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Defending Against Distributed Denial-of-service Attacks

with Max-min Fair Server-centric Router Throttles

David K. Y. Yau John C. S. Lui Feng Liang

Abstract

We present a network architecture and accompanying algorithms for coun-
tering distributed denial-of-service (DDoS) attacks directed at an Internet
server. The basic mechanism is for a server under stress to install a router

throttle at selected upstream routers. The throttle can be the leaky-bucket rate
at which a router can forward packets destined for the server. Hence, before
aggressive packets can converge to overwhelm the server, participating routers

proactively regulate the contributing packet rates to more moderate levels, thus
forestalling an impending attack. In allocating the server capacity among the
routers, we propose a notion of level-

�
max-min fairness. We present a control-

theoretic model to evaluate algorithm convergence under a varitey of system
parameters. In addition, we present packet network simulation results using a
realistic global network topology, and various models of good user and attacker
distributions and behavior. Using a generator model of web requests parame-

terized by empirical data, we also evaluate the impact of throttling in protecting
user access to a web server. First, for aggressive attackers, the throttle mecha-
nism is highly effective in preferentially dropping attacker traffic over good user
traffic. In particular, level-

�
max-min fairness gives better good-user protection

than recursive pushback of max-min fair rate limits proposed in the literature.
Second, throttling can regulate the experienced server load to below its design

limit – in the presence of user dynamics – so that the server can remain opera-
tional during a DDoS attack.

I. Introduction

In a distributed denial-of-service (DDoS) attack (e.g., [1], [2]), a
cohort of malicious or compromised hosts (the “zombies”) coordinate
to send a large volume of aggregate traffic to a victim server. In such an
episode, it is likely that network nodes near the edge will progressively
become more vulnerable to resource overruns as their distance from
the server decreases. There are two reasons. First, a node that is closer
to the server will likely have less service capacity because it is closer to
the network edge, and is designed to handle fewer users. Second, such
a node will generally see a larger fraction of the attack traffic, which
has gone through more aggregation inside the network. In particular,
the server system itself is highly vulnerable, and can become totally
incapacitated under extreme overload conditions.

We view DDoS attacks as a resource management problem. Our
goal in this paper is to protect a server system from having to deal with
excessive service request arrivals over a global network. (However, the
approach can be easily generalized to protecting an intermediate rout-
ing point under overload.) To do so, we adopt a proactive approach:
Before aggressive packets can converge to overwhelm a server, we ask
routers along forwarding paths to regulate the contributing packet rates
to more moderate levels, thus forestalling an impending attack. The
basic mechanism is for a server under stress, say � , to install a router
throttle at an upstream router several hops away. The throttle limits the
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rate at which packets destined for � will be forwarded by the router.
Traffic that exceeds the rate limit can either be dropped or rerouted to
an alternate server, although we will focus exclusively on the dropping
solution in this paper.

A key element in the proposed defense system is to install appropri-
ate throttling rates at the distributed routing points, such that, globally,
� exports its full service capacity ��� to the network, but no more.
The “appropriate” throttles should depend on the current demand dis-
tributions, and so must be negotiated dynamically between server and
network. Our negotiation approach is server-initiated. A server oper-
ating below the designed load limit needs no protection, and need not
install any router throttles. As server load increases and crosses the
designed load limit ��� , however, the server may start to protect itself
by installing and activating a rate throttle at a subset of its upstream
routers. After that, if the current throttle fails to bring down the load
at � to below ��� , then the throttle rate is reduced1 . On the other hand,
if the server load falls below a low-water mark � � (where � ��� � � ),
then the throttle rate is increased (i.e., relaxed). If an increase does not
cause the load to significantly increase over some observation period,
then the throttle is removed. The goal of the control algorithm is to
keep the server load within 	 �
�������� whenever a throttle is in effect.

Router throttling has been implemented on the CROSS/Linux soft-
ware router running on a Pentium III/864 MHz machine. Because of
limited space, we are not able to discuss our implementation in this
paper, but refer the reader to [6] for the details. However, our imple-
mentation results indicate that (i) since throttling requires only looking
up the IP destination address of a packet, it has essentially the same
processing complexity as standard IP forwarding, and adds little com-
putational overhead at a deployment router, and (ii) the amount of state
information a router has to keep per throttle is a few bytes, for storing
the destination IP address and the throttle value. Although throttling is
space-efficient, the total amount of state information needed at a router
is nevertheless linear in the number of installed throttles. Hence, it
may not be possible for the routers to maintain state about every In-
ternet server. However, the approach can be feasible as an on-demand
and selective protection mechanism. The premise is that DDoS at-
tacks are the exception rather than the norm. At any given time, we
expect at most only a minor portion of the network to be under attack,
while the majority remaining portion to be operating in “good health”.
Moreover, rogue attackers usually target “premium sites” with heavy
customer utilization, presumably to cause maximal user disruptions
and to generate the most publicity. These selected sites may then elect
to protect themselves in the proposed architecture, possibly by paying
for the offered services.

A. Our contributions

Our contributions in this paper are:
� We contribute to the fundamental understanding of router throt-

tling as a mechanism against DDoS attacks. In particular, we ad-
vance a control-theoretic model useful for understanding system
behavior under a variety of parameters and operating conditions.

�
Notice that reducing the throttle rate increases the extent of throttling, be-

cause a router will more restrict traffic destined for � .
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� We present an adaptive throttle algorithm that can effectively pro-
tect a server from resource overload, and increase the ability of
good user traffic to arrive at the intended server.

� We show how max-min fairness can be achieved across a poten-
tially large number of flows, and the implication of a notion of
level- � max-min fairness on DDoS attacks.

� We study how throttling may impact real application perfor-
mance. Specifically, we demonstrate via simulations the perfor-
mance impact on an HTTP web server.

B. Paper organization

The balance of the paper is organized as follows. In Section II, we
introduce our system model. In Section III, we formally specify a base-
line and a fair algorithm for computing throttle rates. In Section IV,
we present a control-theoretic mathematical model for understanding
system performance under a variety of parameters and operating con-
ditions. To further examine system performance under detailed packet
network models, Section V presents diverse ns2 simulation results us-
ing a realistic network topology. In Section VI, we discuss several is-
sues about the practical deployment of our solution. Section VII com-
pares our solution approach with related work in the literature. Section
VIII concludes.

II. System Model

We begin by stating Convention 1 that simplifies our presentation
throughout the rest of the paper. Then, we go on to describe our system
model.

Convention 1: All traffic rate and server load quantities stated
in this paper are in units of kb/s, unless otherwise stated.

We model a network as a connected graph ���������	��
 , where � is
the set of nodes and � is the set of edges. All leaf nodes are hosts and
thus can be a traffic source. An internal node is a router; a router cannot
generate traffic, but can forward traffic received from its connected
hosts or peer routers. We denote by � the set of internal routing nodes.
All routers are assumed to be trusted. The set of hosts, �������� ,
is partitioned into the set of ordinary “good” users, �� , and the set of
attackers �� . � models the network links, which are assumed to be
bi-directional. Since our goal is to investigate control against server
resource overload, each link is assumed to have infinite bandwidth.
The assumption can be relaxed if the control algorithm is also deployed
to protect routers from overload.

In our study, we designate a leaf node in � as the target server � .
A good user sends packets to � at some rate chosen from the range
	 � �	� � � . An attacker sends packets to � at some rate chosen from the
range 	 � �	� � � . In principle, while ��� can usually be set to a reasonable
level according to how users normally access the service at � (and we
assume ����� ��� ), it is hard to prescribe constraints on the choice of
� � . In practice, it is reasonable to assume that � � is significantly higher
than � � . This is because if every attacker sends at a rate comparable
to a good user, then an attacker must recruit or compromise a large
number of hosts to launch an attack with sufficient traffic volume.

When � is under attack, it initiates the throttle defense mecha-
nism outlined in Section I. (For ease of presentation, we assume that
an overloaded server is still capable of initiating the defense actions.
However, as discussed in Section VI, the assumption can be relaxed
in practice.) The throttle does not have to be deployed at every router
in the network. Instead, the deployment points are parameterized by
a positive integer � and are given by ������
���� . Specifically, ������

contains all the routers that are either � hops away from � or less than
� hops away from � but are directly connected to a host.

Fig. 1 shows an example network topology. In the figure, a square
node represents a host, while a round node represents a router. The host
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Fig. 1. Network topology illustrating �! #"%$ deployment points of router throt-
tle, and offered traffic rates.

on the far left is the target server � . The routers in ����&'
 are shaded
in the figure. Notice that the bottom-most router in ����&(
 is only two
hops away from � , but is included because it is directly connected to a
host.

Given our system model, an important research problem is how to
achieve fair rate allocation of the server capacity among the routers in
�)���*
 . To that end, we define the following notion of level- � max-min
fairness:

Definition 1—level- � max-min fairness: A resource control algo-
rithm achieves level- � max-min fairness among the routers ������
 ,
if the allowed forwarding rate of traffic for � at each router is the
router’s max-min fair share of some rate � satisfying � �,+-�)+ ��� .

III. Throttle Algorithms

A. Baseline algorithm

We present a baseline algorithm in which each router throttles traffic
for � by forwarding only a fraction . ( �/+0.1+�2 ) of the traffic. The
fraction . is taken to be one when no throttle for � is in effect. In ad-
justing . according to current server congestion, the algorithm mimics
TCP congestion control. Specifically, . is reduced by a multiplicative
factor 3 when � is congested and sends the router a rate reduction sig-
nal. It is increased by an additive constant 4 – subject to the condition
that .0+52 – when � has extra capacity and sends the router a rate
increase signal.

The baseline algorithm that � runs is specified in Fig. 2. It is to
be invoked when either (i) the current server load (measured as traffic
arrival rate to � ) crosses � � , or (ii) a throttle is in effect and the current
server load drops below �
� . In case (i), � multicasts a rate reduction
signal to ������
 ; in case (ii), it multicasts a rate increase signal. The
algorithm can take multiple rounds until a server load within 	 � � � � � �
is achieved. Also, if the server load is below � � , and the next rate
increase signal raises the server load by an insignificant amount (i.e.,
by less than 6 ), we remove the throttle. The monitoring window 7
should be set to be somewhat larger than the maximum round trip time
between � and a router in ������
 .

In the example network shown in Fig. 1, let the number above each
host (except � ) denote the current rate at which the host sends traffic
to � . The number above each router denotes the offered rate of traffic
at the router, destined for � . Also, let � �8�92;: , ���8�=<'< , 3��92%>?< ,
and 4@�A�CB �(D . Initially, the total offered load to � exceeds � � , and
hence the baseline throttle algorithm is invoked at � . A rate reduction
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Algorithm baseline throttle�
last := ��� ;

while (1)
monitor traffic arrival rate � for time window � ;
if ( ����� � ) /* throttle not strong enough */

/* further restrict throttle rate */
multicast reduction signal to �! � $

elif ( ��	�
 � ) /* throttle too strong */
if ( � � � last

	�� )
remove rate throttle from �  � $ ;
break;

else
/* try relaxing throttle at the routers */
multicast increase signal to �! � $ ;

fi;
else

break;
fi;

end while;

Fig. 2. Baseline throttle algorithm specification.

Round  server load
1 1.0 59.9
2 0.5 29.95
3 0.75 14.975
4 0.7 17.97
5 0.65 20.965

TABLE I
TRACE OF THE THROTTLE FRACTION  AND SERVER LOAD FOR THE

BASELINE ALGORITHM.

signal causes each router to drop half of the traffic for � , resulting in
a server load of 29.95, still higher than ��� . The next rate reduction
signal causes the server load to drop below �
� , at 14.975 and a rate
increase signal to be sent, raising the server load to 17.97. Finally,
another rate increase signal raises the server to 20.965, which is within
	 �
�������� .

Table III-A shows how . and the server load change at each round
of the algorithm. When the algorithm terminates, the forwarding rates
at the deployment routers (from top to bottom of the figure) are 8.708,
0.077, 5.4285, 6.2055, 0.2135 and 0.3325, respectively. The algorithm
achieves a server load within the target range. However, it does not
achieve level- � max-min fairness, since some router is given a higher
rate than another router, even though the latter has unmet demands.

B. Fair throttle algorithm

The baseline algorithm is not fair because it penalizes all routers
equally, irrespective of whether they are greedy or well behaving. We
now present a fair throttle algorithm that installs at each router in ������
 ,
a uniform leaky bucket rate (i.e. the throttle rate) at which the router
can forward traffic for � . Fig. 3 specifies the algorithm by which �
determines the throttle rate to be installed. In the specification, � � is
the current throttle rate to be used by � . It is initialized to � � ���
��� 
 >?. ���*
 , where . ��� 
 is either some small constant, say 2, or an
estimate of the number of throttle points typically needed in �)���*
 . We
use a constant additive step, � , to ramp up � � if a throttle is in effect
and the current server load is below � � .

The fair throttle algorithm is to be invoked as with the baseline al-
gorithm. Each time it is called, it multicasts a rate- � � throttle to �)���*
 .
This will cause a router in ������
 to regulate traffic destined for � to
a leaky bucket with rate � � . The algorithm may then continue in the
while loop that iteratively adjusts � � to an appropriate value. Notice

Algorithm fair throttle�
last := ��� ;

while (1)
multicast current rate- � � throttle to �  � $ ;
monitor traffic arrival rate � for time window � ;
if ( ����� � ) /* throttle not strong enough */

/* further restrict throttle rate */
� � := � ����� ;

elif ( ��	�
 � ) /* throttle too strong */
if ( � � � last

	�� )
remove rate throttle from �! � $ ;
break;

else
/* try relaxing throttle by additive step */�

last := � ;
� � := � ����� ;

fi;
else

break;
fi;

end while;

Fig. 3. Fair throttle algorithm specification.

Round � � server load
1 10 31.78
2 5 16.78
3 6 19.78

TABLE II
TRACE OF THROTTLE RATE AND ACHIEVED SERVER LOAD FOR THE FAIR

ALGORITHM.

that the additive increase/multiplicative decrease iterative process aims
to keep the server load in 	 � � �� � � whenever a throttle is in effect. The
termination conditions and choice of 7 in the fair algorithm are the
same as in the baseline algorithm.

We apply the fair throttle algorithm to the previous example scenario
in Fig. 1. We initialize � � to � �
��� ��� 
 >'< �=2�� , and use an additive
step of one. Table II shows how � � and the aggregate server load
evolve. When the algorithm is first invoked with throttle rate 10, the
aggregate load at � drops to 31.78. Since the server load still exceeds
��� , the throttle rate is halved to 5, and the server load drops below � � ,
to 16.78. As a result, the throttle rate is increased to 6, and the server
load becomes 19.78. Since 19.78 is within the target range 	 2�: � <'< � ,
the throttle algorithm terminates. When that happens, the forwarding
rates of traffic for � at the deployment routers (from top to bottom
in the figure) are 6, 0.22, 6, 6, 0.61, and 0.95, respectively. This is
the max-min fair allocation of a rate of 19.78 among the deployment
routers, showing that level- � max-min fairness is achieved (in the sense
of Definition 1).

IV. General Mathematical Model

Router throttling is a feedback control strategy. To better under-
stand its stability and convergence behavior, we formulate its control-
theoretic model. Using the model, we explore how different system
parameters, including feedback delays, the hysteresis control limits,
and the number and heterogeneity of traffic sources, can impact sys-
tem performance. We point out that our mathematical model can also
provide a general framework for studying various multi-source flow
control problems.

Figure 4 gives a high-level description of our mathematical model
for router throttling. We model each deployment router as a source of
traffic for � , where � is the server to be protected. Let there be �
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Fig. 4. High-level description of mathematical model for router throttling.

sources and ���	���	
 be the instantaneous offered traffic rate � has for �
at time � . Given a throttle algorithm and a throttle signal � ���	
 from
� , � forwards traffic for � at an instantaneous rate ���� ��� 
 . The instan-
taneous forwarding rate � �� ���	
 is a function of the offered traffic rate,� � ���	
 , and a throttle rate � � ���	
 computed by a rate adjustment module
deployed at � , according to the throttle algorithm used.

Given � �� ���	
 from each deployment router (i.e., each router in
������
 ), � receives an aggregate traffic rate of 	�
�� � � �� ���	
 . Based on
the aggregate rate, � computes and sends the throttle signal � ���	
 to all
the routers in ������
 . Notice that the throttle signal may arrive at differ-
ent routers at different times, because we model heterogeneous delays
from � to each router. Specifically, we let � ��� � denote the network
delay from � to � . We use a set of coupled differential equations to
model the dynamics of how the throttle signal � ���	
 , the throttle rate
� � ���	
 , and the forwarding traffic rates � �� ���	
 , for � � 2 �;B�B B � � , change
over time.

A. Model for baseline algorithm

We first consider the baseline algorithm. The server generates the
throttle signal � ��� 
 as a function of the aggregate traffic workload and
the hysteresis control limits �
� and ��� . We have:

� ���	
 �

�� � � 2 if 	 
�� � ���� ���	
 � � �
2 if 	�
�� � � �� ���	
 + � �
� otherwise.

Note that when the aggregate traffic rate is within 	 � �������� , the throttle
signal will be off (i.e., � ���	
 �A� ). Upon receiving the throttle signal� ���	
 , each router will adjust its throttle rate � � ���	
 . The differential
equation for � � ��� 
 , where �����(2 � < � B�B;B � ��� , is:� ��� ���	
� � � ���! � 2 �1��� ���	
� 4"��
$#"%!&'%!(*)�+-,*. ��� � . �

��� ���	

< # %/&0%!(1)�+2,1. �3� ) � .

where � � ���'
�� 2 and 4 �54 � is the incremental step size for router� . Note that if router � receives a throttle signal � ��� �6��� 
 of 1, it
implies that the aggregate traffic rate at the server is below � � , and
therefore router � increases the fraction of forwarded traffic by 47� . On
the other hand, if the received throttle signal � ��� �8� � 
 is equal to � 2 ,

this implies that the aggregate traffic rate at the server is above � � ,
and therefore, router � reduces the fraction of forwarded traffic by half.
The forwarding traffic rate at router � is given by:� �� ���	
 �9� � ���	
 � � ���	
 (1)

B. Model for fair throttle algorithm

Let us now consider the fair throttle algorithm. In this case, the
server generates a throttle signal � ��� 
 as the throttle rate � � ���	
 , which
is a function of the aggregate server workload, the hysteresis control
limits � � and � � , and the additive step size � 4 � . The differential
equation expressing the change in the throttle rate is:� � � ��� 
� � � �0#�: 	<;,>=@?BADC, %!(�.1EDFHGBI � � � ��� 
< #�: 	J;,="?BA�C, %!(K.1L�M0G'I
Essentially, when the server discovers that the aggregate traffic is be-
low �
� , it will increase the throttle rate � � ��� 
 by � . Otherwise, if
the aggregate traffic is above � � , it will reduce the throttle rate � � ���	

by half. The objective is to achieve an aggregate server load within
	 � �������� .

Upon receiving the throttle signal � ��� �8����
 , router � adjusts its for-
warding rate, � �� ��� 
 , of traffic for � . The differential equation express-
ing the change in � �� ���	
 can be given as:� � �� ���	
� � � ���! N�%� � ��� �O�P��
�2�3� ��� 
Q� �8� �� ���	

for � �92 ��B;B B � � and � �� ���(
 ��� . Note that the rate of change of the
forwarding traffic rate � �� ��� 
 is a function of the throttle rate � � ���C�5� � 

and the offered traffic rate �$�	���	
 . If the throttle rate � � ��� �R�P��
 is larger
than the offered traffic rate, then there is no need to throttle and the
change is simply � � ��� 
 �S� �� ��� 
 . On the other hand, if � � ��� �S� � 
 is
smaller than �3�	���	
 , then we throttle and the change in the forwarding
traffic rate is � � ��� �O� � 
 ��� �� ��� 
 .
C. Mathematical Analysis

We now study the stability and convergence properties of router
throttling. Because of the lack of space, we only present results for the
fair algorithm. In our presentation, all time units are in seconds, except
otherwise stated. In the experiments, we consider 100 heterogeneous
sources. The first eighty are constant sources wherein � � ���	
8� &?�
for � � 2 � B;B;B �	:?� . In each experiment, ten of these constant sources are
switched off at � ��D?� and are activated again at � � 2��'� . The network
delay between � and each of the constant sources is 100 ms. The next
ten sources are sinusoidal sources wherein � � ��� 
 �=2;�UTV�! ��� B WX�	
 �-&?�
for ��� :C2 ��B B;B �QY'� . The network delay for each of these sinusoidal
sources is 50 ms. The last ten sources are square-pulse sources wherein� � ��� 
 �[Z D?� for <?�X\ +S� � 2�����<�\ �@2�


2�� for 2�����<�\ � 2%
 +]� � < ���K\ � 2%

for �)�^YC2 ��B�B;B �;2;�'� and \_�`� � ��2 � < ��B;B;B/� . The network delay for
each of these square-pulse sources is 50 ms.
Experiment 1: Handling of heterogeneous sources and system sta-
bility. Figure 5 illustrates the results for the first experiment where
� �-�aY?�'� and ���-��2?2��'� . We consider three different step sizes,
namely � �@�CB 2 � � B Y ��2�� B � . We make two important observations about
the results: (1) The proposed fair algorithm is effective in keeping the
server load within the target limits, under heterogeneous sources and
heterogeneous network delays, and (2) the additive step size � can af-
fect system stability. As shown, system performance is not stable for
the large step size of � � 2;� . Hence, a small step size relative to
����� � � is needed for the system to operate in a stable region.
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 �������� , and various � step sizes.
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Experiment 2: Determination of step size � for a stable system. Figure
6 illustrates the results of our second experiment where ���-� 2?2��'�
and � � can be 900 or 1050. We observe that when � � � � � is large,
the system is stable with � � 2 , and the achieved server workload at
convergence is slightly above 1000. On the other hand, when � adver-
tises a smaller target load region, with �
� � 2��'D?� and ���1� 2'2;�'� ,
we need a smaller step size (e.g, ��+ �CB & ) to have stable performance,
and the achieved server workload at convergence is closer to � � . Af-
ter experimenting with a large number of different step sizes and many
different system configurations, we recommend a step size of � � �CB D
for system stability.
Experiment 3: Effect of � on the convergence rate. Figure 7 illustrates
the results of our third experiment in which we consider how � can
affect the convergence speed. In the experiment, � � � 2��(D � and
��� � 2'2;�'� . We experiment with three different step sizes, namely
�@� � B & � �CB 2 � � B �'D . Although the system is stable for all the three
step sizes, we observe that if a step size is too small, it takes longer
for the system to converge. For example, when ten constant sources
are activated at ��� 2��?� , the system converges around ����2?2�� for
� ���CB & . On the other hand, if we use � �@�CB �(D , the system converges
around �)��2�&
� . Another important point is that if � is smaller, the
achieved server workload at convergence is also smaller. Therefore,
in order to have a stable system and, at the same time, achieve a high
server workload, we recommend � to be between 0.1 and 0.3.

V. Packet Network Simulation Results

Our general, high-level control-theoretic results provide basic un-
derstanding about algorithm stability and convergence. To further ex-
amine system performance, under detailed packet network models (in-
cluding both unreliable UDP and reliable TCP communication), we
conduct experiments using the ns2 simulator. We present results only
for the fair throttle algorithm.

A. Performance metrics

One basic performance measure is how well router throttles installed
by � can floor attackers in their attempt to deny good users of the
ability to obtain service from � . It is clear that the defense mecha-
nism cannot completely neutralize the effects of malicious traffic – in
part because attackers are themselves entitled to a share of � � in our
model. Hence, good users must see a degraded level of performance,
but hopefully are much less prone to aggressive attack flows than with-
out network protection.

Apart from the basic performance measure, it is necessary to evalu-
ate the deployment costs of the proposed defense mechanism. There-
fore, the following are important evaluation criteria that we adopt:
� The percentage of good user traffic that makes it to the server.

Since the control algorithm ensures that the server operates under
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Fig. 7. System performance for � � =1100 and 
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its maximum designed load, the good user requests that arrive
should be adequately served.

� The number of routers involved in protecting � . Because throt-
tling clips forwarding rate to some preset ceiling, it is less tolerant
to traffic variabilities than best-effort transmissions. For example,
normal traffic that occasionally exceeds the ceiling and cannot be
absorbed by the token bucket will get clipped, instead of being
served by opportunistic resource availabilites. We measure the
number of routers at which traffic is actually dropped due to the
throttle rate limit.

B. Packet network results

To evaluate how the proposed throttle mechanism would perform
over a real network, we conducted simulations using a global network
topology reconstructed from real traceroute data. The traceroute data
set is obtained from the Internet mapping project at AT&T2. It con-
tains 709,310 distinct traceroute paths from a single source to 103,402
different destinations widely distributed over the entire Internet. We
use the single source as our target server � , and randomly select 5000
traceroute paths from the original data set for use in our simulations.
The resulting graph has a total of 135,821 nodes, of which 3879 are
hosts. We assume, therefore, that out of all the hosts in the total global
network, these 3879 hosts access � , either as an attacker or a good
user.

1) Evenly distributed aggressive attackers: In our first set of ex-
periments, we model aggressive attackers, whose average individual
sending rate is several times higher than that of normal users. Specif-
ically, each good user is chosen to send fixed size UDP packets to � ,
where the packet interarrival times are Poisson and the average traffic
rate is randomly and uniformly drawn from the range 	 � � < � . Each at-
tacker is chosen to send traffic at a rate randomly and uniformly drawn
from the range 	 � �	��� � , where ��� is either 10 or 20 according to the par-
ticular experiment. Furthermore, we select attackers and good users
to be evenly distributed in the network topolgy: each host in the net-
work is independently chosen to be an attacker with probability � , and
a good user with probability 2!� � .

Figure 8(a) compares the performance of our algorithm (labeled
“level- � max-min fairness”) with that of the pushback max-min fair-
ness approach in [10], for �%� �0< � and � �0� B < . We show the percent-
age of remaining good user and attacker traffic that passes the router

�
http://cm.bell-labs.com/who/ches/map/dbs/index.html

Subtree No. of nodes No. of hosts Root’s distance
from � (hops)

1 1712 459 4
2 1126 476 6
3 1455 448 7
4 1723 490 8
5 1533 422 8

TABLE III
PROPERTIES OF SUBTREES 1–5.

throttles and arrives at the server. Figures 8(b) and 8(c) show the cor-
responding results when � � � <?� and � � � B W , and � � � 2;� and

� � � B W , respectively. We plot the average results over ten indepen-
dent experimental runs, and show the standard deviation as an error
bar around the average.

Notice from the figures that generally, level- � max-min fairness
gives signifcantly better protection for good user traffic than pushback
max-min fairness. The performance advantage of level- � max-min
fairness increases as � increases, until it levels off at � roughly equal
to 20. This is because good traffic can aggregate to a significant level
near � (the increase rate can be exponential), making it hard to distin-
guish from the attacker traffic at that location. Since pushback always
originates control at � , it can severely punish good traffic. By initi-
ating control further away from � (specifically, about � hops away),
level- � max-min fairness achieves better good user protection.

2) Unevenly distributed aggressive attackers: In this set of exper-
iments, each good user traffic rate is chosen randomly and uniformly
from the range 	 � � < � , while each attacker rate is similarly chosen from
the range 	 � � <?� � . In each experiment, about 20% of the hosts are cho-
sen to be attackers, and the remaining hosts to be good users.

In these experiments, we select the attackers to have different con-
centration properties. Specifically, we pick five disjoint subtrees from
the network topology, labeled in Fig. 9 as 1–5. The five subtrees
have properties as shown in Table III. We then define four concen-
tration configurations, 0–3, for the attackers, as shown in Table IV.
The intention is for attacker concentration to increase as we go from
configurations 0 to 3. (Notice that the roots of subtrees 4 and 5 in con-
figuration 3 share a common parent, and so attacker traffic converges
more quickly than the subtrees 1 and 3 in configuration 2.)

Fig. 10(a) shows the percentage of remaining good traffic for the
four concentrations, using level- � max-min fairness. Fig. 10(b) shows
the corresponding results for pushback max-min fairness. Notice that
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Fig. 9. Subtrees 1–5 used in attacker concentration experiments.

Configuration Attackers uniformly chosen from
0 entire graph
1 all the five subtrees
2 subtrees 1 and 3
3 subtrees 4 and 5

TABLE IV
CONFIGURED CONCENTRATIONS OF ATTACKERS.

as � increases, level- � max-min fairness achieves good protection for
the good users in all four configurations. For configurations 1–3, how-
ever, notice a “dip” in the achieved protection over � values between
about 6 to 11. For example, the percentage of remaining good traffic
for configuration 3 decreases from � ��Y to � � 2?2 , and rises again
afterwards.

To explain the dip, consider the case when all attackers are contained
in one subgraph, say � � , whose root is � hops away from � . For the
traffic seen at �)���*
 , as � decreases from � to 1, there will be more
and more aggregation of good user traffic but no further aggregation
of attack traffic. This will cause a larger fraction of good user traf-
fic to be dropped (its volume is more comparable to attack traffic) as
throttling is performed with a smaller � , for �R� 	 2 ��� � . This explains
the initial rising curves in Fig. 10(a) before the dip. For � a few hops
larger than � , the aggregation situation for both good user and attack
traffic is similar to the case of evenly distributed attackers. Hence, we
observe increased protection for good user traffic as � increases from
� ��� onwards, where � is a small constant. This explains the rising
curves shortly after the dip. At the point when � just increases past
the root of � � , however, there is progressively less aggregation of at-
tack traffic. This may cause reduced dropping rate for the attack traffic
(since its volume at the control points is smaller and more comparable

to good user traffic), when compared with control after full attack traf-
fic aggregation has occurred at the root of � � . This explains the dip
itself.

Despite the above “anomaly”, level- � max-min fairness consistently
and signifcantly outperforms pushback max-min fairness for � 4 2%D .
The performance advantage decreases from 0–3, because pushback
max-min fairness becomes more effective as attackers get more con-
centrated. Figure 10(c) more clearly compares the two approaches by
plotting their results together, for configurations 0 and 3.

3) Evenly distributed “meek” attackers: Our results so far assume
that attackers are significantly more aggressive than good users. This
may be a reasonable assumption in practice. However, should a mali-
cious entity be able to recruit or compromise many hosts to launch an
attack (which clearly requires a much more powerful attacking entity),
then each of these hosts behaving like a normal user can still together
bring about denial of service.

It is inherently more difficult to defend against such an attack. In an
experiment, we model both attackers and good users to send traffic to
� at a rate randomly and uniformly drawn from 	 � � < � . We randomly
pick about 30% or 1169 of the hosts to be attackers, which are evenly
distributed over the network. The remaining hosts are taken as good
users. This produces an aggregate traffic rate of 3885, which is about
39% higher than the server capacity of 2800 that we model.

The percentages of remaining good user and attacker traffic that ar-
rives at � are shown in Figure 11, for both level- � and pushback max-
min fairness. As shown in the figure, both approaches essentially fail to
distinguish between the good users and the attackers, and punish both
classes of hosts equally. However, the throttling mechanism, whether
it employs level- � or pushback max-min fairness, can still be useful
because it does protect the server from overload. Hence, the 70% of
good user requests that do make it to � may still be able to obtain
service from � , whereas the same may not be true of a server that is
simply overwhelmed with excessive packet arrivals.

4) Deployment extent: The previous two sets of experiments sug-
gest that, for aggressive attackers, the effectiveness of level- � max-min
fairness increases with � . At the same time, however, the cost of de-
ployment may also increase, as the number of routers in ������
 becomes
larger.

Figure 12 plots the percentage of routers involved in throttling as a
function of � , for both level- � and pushback max-min fairness. (For
the level- � approach, we count both monitoring and throttling routers.)
Notice that the two approaches basically require a comparable number
of deployment points, although for � equal to 4–9, pushback max-min
fairness is somewhat more efficient, and for larger � , level- � max-min
fairness is somewhat more efficient. Also, the percentage of deploy-
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ment points levels off as � rises above 20 for both approaches. This is
because as � increases, a throttling node will likely see a progressively
smaller rate of traffic destined for � . If the rate is small enough, both
algorithms avoid the actual use of a throttle.

5) Web server performance: To evaluate the impact of throttling
on real user applications, we simulate the performance of a web server
under DDoS attack. The simulations are performed using ns2, and
clients access the web server via HTTP 1.0 over TCP Reno/IP. (TCP
is interesting because the achieved throughput by a client also depends

on the rate at which acks are returned from the server to the client.)
The simulated network is a subset of the AT&T traceroute topology
described above. It consists of 85 hosts, of which 20% (i.e., 17 out of
85) are chosen as attackers. The maximum and average numbers of
hops between a client and the server is 30 and 15, respectively.

Attackers generate UDP traffic destined for the server, at a constant
rate of 6000 bits/s. Web clients make requests for documents to the
server, where the document sizes and times between requests are prob-
abilistically generated according to collected empirical distributions.3

If a request arrives at the server successfully, the server will return
the requested document after a random processing time, also chosen
according to collected empirical distributions.

We model the web server to have � � �A: kbytes/s and � � �52;�
kbytes/s. We report two experiments with � �=2�� and � � Y , respec-
tively. To compare web server performance with and without throt-
tling, we plot the rates of client requests that are successfully processed
by the server in both cases, over time. The aggregate rate at which the
clients originally make requests is also shown for baseline comparison.
Each experiment runs for 100 seconds of simulated time, and an attack
starts at time 10 seconds.

Fig. 13(a) shows the results for � � 2�� . Notice that with throt-
tling, the rate of client requests that are successfully processed is much
closer to the original client request rate, than without throttling (the
averages are 3.8, 2.5 and 0.9 kbytes/s, respectively). Fig. 13(b) shows
the corresponding results for � � Y , and supports the same conclu-
sions. Fig. 13(c) shows the web client, attacker, and total traffic arrival
rate at the server, for � � 2�� . Notice that our throttle negotiation al-
gorithm is effective in keeping the actual server load between � � and
��� .

VI. Discussions

Several observations are in order about the practical deployment of
our defense mechanism. First, we must achieve reliability in installing
router throttles. Otherwise, the throttle mechanism can itself be a point
for attack. To ensure reliability, throttle messages must be authenti-
cated before an edge router (assumed to be trusted) admits them into
the network. Notice that only edge routers that have made arrangement
with the (relatively few) server sites that desire protection have to do
authentication. Other edge routers can just drop throttle requests un-
conditionally. Also, throttle requests must be efficiently and reliably
delivered from source to destination, which can be achieved by high
network priority for throttle messages and retransmissions in case of

�

Please see http://http.cs.berkeley.edu/ tomh/wwwtraffic.html for further de-
tails.



9

0

1000

2000

3000

4000

5000

6000

7000

40 50 60 70 80 90 100

tr
af

fic
 r

at
e 

(b
yt

e/
se

co
nd

)

time (second)

original client request rate
successful client request rate with throttle
successful client request without  throttle

0

1000

2000

3000

4000

5000

6000

7000

40 50 60 70 80 90 100

tr
af

fic
 r

at
e 

(b
yt

e/
se

co
nd

)

time (second)

original client request rate
successful client request rate with throttle
successful client request without  throttle

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 20 40 60 80 100

tr
af

fic
 r

at
e 

(b
yt

es
/s

ec
on

d)

time (second)

total traffic arrival rate at sever
attacker arrival traffic rate at server

good user traffic arrival rate at server
higher water mark of server capacity: Us

lower water mark of server capacity: Ls

% � . %��-. %��V.
Fig. 13. (a) Plot of (i) original client request rate, (ii) rate of successfully processed client requests with level-10 router throttling, and (iii) rate of successfully
processed client requests without throttling, over time. (b) Plot of (i) original client request rate, (ii) rate of successfully processed client requests with level-9
router throttling, and (iii) rate of successfully processed client requests without throttling, over time. (c) Plot of total, attacker, and web client traffic arrival rates
at server, over time, for level-10 throttling.

loss. Since throttle messages are infrequent and low in volume, the
cost of authentication and priority transmissions should be acceptable
(notice that edge authentication will prevent the network from seeing
a high load of phony throttle messages).

Second, because of the feedback nature of the control strategy, it is
possible that the server will transiently experience resource overload.
To ensure that the throttle mechanism remains operational during these
times, we can either use a coprocessor on the server machine that is not
concerned with receive-side network processing, or deploy a helper
machine, whose job is to periodically ping the server, and initiate de-
fense actions when the server is not responsive.

Third, the throttle mechanism may not be universally supported in a
network. Our solution remains applicable provided at least one router
supports the mechanism on a network path that sees substantial at-
tacker traffic. Depending on the position of such a router, the feasible
range of � may be more restricted.

Fourth, we have adopted a generic notion of max-min fairness in our
study, which makes it easy to manage and deploy. As observed in [10],
however, it is also possible to have a policy-based definition of max-
min fairness in practice. The policy can refer to different conditions
in different network regions, in terms of tariff payments, network size,
susceptibility to security loopholes, etc.

VII. Related Work

Probabilistic IP marking is advanced by Savage et al [12] to iden-
tify attackers originating a denial-of-service attack, in spite of source
address spoofing. The analysis in [11] confirms the remark in [12]
that their form of IP traceback may not be highly effective for dis-
tributed DoS attacks. Subsequently, Song and Perrig [13] improves
upon the information convergence rate that allows to reconstruct the
attack graph (by eliminating false positives when markers can be frag-
mented across packets), and reduces the time overhead in the recon-
struction process itself, for DDoS attacks. These algorithms expose
the true attackers, which supposedly facilitates defense actions that
can then be taken to curtail an attack. However, the required defense
mechanisms are external to IP trackeback, which in and of itself offers
no active protection for a victim server.

To actively defend against attacks, analysis of routing information
can enable a router to drop certain packets with spoofed source ad-
dress, when such a packet arrives from an upstream router inconsis-
tent with the routing information. The approach requires sophisticated
and potentially expensive routing table analysis on a per-packet basis.
Also, it is not necessary for attackers to spoof addresses in order to

launch an attack. The latter observation also limits the effectiveness of
ingress filtering approaches [5].

A defense approach most similar to ours is proposed by Mahajan et
al [10]. They describe a general framework for identifying and control-
ling high bandwidth aggregates in a network. As an example solution
against DDoS attacks, an aggregate can be defined based on destina-
tion IP address, as in our proposal. To protect good user traffic from
attacker traffic destined for the same victim server, they study recursive
pushback of max-min fair rate limits starting from the victim server to
upstream routers. Similar to level- � max-min fairness, pushback de-
fines a global, cross-router notion of max-min fairness. Unlike level- �
max-min fairness, the pushback mechanism always starts the resource
sharing decision at the server, where good user traffic may have aggre-
gated to a large volume and thus can be severely punished (see Section
V-B.1). Such aggregation of normal user traffic has been observed to
occur in practice [4].

Architecturally, our control algorithm is more of an end-to-end ap-
proach initiated by the server, whereas the proposal in Mahajan et al
[10] is more of a hop-by-hop approach in which routers participate
more heavily in the control decisions. Hence, our routers have simpli-
fied responsibilities, when compared with [10] – they do not need to
compute server-centric max-min fair allocations, and are not required
to generate and send back status messages to the server.

The use of authentication mechanisms inside the network will also
help defend against DDoS attacks, e.g. IPsec [8]. Recently, Gouda
et al [7] propose a framework for providing hop integrity in computer
networks. Efficient alogrithms for authentication and key exchanges
are important research questions in this class of solutions.

Lastly, our solution aims to achieve max-min fairness across a po-
tentially large number of flows. Scalable max-min fair allocation in
such a situation is studied in [3], where the optimal sharing objective
is relaxed to achieve substantial reductions in overhead.

VIII. Conclusion

We presented a server-centric approach to protecting a server system
under DDoS attacks. The approach limits the rate at which an upstream
router can forward packets to the server, so that the server exposes no
more than its designed capacity to the global network. In allocating
the server capacity among the upstream routers, we studied a notion
of level- � max-min fairness, which is policy-free and hence easy to
deploy and manage.

Using a control-theoretic mathematical model, we studied stability
and convergence issues of router throttling under different system pa-
rameters. In addition, we evaluated algorithm effectiveness using a
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realistic global network topology, and various models for attacker and
good user distributions and behaviors. Our results indicate that the
proposed approach can offer significant relief to a server that is being
flooded with malicious attacker traffic. First, for aggressive attack-
ers, the throttle mechanism can preferentially drop attacker traffic over
good user traffic, so that a larger fraction of good user traffic can make
it to the server as compared with no network protection. In particu-
lar, level- � max-min fairness performs better than recursive pushback
of max-min fair rate limits previously proposed in the literature [10].
This is especically the case when attackers are evenly distributed over
the network. Second, for both aggressive and “meek” attackers, throt-
tling can regulate the experienced server load to below its design limit,
so that the server can remain operational during a DDoS attack. More-
over, our related implementation results [6] show that throttling has
low computation and memory overheads at a deployment router.

Our results indicate that server-centric router throttling is a promis-
ing approach to countering DDoS attacks. Our focus has been on
DDoS attacks in which attackers try to overwhelm a victim server by
directing an excessive volume of traffic to the server. Other forms of
attacks are possible that do not depend on the sheer volume of attack
traffic [9]. However, more sophisticated attack analysis (e.g., intrusion
detection) is usually feasible to deal with these other forms of attacks.
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