from simulation samples.
Problem 2 (Mixture Importance Sampling Learning (MIS-
Learning)). GivenM causes,N interested events and the num-
ber of rounds (or data samples) T∈N+. At round t=1, ..., T :
• Select an arm (or event) It∈[N] based on an algorithm A and

the sample history {(Is,xxx(s))}t−1
s=1;

• Draw a simulation sample of profile xxx(t) from QIt(xxx);
• Update the proportions of selecting arms (or events) which

denoted bywww(t)=(w
(t)
1 , ..., w

(t)
N ), wherewww(t)= 1

t

∑
s∈[t] eeeIs ;

Objective: Design an algorithm A to achieve a low and sublin-
ear regret, where the regret is defined as

RT,L(σ(www(T)))−minwww∈∆ L(σ(www)). (8)
In Problem 2, each arm (or event) indexed by n corresponds to
a customized pure distribution Qn(xxx), and a general cost func-
tion L(σ(www(T))) is considered. In the following, we consider
two important instances of L(σ(www(T))).

C. Two Instances of the MIS Learning Problem
Given Q(xxx;www) to simulate xxx, let `n(www) measure the simulation
cost to achieve the desired estimation accuracy for µn, i.e., the
confidence interval (CI) is bounded by a threshold δn. Also, let
`max(www) measure the simulation cost to achieve desired estima-
tion accuracies for all {µn}Nn=1. Then:

`n(www),σ2
n(www)
δ2n

and `max(www),maxn∈[N] `n(www). (9)
Next, we consider the cost measure L(σ(www)) with various ac-
curacy requirements {δn}Nn=1, and introduce the corresponding
MIS-Learning problems.

MIS-Learning to Minimize the Sum of Variances: We start
with the simplest case where we assume homogeneous accu-
racy requirements (i.e., {δn}Nn=1 are equal) and consider bound-
ing

∑
n∈[N]`n(www) in order to bound `max(www). Then:

minwww∈∆

∑
n∈[N]`n(www)⇐⇒ minwww∈∆

∑
n∈[N]σ

2
n(www)

⇐⇒ minwww∈∆

∑
n∈[N]σ

2
n(www)+µ2

n. (10)
We can define the total loss (i.e., cost measure) in terms of the

sum of one-run variances as follows:
L(σ(www))=

∑
n∈[N] σ

2
n(www)+µ2

n , LSumVar(www), (11)
and name the MIS-Learning with cost measure in Eq. (11) as
minimizing the sum of variances (SumVar) MIS-Learning.

MIS-Learning to Minimize the Simulation Cost: Consider
{En}Nn=1 with heterogenous accuracy requirements. Specifically,
assume each En has a predefined occurrence probability thres-
hold on, e.g.,En represents the undelivery of a specific flow and
we want to accurately state whether the undelivery probability
µn≤on. Then the CI width should not exceed δn=|µn−on| and:

minwww∈∆ `max(www)⇐⇒ minwww∈∆ maxn∈[N]
σ2
n(www)

(µn−on)2 . (12)
We define the total loss in terms of the simulation cost to ach-
ieve all desired estimation accuracies as:

L(σ(www))= maxn∈[N]
σ2
n(www)

(µn−on)2 , LSimCos(www), (13)
and name the MIS-Learning with cost measure in Eq. (13) as
minimizing the simulation cost (SimCos) MIS-Learning.

III. Learning to Minimize the Sum of Variances
In this section, we first present the design of our SumVar al-
gorithm, which learns the optimal mixture www∗ to minimize the
sum of variances in an online manner. Then, we present the re-
gret upper bound of our algorithm, and reveal the impact of the
ξ-similarity on the learning speed. Finally, we present the fun-
damental idea of our proof for our regret upper bound.

A. The Design of SumVar Algorithm
The key idea of our SumVar algorithm is that at each round of
learning: (1) First estimate the gradient ∇LSumVar(www) via his-
torical data samples; (2) Then select the arm (or event) based
on the estimated gradient.
Gradient estimation. Consider at round t, we aim to estimate
∇LSumVar(www

(t−1)) from historical data samples. Let us first de-
rive ∇LSumVar(www) as:

∇LSumVar(www)=∇
{∑

n∈[N] Exxx∼Q(xxx;www)

[P 2(xxx)1En (xxx)
Q2(xxx;www)

]}
=−

∑
n∈[N]

∑
xxx∈Ω

[P 2(xxx)1En (xxx)
Q2(xxx;www)

]
(Q1(xxx), ..., QN (xxx))

= Exxx∼Q(xxx;www)[(−Z1(xxx), . . . ,−ZN (xxx))], (14)

where Zn(xxx),
P2(xxx)

∑
i∈[N]1Ei(xxx)

Q3(xxx;www(t−1))
Qn(xxx), ∀n∈[N ]. If historical data

samples {xxx(s)}t−1
s=1 were IID samples of xxx∼Q

(
xxx;www(t−1)

)
, then

the gradient∇LSumVar(www
(t−1)) can be estimated by ggg(t), where:

g
(t)
n = −1

t−1

∑
s∈[t−1] Zn(xxx(s)),∀n∈[N ]. (15)

Nevertheless, the challenge is that {xxx(s)}t−1
s=1 are generated from

xxx(s)∼QIs(xxx). To address this challenge, the following theorem
proves that Eq.(15) is asymptotically accurate in estimating the
gradient ∇LSumVar(www

(t−1)).
Theorem 1. Consider the MIS-Learning framework, where at
round t, t∈[T] take the It-th distribution QIt(xxx) to generate xxx(t).
Then, limt→∞ ‖ggg(t)−∇LSumVar(www

(t−1))‖=0.
Remark: Such asymptotic property owns much to the role of
mixture parameter www(t), i.e., the observed proportions of select-
ing the distribution QIt(xxx) till round t. Hence, after sufficient t
rounds of MIS-Learning, all samples {xxx(s)}ts=1 can be approxi-
mately considered as simulated by Q(xxx;www(t)).



Algorithm 1 SumVar MIS-Learning

Input: N , www=( 1
N
, ..., 1

N
), c(t)n , ∀n∈[N], t=1, ..., T

for all t≤N do
Draw xxx(t) according to distribution Qt(xxx), and then record his-
tory: Qt(xxx(t)) and 1Et(xxx

(t)).
for all t>N do

Estimate the gradient ∇LSumVar

(
www(t−1)

)
using ggg(t) in Eq. (15).

Compute the LCB ggg(t), where g(t)
n
=g

(t)
n−c(t)n .

Select It∈ argminn∈[N] g
(t)

n
and draw xxx(t) from QIt(xxx).

Record history: QIt(xxx
(t)) and 1EIt(xxx

(t)).
Update www(t)←www(t−1)+ 1

t
(eeeIt−www(t−1)).

Arm selection. We outline the arm selection in Algorithm 1.
From [6], we know that finding the minimizer of lower bound
confidence minn∈[N] g

(t)
n

is equivalent to making a step of size
1
t+1 in the direction of corner of simplex ∆ that minzzz∈∆ zzz

>g(t),
which is precisely the Frank-Wolfe algorithm [7]. Hence, we
apply the LCB Frank-Wolfe algorithm to select the arm based
on the estimated gradient in Eq.(15). Note that in Algorithm 1,
one can select c(t)n to control the exploration and exploitation
tradeoffs1. Selecting the c(t)n is closely related to the regret of
Algorithm 1. We thus delay the selection in the next subsection,
where we analyze the regret bound.

B. Regret Analysis of SumVar Algorithm
We first establish two building blocks for the regret analysis of
Algorithm 1: (1) The strong convexity and smoothness proper-
ties of LSumVar(www), and (2) The concentration property of ggg(t) in
estimating ∇LSumVar(www

(t−1)). Then we apply these two build-
ing blocks to derive the regret upper bound of Algorithm 1.
Strong convexity and smoothness of LSumVar(www). Let us first
formally define the strong convexity and smoothness.
Definition 2 (Strong convexity and smoothness). Let X be a
convex set in the vector space and f : X→R be a function. f is
called α-strongly convex if and only if ∀xxx∈X,∇2f(xxx)�αI, or
equivalently,
∀xxx,yyy∈X, f(yyy)≥f(xxx)+∇>f(xxx)(yyy−xxx)+α

2 ‖yyy−xxx‖
2
2. (16)

Similarly, f is β-smooth if and only if ∀xxx∈X,∇2f(xxx)�βI, or
equivalently,
∀xxx,yyy∈X, f(yyy)≤f(xxx)+∇>f(xxx)(yyy−xxx)+β

2 ‖yyy−xxx‖
2
2. (17)

In the following theorem, we prove the strong convexity and
smoothness of LSumVar(www).
Theorem 2. If {En}Nn=1 has a ξ-similarity, the LSumVar(www) given
by Eq.(11) is α-strongly convex and β-smooth with:

α= 2
Nξ2 (

∑
n∈[N] µn)2 and β=2ξ3

∑
n∈[N] µn. (18)

Remark: Theorem 2 quantifies the impact of ξ-similarities on
LSumVar(www). In particular, the strong convexity of LSumVar(www)
vanishes and LSumVar(www) becomes nonsmooth when ξ→∞,
i.e., the event occurrences are not similar. This implies that the
ξ-similarity is essential for learning the optimal mixture www∗ as
well. Besides, in case that ξ=∞, one can divide {En(x)}Nn=1 into
multiple sub-groups such that each sub-group has a finite ξ.

1In Algorithm 1, the derivation of cn relies on Zn and its moments, which
are costly to compute exactly. In the implementation, we take the empirical
estimation of Zn and its moments. This will not affect our regret upper bound
conclusion as the derivation utilizes the upper bounds of Zn and its moments.

Concentration property of ggg(t). We aim to characterize how
well the estimator g(t)

n concentrates around ∇LSumVar(www
(t))
∣∣
n

.
Such concentration is characterized by a balance between the
confidence probability denoted by ζ(t)∈[0, 1] and the deviation
denoted by ε

(t)
n . One challenge is that in the estimator g(t)

n in
Eq. (15), the historical data samples {xxx(s)}t−1

s=1 are not IID. The
following theorem resolves this challenge by quantifying the
tradeoff between ζ(t) and ε(t)n .
Theorem 3. Assume xxx∼Q

(
xxx;www(t−1)

)
for both E and V. Sup-

pose ζ(t) and ε(t) satisfy:

ε
(t)
n = 1

3t ln 1
ζ(t)
Zmaxn +

√
1

9t2 (ln 1
ζ(t)
Zmaxn )2+ 2

t ln 1
ζ(t)

VZn(xxx).

where Zmaxn ,maxxxx∈Ω |Zn(xxx)−E[Zn(yyy)]|. Then, it holds that
P
[
g(t)
n −∇LSumVar

(
www(t)

)∣∣
n
≤ε(t)n

]
≤ζ(t), (19)

P
[
g(t)
n −∇LSumVar

(
www(t)

)∣∣
n
≥−ε(t)n

]
≤ζ(t). (20)

Theorem 3 serves as a building block for one to vary ζ(t) and
ε(t), to attain different confidence and variation tradeoffs. This
confidence and variation tradeoff is essential to select the para-
meter c(t)n of Algorithm 1 and analyze its regret later. We need
to point out that, Zmaxn =O(ξ3) and VZn(xxx)=O(ξ5), i.e, the CI
width of ggg(t) is proportional to ξ. This reveals the impact of ξ-
similarity on the concentration of gradient estimation.

Regret upper bound. With the above two building blocks, we
now select the parameter c(t)n for Algorithm 1 and prove the re-
gret upper bound. Due to page limit, we present a sketch proof
in the next subsection.
Theorem 4 (Regret upper bound of SumVar algorithm). Sup-
pose {En}Nn=1 has a “ξ-similarity”. For MIS-Learning with cost
measure LSumVar(www) in Eq.(11), after T steps of the SumVar al-
gorithm, the choice of c(t)n =ε

(t)
n and

ζ(t)=
{
T−2

0 , if t≤T0;
t−2, if t>T0,

holds the following: when ln(1/ζ(t))
t ≥ 9

∑
i∈[N]µi

4Nξ ,

Exxx∼Q[RT ]≤C1
1
T +C2

lnT
T ; (21)

otherwise, we have:

Exxx∼Q[RT ]≤C3
1
T +C4

erf
√

lnT/2

T +C5
lnT
T +C6

(lnT )2

T . (22)

where, C1=O
(
N2(lnT0)

2ξ6

αη2 +
N3/2ξ2

∑
i∈[N] µi

T0
+N lnT0βξ

3

αη2

)
,

C3=O
(
N3/2ξ2

∑
i∈[N] µi

T0
+N(lnT0)2βξ2

αη2

)
,

C2=C5=O(β), C4=O
(√

Nξ5β

αη2

)
, C6=O

(
Nξ5

αη2

)
.

Remark: Theorem 4 shows that the regret upper bound is pro-
portional to the ξ-similarity. It also reveals that a small ξ im-
plies a fast convergence to the optimal mixture.

C. Proof Sketch
Here we state the sketch proof for Theorem 4, in which we dis-
cuss the regret upper bound of the SumVar algorithm.
Let It stand for the index of arm selected by A at round t. Re-
call thatwww(t) is defined as the proportions of arm selections, i.e.,
www(t)= 1

t

∑
s∈[t] eeeIs . We can derive the following recurrence:

www(t+1)=
twww(t)+eeeIt+1

t+1 =www(t)+
eeeIt+1

−www(t)

t+1 . (23)



Let www∗ be the optimal mixture parameter:
www∗= argminwww∈∆ LSumVar(www), (24)

and define eee∗t+1 as the following minimizer:
eee∗t+1

= argminzzz∈∆ zzz
>∇LSumVar(www

(t)), (25)
which is also the steepest descent direction of LSumVar(www

(t))
with respect to the standard basis. Note that the eee∗t+1

is our de-
sired searching direction, and we estimate it with eeeIt+1

based on
historical observations. For convenience, denote

ε(t+1)=∇LSumVar(www
(t))>(eeeIt+1

−eee∗t+1
). (26)

The proof of Theorem 4 can be broken down into five steps.
Step 1: By the strong convexity and smoothness of LSumVar(www)
in Theorem 2, we first partition the regret RT and show that:

RT= 1
T

[∑
s∈[T]

β
s+
∑
s∈[T]ε

(s)
]
≤β lnT

T +
∑

s∈[T]ε
(s)

T . (27)

Step 2: To bound RT , it is equivalent to bound
∑
s∈[T]ε

(s). We

start by looking at c(t)n , i.e., the confidence bound when estima-
ting ∇LSumVar

(
www(t)

)∣∣
n

with g(t)
n , which affects the accuracy of

estimating eee∗t with eeeIt when n=It. The following claim reveals
the relationship between c(t)It and ε(t+1):

Claim 1. Assume c(t)n satisfies
P
[
g

(t)
n −∇LSumVar

(
www(t)

)∣∣
n
≤c(t)n

]
≤ζ(t), (28)

P
[
g

(t)
n −∇LSumVar

(
www(t)

)∣∣
n
≥−c(t)n

]
≤ζ(t). (29)

Then with a probability at least 1−2ζ(t), ε(t+1)≤2c
(t)
It+1

.

We then derive the expression of c(t)n . By Theorem 3, we know
that Eq.(28) and (29) can be satisfied with the choice of c(t)n =ε

(t)
n

where ε(t)n is defined in Theorem 3.
Finally, we bound c(t)n by the following claim:

Claim 2. With the choice of c(t)n =ε
(t)
n , we have:

c
(t)
i ≤


4
3
Nξ3 ln(1/ζ(t))

t
, if ln(1/ζ(t))

t
≥ 9

∑
m∈[N]µm

4Nξ
;

2
√
Nξ5

∑
m∈[N] µm

ln(1/ζ(t))
t

, otherwise.

where ε(t)n is defined in Theorem 3.
Combine Claim 1, 2 and Theorem 3, we can show that with the
choice of c(t)n in Theorem 3, the regret RT converges at a rate
of O

(
1
T

∑
t c

(t)
It

)
and the bound of c(t)It is given by Claim 2.

Step 3: Next we show that RT can converge at a faster rate of
O
(

1
T

∑
t

{
c
(t)
It

}2)
instead of O

(
1
T

∑
t c

(t)
It

)
.

Let η be the distance fromwww∗ to ∂∆ and let c(t),maxn∈[N]c
(t)
n .

Claim 2 provides an upper bound of c(t)n . Next, we utilize c(t)

to bound RT by the following claim:
Claim 3. Assume we select ζ(t) properly such that:

1
t

∑
s∈[t]

(
c(t)
)2≥(c(t+1)

)2
. (30)

Then with a probability at least 1−N
∑
t ζ

(t) that:

TRT≤αη
2

2 +π2β2

3αη2 +β lnT

+ 8β
αη2

∑
t∈[T]

c(t)

t + 8
αη2

∑
t∈[T]

(
c(t)
)2
. (31)

Step 4: We now discuss how to select ζ(t) to guarantee Eq.(30),
and give bounds of

∑
t

(
c(t)
)

2 and
∑
t
c(t)

t by the following:

Claim 4. With the choice of ζ(t)=
{
T−2
0 , if t≤T0;
t−2, if t>T0.

If c(t)= 4
3Nξ

3 ln(1/ζ(t))
t , we have:

∑
t∈[T]

(
c(t)
)2≤ 64N2ξ6

9

[
π2(lnT0)2

6 +2
]
,∑

t∈[T]
c(t)

t ≤
8Nξ3

3

[
π2 lnT0

6 +1
]
.

(32)

If c(t)=2
√
Nξ5

∑
m µm

√
ln(1/ζ(t))

t , we have:
∑
t∈[T](c

(t))2≤4Nξ5
∑
m µm

[
(lnT0)

2+(lnT )2
]
,∑

t∈[T]
c(t)

t
≤
√

8Nξ5
∑
m µm

{
(2+
√
2)
√
lnT0

+
√
2πerf

(√
lnT/2

)}
.

(33)

Step 5: With a probability no more than N
∑
t ζ

(t)≤ 2N
T0

, we have
RT≤ξ2

∑
i∈[N] µi

√
N . Also, with a probability at least 1−N

∑
tζ

(t),
we have the bound of RT in Claim 3. By plugging bounds of∑
t(c

(t))2 and
∑
t
c(t)

t into Claim 3, we can prove Theorem 4.

IV. Learning to Minimize the Simulation Cost
In this section, we present the design of our SimCos algorithm,
which learns www∗ and minimizes the simulation cost in an on-
line manner. Then, we present the algorithm regret upper bound
and reveal the impact of ξ-similarity on the learning speed. We
also provide the key idea to prove the regret upper bound.

A. The Design of SimCos Algorithm
The key idea of our SimCos Algorithm is that at each round of
learning: (1) First develop a linear approximation framework to
locate the search direction; (2) Then design an estimator to es-
timate the search direction from simulation samples; (3)Finally,
use the estimated search direction to select the arm.
Search direction. One challenge in locating the search direc-
tion is that the objective LSimCos(www) takes the pointwise max-
imum of functions `n(www), leading to the nonsmoothness. An-
other constraint is that Problem 2 implies a step size of 1/t in
updating www(t), i.e.,

www(t+1)= twww(t)+zzz
t+1 , (34)

where zzz∈∆. Namely, to determine the search direction, we first
need to determine zzz. To measure the potential of zzz in decreasing
LSimCos(www

(t)), we take a linearization of LSimCos(www) atwww=www(t):
LSimCos(www

(t);zzz)= max
n∈[N]

`n(www(t))+∇`n(www(t))>(www(t+1)−www(t))

= max
n∈[N]

`n(www(t))+∇`n(www(t))> zzz−www
(t)

t+1 , (35)

and bound its approximation error in the following lemma:
Lemma 1.

∣∣LSimCos(www
(t);zzz)−LSimCos(www

(t+1))
∣∣=O( ξ3

(t+1)2

)
.

Lemma 1 states that the approximation error of linear approxi-
mation decreases at a rate of 1/t2. This implies that the linear
approximation is asymptotically accurate in approximating the
LSimCos(www

(t+1)). Hence, givenwww(t), we consider the minimizer
of LSimCos(www

(t);zzz) as the search direction. Furthermore, the
minimum of LSimCos(www

(t);zzz) can be attained by the standard
direction with steepest decrease, i.e.,

minzzz∈∆ LSimCos(www
(t);zzz)= minzzz∈U LSimCos(www

(t);zzz),

where U,{eee1, ..., eeeN} represents the standard basis. This imp-
lies that we can reduce the search space from ∆ to U , and sim-
plify estimations of the search direction as we proceed to show.
We take such steepest decrease direction as the search direc-
tion, and denote it by:



Algorithm 2 SimCos MIS-Learning

Input: N , www=( 1
N
, ..., 1

N
)

for all t≤N do
Draw xxx(t) according to the distribution Qt(xxx) and record history:
Qt(xxx

(t)) and 1Et(xxx
(t)).

for all t>N do
Estimate µ(t−1)

n , n∈[N] by µ̂(t−1)
n = 1

t−1

∑
s∈[t−1]

P (xxx(s))1En(xxx
(s))

Q(xxx(s);www(s))
.

For all arms n∈[N], compute g(t)n , i.e., the estimated linear ap-
proximation of decreasing progress achieved by taking different
arms at round t according to Eq. (38).
Compute the LCB g(t)

n
, where g(t)

n
=g

(t)
n−c(t)n .

Select arm It∈ argminn∈[N] g
(t)

n
.

Update www(t)←www(t−1)+ 1
t
(eIt−www(t−1)).

eee∗t= argminzzz∈U LSimCos(www
(t);zzz). (36)

Search direction estimation. We consider the following equi-
valent form of the search direction:

eee∗t= argminzzz∈U LSimCos(www
(t);zzz)−LSimCos(www

(t)). (37)
Such form of search direction is useful to estimate the search
direction, for the value of LSimCos(www

(t);zzz)−LSimCos(www
(t))shrinks

in t. As we will show later, this property enables us to derive
better concentration results for the search direction estimation.
As the search direction is in the set U , we only need to estimate
{LSimCos(www

(t);eeen)}Nn=1 and LSimCos(www
(t)) so to locate eee∗t . Es-

sentially, we need to estimate `n(www(t)) and ∇`n(www(t)) from the
data samples {xxx(s)}t−1

s=1. We have similar challenges as in Section
III-A, i.e., data samples are not IID. We then address these cha-
llenges with a similar method: We estimate LSimCos(www

(t);eeen)−
LSimCos(www

(t)) as g(t)
n where g(t)

n is derived as g(t)
n ,ġ(t)

n −g̈(t) and:

ġ(t)
n = maxi∈[N]

t+1
t Âi

(
www(t−1)

)
− 1
t B̂i

(
www(t−1);n

)
− (µ̂

(t−1)
i )2

(µ̂
(t−1)
i −oi)2

,

g̈(t)= maxi∈[N] Âi
(
www(t−1)

)
− (µ̂

(t−1)
i )2

(µ̂
(t−1)
i −oi)2

,

B̂i

(
www(t);n

)
= 1

(µ̂
(t−1)
i −oi)2

1
t

∑
s∈[t]

P 2(xxx(s))1Ei(xxx
(s))

Q2(xxx(s);www(t))
Qn(xxx(s))

Q(xxx(s);www(t))
,

Âi

(
www(t)

)
= 1

(µ̂
(t−1)
i −oi)2

· 1t
∑
s∈[t]

P 2(xxx(s))1Ei (xxx(s))

Q2(xxx(s);www(t))
. (38)

In the following theorem, we prove that the search direction
can be estimated asymptotically accurate.
Theorem 5. Consider the MIS-Learning framework. where at
round t, t∈[T] take distribution QIt(xxx) to generate xxx(t). Then

lim
t→∞
‖ġ(t)
n−LSimCos(www

(t);eeen)‖=0, (39)

lim
t→∞

‖g̈(t)−LSimCos(www
(t))‖=0. (40)

Remark: Similar as Theorem 1, such asymptotic property owns
much to the mixture parameter www(t).

Arm selection. Based on g(t)
n , n∈[N], we estimate the steepest

search direction using the LCB framework and we outline the
arm selection in Algorithm 2. Selecting the parameter c(t)n is
closely related to the regret of Algorithm 2.2 We thus delay the
selection in the next subsection, where we analyze the regret.

2The derivation of cn in Algorithm 2 relies on Ai, Bi, and their moments,
which is discussed in the next subsection. In the implementation, we take em-
pirical estimations of these values. This will not affect our regret conclusion
as its derivation utilizes the upper bounds of Ai, Bi, and their moments.

B. Regret Analysis of SimCos Algorithm
To first decompose the regret, denote the optimal mixture as
www∗, the optimal search direction as eee∗t , and the estimated search
direction (i.e., the action direction) as eeeIt . Then we decompose
the regret as follows:

LSimCos(www
(t+1))−LSimCos(www

∗)

≤ LSimCos

( twww(t)+eeeIt
t+1

)
−LSimCos

( twww(t)+eee∗t
t+1

)
(R1)

+ LSimCos

( twww(t)+eee∗t
t+1

)
−LSimCos

(
twww(t)+www∗

t+1

)
(R2)

+ LSimCos

(
twww(t)+www∗

t+1

)
−LSimCos(www

∗). (R3)
This decomposition has three parts. Part R1 is the estimation
error, and is essentially governed by the concentration of g(t)

n in
estimating LSimCos(www

(t);eeen)−LSimCos(www
(t)). Part R2+R3 is the

approximation error, and is essentially governed by the con-
vexity and smoothness of the objective LSimCos(www).
Next, similar as the SumVar case, we first establish two build-
ing blocks: (1) The strong convexity and smoothness properties
of LSimCos(www) and its components; (2) The concentration prop-
erty of ggg(t) in estimating LSimCos(www

(t);zzz)−LSimCos(www
(t)). Then

we apply these two blocks to bound the regret of Algorithm 2.

Convexity and smoothness of LSimCos(www) and its components.
As an immediate consequence of Theorem 2, we can derive the
strong convexity and smoothness of `n(www), n∈[N], i.e., the
components of LSimCos(www):
Corollary 1. If {En}Nn=1 has a ξ-similarity, then `n(www), n∈[N]
in Eq. (9) is αn-strongly convex and βn-smooth, where

αn=
2µ2

n

ξ2(µn−on)2 and βn= 2ξ3µn

(µn−on)2 . (41)
Such convexity and smoothness of `n(www), n∈[N] guarantee the
convexity of LSimCos(www):
Corollary 2. If {En}Nn=1 has a ξ-similarity, then LSimCos(www) in
Eq. (13) is α′-strongly convex, where

α′,minn∈[N] αn= minn∈[N]
2µ2

n

ξ2(µn−on)2 . (42)
Remark: Corollary 1 and 2 quantify the impact of ξ-similarity
on the strong convexity and smoothness of LSimCos(www) and its
components. Also note that the tight approximation mentioned
in Lemma 1 is guaranteed by the strong convexity and smooth-
ness of `n(www), n∈[N].

Concentration property of g(t)
n . In the following theorem, we

characterize how well the estimator g(t)
n concentrates around the

LSimCos(www
(t);eeen)−LSimCos(www

(t)).
Theorem 6. Assume xxx∼Q(xxx;www(t−1))for both E and V. For any
random variableX(xxx) define X̃(xxx),X(xxx)−EX(xxx) and ϕ(X(xxx)),
2 ln(8/ζ(t))

3t
maxX̃(xxx)+

√
2 ln(8/ζ(t))

t
VX̃(xxx). Suppose ζ(t) and ε(t)satisfy:{

ζ(t)=T−2
0 , ε

(t)
n = C1

t+1 , if t≤T0;

ζ(t)=t−2, ε
(t)
n = maxk∈[N]

1
t+1

(
a

(t)
k +b

(t)
k,n

)
, if t>T0;

where Ai(xxx;www(t))= 1
(µi−oi)2

P 2(xxx)1Ei (xxx)

Q2(xxx;www(t))
,

Bi(xxx;www(t);n)= 1
(µi−oi)2

P 2(xxx)1Ei(xxx)Qn(xxx)

Q3(xxx;www(t))
,

a
(t)
i =ϕ

(
Ai
(
xxx;www(t)

))
, b

(t)
i,n=ϕ

(
Bi
(
xxx;www(t);n

))
,

C1= maxk∈[N]
2ξ2µk

(µk−ok)2 + maxk∈[N]
2ξ3

(µk−ok)2 .



Then, it holds that

P
[
g

(t)
n −(LSimCos(www

(t);eeen)−LSimCos(www
(t)))≤ε(t)n

]
≤ζ(t),

P
[
g

(t)
n −(LSimCos(www

(t);eeen)−LSimCos(www
(t)))≥−ε(t)n

]
≤ζ(t).

Remark: We need to point out that a(t)
i +b

(t)
i,n=O

(√
ξ3 ln(8/ζ(t))

t

)
and C1=O(ξ3). Therefore, Theorem 6 reveals the impact of ξ-
similarity on the concentration of estimation.

Regret upper bound.With the regret decomposition and above
two building blocks, we now select the parameter of Algorithm
2 and prove its regret upper bound. Due to page limit, we pre-
sent a sketch proof in the next subsection.
Theorem 7 (Regret upper bound of SimCos algorithm). Sup-
pose {En}Nn=1 has a “ξ-similarity”. For MIS-Learning problem
with cost measure LSimCos in Eq.(13), after T steps of the Sim-
Cos algorithm, the choice of c(t)n =ε

(t)
n and

ζ(t)=
{
T−2
0 , if t≤T0;
t−2, if t>T0,

holds the following:
E[RT ]≤O(ξ3) 1

T +O(β′+ξ3) lnT
T

+O(ξ3) (lnT )2

T +O(ξ5/2)
√

lnT
T . (43)

Remark: Theorem 7 shows that the regret upper bound is pro-
portional to the ξ-similarity. It also reveals that a small ξ im-
plies a fast convergence to the optimal mixture.

C. Proof Sketch

Here we state the sketch proof for Theorem 7, in which we dis-
cuss the regret upper bound of the SimCos algorithm.
Still, let www∗ be the optimal mixture:

www∗= argminwww∈∆ LSimCos(www). (44)
Recall that eee∗t , i.e., the steepest decent direction of the linear-
ization LSimCos(www

(t);zzz), is reorganized in Eq.(37). We estimate
LSimCos(www

(t);eeen)−LSimCos(www
(t)) as g(t)

n and so estimate eee∗t as
eeeIt where It=argminn∈[N] g

(t)
n . The proof of Theorem 7 can be

broken down into the following steps.
Step 1: We first partition the regret as:

LSimCos(www
(t+1))−LSimCos(www

∗)≤R1+R2+R3, (45)
where part R1, R2 and R3 are given in Section IV-B. In the
following, we will bound each part of the regret.
Step 2: By the definition of linearization LSimCos(www

(t);zzz), and
the strongly convex and smooth properties of `n(www) given in
Corollary 1, we have:

R1≤LSimCos(www
(t);eeeIt)−LSimCos(www

(t);eee∗t)

+β′

2

∥∥eeeIt−www(t)

t+1

∥∥2

2
−α

′

2

∥∥eee∗t−www(t)

t+1

∥∥2

2
, (46)

where α′= minn∈[N] αn, β′= maxn∈[N] βn. To bound R1, we
then look at c(t)n , i.e., the confidence bound when estimating
the LSimCos(www

(t);eeen)−LSimCos(www
(t)) with g(t)

n , which affects the
accuracy of estimating eee∗t with eeeIt when n=It. The relation-
ship between LSimCos(www

(t);eeeIt)−LSimCos(www
(t);eee∗t) and c(t)It can

be revealed by the following claim:
Claim 5. Assume c(t)n satisfies

P
[
g
(t)
n−
(
LSimCos(www

(t);eeeIt)−LSimCos(www
(t);eee∗t)

)
≤c(t)n

]
≤ζ(t), (47)

P
[
g
(t)
n −
(
LSimCos(www

(t);eeeIt)−LSimCos(www
(t);eee∗t)

)
≥−c(t)n

]
≤ζ(t). (48)

Then with a probability at least 1−2ζ(t),
LSimCos(www

(t);eeeIt)−LSimCos(www
(t);eee∗t)≤2c

(t)
It+1

.

By the above discussion, we bound R1 by the following:

R1≤2c
(t)
It

+β′

2

∥∥eeeIt−www(t)

t+1

∥∥2

2
−α

′

2

∥∥eee∗t−www(t)

t+1

∥∥2

2
. (49)

Step 3: By the definition of LSimCos(www
(t);zzz) and the optimality

of eee∗t , we show that R2 is upper bounded by:

R2≤−α
′

2

∥∥www∗−www(t)

t+1

∥∥2

2
+β′

2

∥∥eee∗t−www(t)

t+1

∥∥2

2
. (50)

Step 4: By the strong convexity and smoothness properties of
`n(www), we show that R3 is upper bounded by:

R3≤ t
t+1

[
LSimCos(www

(t))−LSimCos(www
∗)
]
+β′−α′

2

∥∥www∗−www(t)

t+1

∥∥2

2
. (51)

Step 5: Combine the upper bounds of part R1, R2 and R3, we
show that:

RT≤ 2
T

∑
t∈[T−1] c

(t)
It

+3(β′−α′) ln(T/2)
T . (52)

Step 6: Next, we focus on bounding c(t)n , which measures the
accuracy in estimating LSimCos(www

(t);eeen)−LSimCos(www
(t)) with g(t)

n .
By Theorem 6, we have the upper bounds of c(t)n under different
conditions, which depend on C1, a(t)

i and b(t)i,n. The bound of C1

is given by Theorem 6. Then a(t)
i and b(t)i,n are bounded by:

a
(t)
i =ϕ

(
Ai
(
xxx;www(t)

))
≤ 2ξ2

3(µi−oi)2
ln(8/ζ(t))

t +

√
2ξ3µi

(µi−oi)2

√
ln(8/ζ(t))

t ; (53)

b
(t)
i,n=ϕ

(
Bi
(
xxx;www(t);n

))
≤ 2ξ3

3(µi−oi)2
ln(8/ζ(t))

t +

√
2ξ5µi

(µi−oi)2

√
ln(8/ζ(t))

t . (54)
Combining Theorem 6, and Eq. (52), (53) and (54), we finish
the proof of Theorem 7.

V. Applications
In this section, we demonstrate the efficiency of our MIS-
Learning framework in evaluating risks for a set of rare threats.
We take the Abilene backbone network [8], [9] as an example
to show how our method works in detail. And we aim at eval-
uating the impact of network link failures on the occurrences
of interested events En, n∈[N], which are specified as the non-
satisfaction of bandwidth demands for traffic flows n, n∈[N].
The numerical results show that our SumVar and SimCos al-
gorithms reduce the associated cost measures by 37.8% and
61.6% respectively, compared with the uniform mixture IS.

A. Problem Description
As depicted in Fig. 2(a), the network contains 12 nodes and 30
links. Each link fails with a probability of 0.01 and link failure
occurrences are indicated by xxx. The topology and traffic ma-
trices are collected from [10]. There are 132 competing flows,
and their bandwidth demands are extracted from [5]. The flow
routing follows the shortest path policy. The capacity alloca-
tion follows the max-min fairness policy, which is also adopted
by Google’s B4 backbone network [11].
For each interested event Enwith the occurrence probability of
µn, we take the customized pure IS distribution in [5] as the ef-
ficient IS distribution Qn(xxx) of En. To accurately estimate {µn}



(a) The Abilene network. (b) CDF of ξ similarity.

Fig. 2: The network topology and ξ-similarity information.

for a set of events{En}, authors in[5] consider the MIS solution
with a uniform mixturewww=( 1

N , ...,
1
N ). In the following, we ap-

ply our MIS-Learning framework to learn a more efficient mix-
ture www∗ which minimizes the cost measure L(σ(www)).
We first derive ξ-similarities between any two interested events
En1

and En2
, n1, n2∈[N]. The cumulative probability distribu-

tion (CDF) of the pairwise ξ-similarity is provided in Fig. 2(b).
By setting the upper thresholds of the pairwise ξ-similarity, we
can partition {En}Nn=1 into different subsets, on which we apply
our MIS-Learning method to find an efficient mixture www to es-
timate their occurrence probabilities simultaneously. We set the
upper bounds of the pointwise ξ-similarity as ξ≤100, ξ≤200,
ξ≤300 and ξ∈[1000, 5000], and obtain the corresponding event
subsets {En}N

′

n=1 with set sizes of N ′=16, N ′=19, N ′=30 and
N ′=5.

B. Numerical Results
Minimizing the sum of variances. We start with the SumVar
MIS-Learning with L(σ(www)),LSumVar(www). For each event sub-
set {En}N

′

n=1 with the corresponding ξ-similarity threshold, we
run the SumVar MIS-Learning for 80,000 runs and plot the cost
measure LSumVar(www) of each round in Fig. 3. We then compare
the result with the uniform mixture proposed in [5]. Fig. 3(a),
3(b) and 3(c) illustrate the reduction of LSumVar(www) achieved by
the SumVar MIS-Learning with a small ξ-similarity, and 3(d)
illustrates the performance of the SumVar MIS-Learning with a
large ξ-similarity. The SumVar MIS-Learning with Algorithm 1
reduces the cost measure by 25.1%, 23.6%, 26.4% and 37.8%
when ξ≤100, ξ≤200, ξ≤300 and ξ∈[1000, 5000].
Minimizing the simulation cost. We then consider the SimCos
MIS-Learning with L(σ(www)),LSimCos(www). For each event sub-
set {En}N

′

n=1 with the corresponding ξ-similarity threshold, we
run the SimCos MIS-Learning for 80,000 runs and plot the cost
measure LSimCos(www) of each round in Fig. 3, and compare with
the uniform mixture. Fig.3(e), 3(f) and 3(g) show the reduction
of LSimCos(www) achieved by the SimCos MIS-Learning with a
small ξ-similarity, while 3(h) shows the performance of Sim-
Cos MIS-Learning with a large ξ-similarity. The SimCos MIS-
Learning with Algorithm 2 reduces the cost measure by 35.7%,
55.1%, 39.9% and 61.6% when ξ≤100, ξ≤200, ξ≤300 and
ξ∈[1000,5000].
Impact of ξ-similarity on the convergence rate. We take a
detailed look at the convergence of cost measure in Fig.4, and
compare convergence rates of the large ξ case (i.e., ξ∈[1000,
5000) and the small ξ case (i.e., ξ≤300). For the SumVar MIS-

Learning with Algorithm 1, Theorem 4 implies that the regret
LSumVar(www)−LSumVar(www

∗) first decreases at a fast rate in Eq.(21)
and then at a slow rate in Eq.(22). Theorem 4 also reveals that a
smaller ξ implies a longer fast rate period. As shown in Fig. 4,
with a small ξ, LSumVar(www) decreases first at a fast rate and
then at a slow rate; with a large ξ, the fast rate period vanishes.
For SimCos MIS-Learning with Algorithm 2, Theorem 7 states
that the regret decreases first at a fast rate of O(1/T) and then
at a slow rate of Q(

√
lnT/T) in Eq. (43). As shown in Fig. 4,

with a small ξ, LSimCos(www) decreases first at a fast rate and then
at a slow rate; with a large ξ, the short fast rate period vanishes.

VI. Related work

A. MIS-Learning vs. IS and MIS
Comprehensive reviews on the rare event simulation are given
in [12], [13]. These works are mainly IS based and focus on the
single rare event estimation: they estimate the probability of
rare event En by simulating the system under an alternative dis-
tribution Qn(xxx) and then unbias the results [14]. Given many
rare events to estimate, as each Qn(xxx) is merely customized for
En and may not work efficiently for other events, IS needs to
“sequentially" estimate the occurrence of each En with its cor-
responding pure importance distribution Qn(xxx).
To efficiently estimate multiple rare events, authors in [5] pro-
pose using MIS to cooperate multiple Qn(xxx). However, most
MIS based works take a uniform mixture [5] or heuristic mix-
ture strategies without theoretical guarantees[15]. Some works
[16], [17] consider computing the optimal mixture via standard
convex optimization methods. However, they require that at
each iteration, the variances (i.e., their cost measure) should ei-
ther be computed analytically [17] or be estimated accurately
from sufficient samples [16], which is unrealizable or computa-
tional expensive for the curse of dimensionality.
Our work aims to efficiently learn the optimal mixture working
for estimations of many rare events, with a zero cost on extra
samples. We reveal that not all rare events can be efficiently es-
timated at the same time, and we introduce the ξ-similarity to
partition events into subsets with smaller ξ values, which can
be efficiently estimated via MIS at the same time.

B. MIS-Learning vs. Stochastic Optimization
The MIS-Learning can be viewed as the stochastic optimization
(SO) problem over the simplex: to minimize the objective func-
tion L(σ(www)), we choose at each round an action It, which af-
fects the variable www and provides observations on L(σ(www)).
In the common case where objectives are smooth, i.e., L(σ(www))
,LSumVar(www), iterative gradient-based methods, such as the
gradient descent (GD) and stochastic gradient descent (SGD)
[18], are popular optimization tools. Yet in our setting, neither
the gradient∇LSumVar(www) nor its components can be computed
exactly and so estimations are required. To accurately estimate
∇LSumVar(www

(t)) and meanwhile guarantee a good convergence
speed, SGD needs to generate sufficient simulation samples
from Q(xxx;www(t)) at each learning round t, making the learning
cost unaffordable.



(a) ξ=100 (b) ξ=200 (c) ξ=300 (d) ξ∈[1000, 5000]

(e) ξ=100 (f) ξ=200 (g) ξ=300 (h) ξ∈[1000, 5000]
Fig. 3: The reduction of cost measure LSumVar(xxx) (or LSimCos(xxx)) achieved by MIS-learning, compared with the uniform mixture. (a)-(d)
show the SumVar case and (e)-(h) show the SimCos case; (a)-(c), (e)-(g) show the small ξ case, and (d), (f) show the large ξ case.

Fig. 4: The impact of ξ-similarity on the convergence rate

When objectives are non-smooth, i.e., a pointwise maximum
function L(σ(www)),LSimCos(www) with smooth components, gra-
dient mapping based methods[19] guarantee an exponential re-
gret convergence. Yet in our setting, it faces the same problem
of expensive gradient (or its components) estimation. A more
challenging point is the constrained www(t) updating: the updat-
ing of www(t) has a fixed step size of 1/t and constrained moving
directions, i.e., www(t)=www(t−1)+ 1

t (eeeIt−www
(t−1)).

Our method solves these challenges and reduce the gradient (or
its components) estimation cost by generating only one sample
xxx from one of {Qn(xxx)}Nn=1 at each round. Hence, it has a “zero
cost on extra samples". Besides, with SO, estimations of rare
events {En}Nn=1 are performed only after deriving a proper www.
In other words, samples generated while optimizing www cannot
be used for estimating {En}Nn=1. As a contrast, our method est-
imates {En}Nn=1 and learns the optimal mixture www∗ at the same
time. Thus, it also has a “zero learning cost".

C. MIS-Learning vs. MAB Optimization
The MIS-Learning is also similar to the MAB optimization
[20], [21], where at each round t, we pick an action eeeIt and ob-
serve information on the loss function L. The major difference
is that these works consider a cumulative regret 1

T

∑
t∈[T]L(eeeIt)

but we focus on the global loss L( 1
T

∑
t∈[T]eeeIt).

Problems related to the MAB optimization with the global loss
have been studied in [6], [22]–[24], where they consider mini-

mizing a known loss L(www(t)>V ) with an unknown matrixV. This
differs from our setting where L is unknown and cannot be
computed analytically. [22], [24] consider a stochastic setting
and achieve a convergence rate of O(

√
1/T). The work in [23]

considers an adversarial setting, but there are cases that their
regrets cannot converge to zero. Our SumVar case is similar to
[6], which considers the global loss L(1

T

∑
t∈[T]eeeIt) and focuses

on the strongly-convex and smooth loss function L. They con-
sider L(www),

∑
n∈[N] σ

2
n/wn with the unknown but fixed σ2

n,

n∈[N]. Yet, in our setting, σ2
n, n∈[N] also depend on www.

VII. Conclusion
This paper develops a MAB OL framework to address the high
simulation cost limitation of IS in dealing with a set of rare
events. Our framework consists of a mixture importance sam-
pling optimization problem (MISOP) and two OL algorithms.
MISOP aims to select the optimal mixture attaining various
tradeoffs, which are quantified by our cost measures. We first
show that the objective function of MISOP is computationally
expensive to evaluate. Then we extend MISOP to an OL set-
ting to efficiently optimize the objective function without inc-
urring any extra learning cost. Our SumVar and SimCos algori-
thms learn to minimize the sum of variances and simulation
cost with regrets of (lnT)2/T and

√
lnT/T respectively, where

T is the number of samples. When applying to a realistic net-
work, our methods reduce the cost measure value by 61.6%
compared with the uniform mixture.
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