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Abstract

We present the SEcure communicAtion Library (SEAL), a Linux-based C language application programming interface (API)
library that implements secure group key agreement algorithms that allow a communication group to periodically renew a
common secret group key for secure and private communication. The group key agreement protocols satisfy several important
characteristics: distributed property (i.e., no centralized key server is needed), collaborative property (i.e., every group member
contributes to the group key), and dynamic property (i.e., group members can join or leave the group without impairing the
efficiency of the group key generation). Using SEAL, we developed a testing tool termed Gauger to evaluate the performance
of the group key agreement algorithms in both wired and wireless LANs according to different levels of membership dynamics.
We show that our implementation achieves robustness when there are group members leaving the communication group in the
middle of a rekeying operation. We also developed a secure chat-room application termed Chatter to illustrate the usage of
SEAL. Our SEAL implementation demonstrates the effectiveness of group key agreement in real network settings.

Key words: Secure group communication, group key agreement implementation.

1. Introduction

Many group-oriented applications require communi-
cation confidentiality, meaning that the communication
data among a group of authorized members are se-
cure and inaccessible to group outsiders. Examples of
these applications include secure chat-rooms, business
conferencing systems, file sharing tools, programmable
router communication, and network games in strategy
planning. To offer data privacy, an effective approach
is to require all group members to establish a common
secret group key, which is held only by group mem-
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bers, but not outsiders, for encrypting the transmitted
data. In particular, rekeying, or renewing the group key,
is necessary whenever there is any change in the group
membership (e.g., a new member joins the group or an
existing member leaves the group) in order to guarantee
both backward confidentiality (i.e., no joining member
can read the previous data) and forward confidentiality
(i.e., no leaving member can access the future data).

One simple way for a communication group to per-
form rekeying is to set up a centralized key server that
is responsible for renewing the group key and distribut-
ing it to all group members. However, relying on a
centralized key server introduces the single-point-of-
failure problem since if the key server is compromised,
the whole key establishment process fails. Moreover,
centralized management is not adequate for decentral-
ized network settings such as peer-to-peer or mobile
ad hoc networks. Therefore, we should design a se-
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cure group key agreement scheme that allows the group
members to agree upon the group key without relying
on a centralized key server. The group key agreement
scheme should satisfy three properties. The first one is
the distributed property, which means no centralized
key server is required. The second one is the collabo-
rative property, which means all group members con-
tribute their own secret piece of information to the gen-
eration of the group key. Both distributed and collabo-
rative properties seek to eliminate the single-point-of-
failure problem such that when one member is com-
promised, the group can still continue with its secure
communication by excluding the compromised mem-
ber. The final property is the dynamic property, which
means the group key agreement scheme retains both ac-
curacy and efficiency even if the group key agreement
scheme involves dynamic membership events, such as
when a new member joins or an existing member leaves
the group.

In (Lee et al., 2002), we proposed three interval-
based distributed rekeying algorithms (or interval-based
algorithms for short) called Rebuild, Batch, and Queue-
batch, each of which performs rekeying (i.e., renews
the group key) on a batch of join and leave requests
periodically at regular rekeying intervals and satisfies
the distributed, collaborative, and dynamic properties.
Instead of performing rekeying for each single join or
leave event, the interval-based algorithms use the peri-
odic rekeying approach so that the rekeying efficiency
is preserved in response to the frequent join and leave
events, with a tradeoff of weakening both backward and
forward confidentialities. In (Lee et al., 2002), we eval-
uated the performance of the interval-based algorithms
via mathematical modeling and simulation experiments.
However, there are still open issues about the actual
implementation and performance of the interval-based
algorithms in a real network environment.

In this paper, we present the SEcure communicAtion
Library (SEAL), an application programming interface
(API) library that implements the interval-based algo-
rithms in the C language under Linux and allows a com-
munication group to agree upon a common secret group
key for data encryption in real-life group-oriented ap-
plications. Through the implementation framework, we
analyze the design issues that are critical for implement-
ing the algorithms. Furthermore, we export from SEAL
a set of API function calls that can be used to develop
secure group-oriented applications.

Using SEAL, we developed a performance testing
tool called Gauger that simulates a member applica-
tion participating in a secure group communication. We
evaluate the rekeying performance of the interval-based

algorithms in a wired LAN where 40 Gaugers continu-
ously join and leave a communication group according
to different levels of membership dynamics. We show
that the Queue-batch algorithm generally takes less than
one second to complete a rekeying operation. Also, we
show that our implementation achieves robustness when
there are group members leaving the group in the mid-
dle of a rekeying operation. Furthermore, we evaluate
SEAL using both wired and wireless LAN testbeds so
as to provide preliminary insights on how different de-
ployment environments vary the performance of SEAL.

We further used SEAL to implement a secure chat-
room application called Chatter to illustrate how to de-
ploy SEAL in real-life applications. Also, we identify a
number of potential applications that can benefit from
SEAL.

The rest of the paper proceeds as follows. In Sec-
tion 2, we overview the group key agreement algorithms
that substantiate our implementation. Section 3 presents
the design of the SEAL implementation and address
the design issues. Section 4 provides the implementa-
tion details. In Section 5, we present a set of SEAL
API functions for building secure group-oriented ap-
plications. In Section 6, we evaluate the performance
of the interval-based algorithms using wired and wire-
less LAN testbeds. In Section 7, we introduce Chatter,
a secure chat-room application built upon SEAL. We
also suggest other potential applications where SEAL
fits their development needs. Section 8 discusses related
work, and Section 9 concludes and suggests future work.

2. Group Key Agreement Algorithms

In this section, we first overview the Tree-based
Group Diffie-Hellman (TGDH) protocol (Kim et al.,
2004). We then describe the group key agreement al-
gorithms (Lee et al., 2002) that substantiate the group
key agreement protocols in our SEAL implementation.

2.1. Tree-based Group Diffie-Hellman (TGDH)

In TGDH, each group member holds a binary key
tree. Each node v is associated with a secret (or pri-
vate) key Kv and a blinded (or public) key BKv. All
arithmetic operations are performed in a cyclic group of
prime order p with the generator α. Mathematically, the
keys Kv and BKv are related by the formula BKv =
αKv mod p.

Each member, denoted by Mi for some integer i,
holds the secret keys along its key path, which is the
sequence of nodes starting from its corresponding leaf
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node up to the root node. In addition, each member
holds the blinded keys along its co-path, which con-
tains the nodes whose siblings belong to its key path,
although the member may cache the blinded keys asso-
ciated with other nodes. Figure 1 depicts a possible key
tree composed of six members M1 to M6. M1 holds
the secret keys of nodes 7, 3, 1, and 0, and the blinded
keys of nodes 8, 4, and 2. Since node 0 lies on the key
paths of all members, its associated secret key is chosen
as the group key.

0

M1 M2 M5

M4M3

1 2

3 4 5 6

14137 8
M6

Fig. 1. A possible key tree used in the TGDH algorithm.

Each member has to determine the secret keys along
its key path. First, it obtains the secret key at its cor-
responding leaf node through a secure random number
generator. Then it computes the secret key at each non-
leaf node, say v, from the keys at the child nodes of v

based on the Diffie-Hellman algorithm (Diffie and Hell-
man, 1976). Mathematically, given a non-leaf node v,
its child nodes are represented by 2v + 1 and 2v + 2,
and its secret key is given by

Kv = (BK2v+1)
K2v+2 = (BK2v+2)

K2v+1

= αK2v+1K2v+2 mod p. (1)

To understand how each member computes the group
key, we consider again the group shown in Figure 1.
Each member Mi first generates its own secret key
which is then associated with one of the leaf nodes in
the key tree. For example, member M1 first generates
K7 and requests the blinded key BK8 from M2, BK4

from M3, and BK2 from either M4,M5, or M6. Given
M1’s secret key K7 and the blinded key BK8, M1 can
generate the secret key K3 according to Equation 1.
Given the blinded key BK4 and the newly generated
secret key K3, M1 can generate the secret key K1 based
on Equation 1. Given the secret key K1 and the blinded
key BK2, M1 can generate the secret key K0 at the
root. Other members can follow a similar approach to
compute the group key. From that point on, any com-
munication in the group can be encrypted based on the
secret key (or group key) K0.

When a member joins or leaves the group, all group
members carry out a rekeying operation, in which they
renew the group key to ensure both backward confiden-
tiality (i.e., no joining member can read the previous

data) and forward confidentiality (i.e., no leaving mem-
ber can access the future data). In each rekeying oper-
ation, all group members elect a member called spon-
sor, which is responsible for broadcasting the updated
blinded keys. By convention, the sponsor is the right-
most member under the subtree rooted at the sibling of
the joining or leaving member. We point out that the
presence of a sponsor does not violate the collaborative
property since the sponsor only facilitates the rekey-
ing operation but does not add extra contribution to the
group key.

Figure 2 illustrates the idea of the rekeying opera-
tion under both single join and single leave cases. In the
single join case, suppose that a new member M7 joins
the group. To keep the key tree balanced, M7 should
be added to the highest leaf node in the key tree. Here,
member M7 can be associated with node 12, which is
attached under node 5. The renewed nodes, the ones
whose keys need to be renewed, are then identified.
These include nodes 5, 2 and 0 (the nodes shaded in Fig-
ure 2). Also, member M4 is elected to be the sponsor. It
renews K5, K2, and K0 using BK12, BK6, and BK1,
respectively, and broadcasts the blinded keys BK5 and
BK2. Members M1, M2 and M3 can compute K0 upon
receiving BK2, and members M5 and M6 can compute
K0 upon receiving BK5. In this example, we assume
that when M7 joins the group, it broadcasts its indi-
vidual blinded key (i.e., BK12) and learns the required
blinded keys for computing the group key from other
members. In the single leave case, suppose that member
M4 wants to leave the group. Nodes 5 and 12 pruned,
and node 11 is promoted to be node 5. The renewed
nodes are nodes 2 and 0. Also, M7 is elected to be the
sponsor. It renews K2 and K0, and broadcasts BK2.
All remaining members can then obtain the group key.
It should be noted that although the keys of node 5 (i.e.,
the individual keys of M7) remain intact, M7 may have
to broadcast the blinded key BK5 since node 5, which
is initially node 11, does not belong to the co-paths of
M5 and M6 before the rekeying operation.

Based on the above join and leave events in Figure 2,
if we simply change the member association of node
5 from M4 to M7, we can save one rekeying opera-
tion. This intuition motivates the use of interval-based
rekeying in which the communication group performs
rekeying on a batch of join and leave events periodi-
cally. We describe the interval-based rekeying approach
in the following subsection.
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Fig. 2. TGDH rekeying at a single join and a single leave. Note that the shaded nodes are the nodes whose corresponding keys need to be
renewed. Also, the notation Mi(s) means that member Mi becomes a sponsor.

2.2. Interval-Based Distributed Rekeying Algorithms

In this subsection, we overview three interval-based
distributed rekeying algorithms (Lee et al., 2002) (or
interval-based algorithms for short), namely Rebuild,
Batch, and Queue-batch, which are developed based on
the TGDH algorithm and perform rekeying on a batch
of join and leave events periodically at regular inter-
vals. Interval-based rekeying maintains the rekeying fre-
quency regardless of the dynamics of join and leave
events, with a tradeoff of weakening both backward and
forward confidentialities as a result of delaying the up-
date of the group key. In practice, system administrators
can decide the length of the rekeying interval to balance
the tradeoff between performance and security.

The interval-based algorithms are developed based
on the following assumptions:
– All group members are trusted in the key establish-

ment process. This is justified since the group mem-
bers participate in the secure group communication.

– The group communication satisfies view synchrony
(Fekete et al., 1997; Kim et al., 2004) that defines re-
liable and ordered message delivery under the same
membership view. Intuitively, when a member broad-
casts a message under a membership view, the mes-
sage is delivered to same set of members viewed by
the sender. Note that this view-synchrony property is
essential not only for group key agreement, but also
for reliable multipoint-to-multipoint group communi-
cation in which every member can be a sender (Kim
et al., 2004).

– Rekeying operations of all members are synchronized
to be carried out at the beginning of every rekeying
interval.

– To obtain the blinded keys of the renewed nodes, the
key paths of the sponsors should contain those re-
newed nodes. Since the interval-based rekeying op-
erations involve nodes lying on more than one key
paths, more than one sponsors may be elected. Also,
a renewed node may be rekeyed by more than one
sponsor. Therefore, we assume that the sponsors can
coordinate with one another such that the blinded

keys of all the renewed nodes are broadcast only once.
– At the beginning of a rekeying operation, all mem-

bers know the current key tree structure and the cor-
responding blinded keys in their own co-path.
In the subsequent sections, we discuss how the above

assumptions are addressed in our implementation. In the
following, we provide the basic ideas behind the three
interval-based algorithms. Readers may refer to (Lee
et al., 2002) for the detailed description and simulation
analysis of the interval-based algorithms.
– Rebuild: The idea of Rebuild is to reconstruct the key

tree to a complete tree in order to minimize the tree
height and hence the rekeying steps by group mem-
bers in subsequent rekeying intervals. All the non-leaf
nodes need to be renewed. Also, we assume that all
members become sponsors and they coordinate with
each other in broadcasting the renewed blinded keys.
Rebuild is suitable for some cases, such as when the
membership events are so frequent that we can di-
rectly reconstruct the whole key tree for simplicity,
or when some members lose the rekeying informa-
tion and the simplest way of recovery is to rebuild
the key tree.

– Batch: The main idea of Batch is to add joining mem-
bers at suitable positions in the key tree. Given a set of
joining and leaving members, Batch replaces leaving
members with joining members since the keys held
by the leaving members have to be renewed anyway.
It then adds joining members to the shallowest possi-
ble positions in the key tree. Also, it tries to maintain
a balanced key tree to prevent members from being
located at deep positions and performing extensive
rekeying steps.

– Queue-batch: Unlike Rebuild and Batch, Queue-
batch pre-processes joining members within the idle
period of every rekeying interval. This alleviates the
processing load during the rekeying operation con-
ducted at the beginning of every rekeying interval and
hence speeds up the start of the secure communica-
tion with the latest group key. Queue-batch consists
of two phases: Queue-subtree and Queue-merge. In
the Queue-subtree phase, which occurs in the midst
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of the rekeying interval, joining members are attached
to a subtree T ′, like how TGDH manages the single
join event. In the Queue-merge phase, which occurs
at the start of the next rekeying interval, the subtree
T ′ is attached to the key tree.

3. Design of SEAL

In this section, we present the design mechanisms
of SEAL on how to enable a communication group to
perform a rekeying operation (i.e., to renew the group
key) in actual implementation.

3.1. Summary of Design

We first summarize how SEAL implements a rekey-
ing operation:

(i) When a new member joins a communication
group, it connects to a Spread daemon (Amir
et al., 2004a), a group communication service
that guarantees the reliable and ordered message
delivery under the same membership view.

(ii) Among the existing group members, the commu-
nication group selects a leader, a single member
that is responsible for synchronizing the rekeying
operations carried out by all group members. At
regular rekeying intervals, the leader notifies all
other group members to start a new rekeying op-
eration via the broadcast of a rekeying message.

(iii) Each group member updates its own key tree
based on the agreed-upon interval-based algo-
rithm (i.e., Rebuild, Batch, or Queue-batch) and
checks whether it is a sponsor. Any member that
becomes the sponsor will broadcast the updated
blinded keys.

(iv) Each member carries out the key confirmation
process (Ateniese et al., 1998) to assure that ev-
ery other member has actually obtained the same
group key. If this key confirmation process suc-
ceeds, then the rekeying operation is finished.

(v) If there are some members leaving the commu-
nication group in the middle of a rekeying oper-
ation (i.e., after the leader initiates the rekeying
operation but before the group key is confirmed),
the communication group either continues with
its existing rekeying operation, or starts a rekey-
ing operation reflecting the departures of those
members.

3.2. Reliable Group Communication

Our implementation is built upon the Spread toolkit
(Amir et al., 2004a), which implements the view syn-
chrony property for reliable group communication.
When a new member joins a communication group, it
connects to a Spread daemon, a group communication
service which maintains an active TCP connection to
all other Spread daemons and keeps track of the current
membership status of the communication group. Each
Spread daemon can be associated with more than one
member, so the group communication model forms a
two-level hierarchy consisting of the Spread daemons
and the group members. When a member joins or
leaves the group, every member will receive the latest
membership view from its associated Spread daemon.
Also, the Spread daemon associated with the joining
or leaving member notifies other daemons to flush the
remaining messages to the original membership view
and to block the transmission of new messages until all
Spread daemons and existing group members install the
updated membership view. Similarly, if a Spread dae-
mon fails, the associated members are removed from
the membership view by the remaining Spread dae-
mons. Therefore, every existing group member always
holds the latest membership view. Also, all messages
are originated from the sender and delivered to all
members under the same membership view, or equiv-
alently between two consecutive membership events.
To ensure the ordered delivery, the Spread daemons
append a timestamp to every transmitted message.

Here, we implicitly assume that the Spread daemons
always provide trusted membership views. Maintaining
an authenticated membership view involves the change
of implementation in Spread and is not the focus of this
paper. We pose this problem as future work.

The Spread toolkit provides a set of API functions
for members to send or receive messages through the
Spread daemon under the view synchrony model. We
use those API functions as the foundation for our im-
plementation of the interval-based algorithms.

3.3. Leader

The leader is the single member that is responsible
for periodically notifying all group members to start a
rekeying operation synchronously at regular rekeying
intervals. We select the member that stays in the com-
munication group for the longest time to be the leader.
When a group member joins the group as a new par-
ticipant or is notified that the leader has left the group,
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it decides which member should be the current leader
based on the agreed-upon membership view provided
by its associated Spread daemon (see Section 3.2). Since
each member holds the identical membership view, any
member that falsely claims to be the leader will be de-
tected by other group members and excluded from the
communication group. We point out that the leader is
not a centralized key server that generates the group
key, so the contributory requirement of our proposed
algorithms still holds.

When a member is selected to be the leader of a com-
munication group, it immediately broadcasts a rekeying
message to the group and repeats the broadcast peri-
odically at regular rekeying intervals. Since new mem-
bers do not know the rekeying information including
the present join and leave events as well as the exist-
ing key tree when they join the group, each rekeying
message should contain the existing key tree as well as
the join and leave requests in the last rekeying interval.
The exact construction of the rekeying message will be
discussed in Section 4.

It is possible that a newly selected leader does not
know the current key tree structure. This occurs when
it has just joined the group and has not started any
rekeying operation. In this case, the leader should in-
clude only an empty tree and the join events in the first
rekeying message. The leave events, however, are not
required as they do not take effect in an empty tree.

3.4. Sponsor

Sponsors, as previously stated, refer to the group
members that need to broadcast the blinded keys associ-
ated with the nodes in a key tree during a rekeying oper-
ation. Since each member holds the blinded keys along
its own co-path, which is a list of nodes whose siblings
belong to its key path, the sponsors have to broadcast
the blinded keys of the non-renewed nodes, which are
the children of the renewed nodes so that members can
compute the secret keys of the renewed nodes. Broad-
casting non-renewed blinded keys is essential for the
new members which know nothing about the group be-
fore they join, as well as for the existing members whose
co-path does not include the non-renewed nodes prior
to the rekeying operation. (We will later illustrate how
it helps the existing members with an example). There-
fore, in our implementation, we appoint the sponsors to
broadcast the blinded keys of two types of nodes: (1) all
renewed nodes and (2) the non-renewed nodes whose
parents are renewed nodes.

We first refine the sponsor election criterion as fol-

lows: in each rekeying interval, a member becomes a
sponsor if it is the rightmost member of the subtree
whose root is a non-renewed node but the parent of the
root is a renewed node (if the member is the only mem-
ber in the group, no sponsor is elected). It should be
noted that all new members are elected to be sponsors
based on this criterion.

After being elected, the sponsors have to decide the
exact nodes whose corresponding blinded keys need
to be broadcast. We call this decision-making process
to be sponsor coordination, whose pseudo-code is pre-
sented in Figure 3. To understand how it works, con-
sider Figure 4, in which the key tree contains a num-
ber of renewed nodes (i.e., nodes 0, 1, 2, and 6). Based
on our sponsor election criterion, M1, M2, M5, M7,
and M8 are elected to be sponsors. According to the
algorithm in Figure 3, member M1 broadcasts BK3,
M2 broadcasts BK4 and BK1, M5 broadcasts BK5,
M7 broadcasts BK13, and M8 broadcasts BK14, BK6,
BK2, and BK0. Furthermore, Figure 4 illustrates the
need of broadcasting the blinded keys of non-renewed
nodes (i.e., nodes 3, 4, 5, 13, and 14) to existing mem-
bers. For example, M6 and M7 do not hold the blinded
key of node 14 if it is promoted from one of its child
nodes since the node is not originally on their co-paths.
Therefore, they have to obtain the blinded key from the
sponsors.

The sponsor coordination process satisfies three prop-
erties. First, it is self-computable because it does not
involve any communication between sponsors to deter-
mine which blinded keys are to be broadcast. Also, it
is lightweight because it only requires a sponsor to tra-
verse its key path once. Its worst-case complexity is
O(h), where h is the depth of the leaf node associated
with the sponsor. Lastly, it is broadcast-efficient since
it broadcasts the keys in a minimum number of rounds.
To elaborate the last property, we consider an example
in which a renewed node vp is the root of a subtree and
has the left child node vl and the right child node vr,
whose corresponding sponsors are Ml(s) and Mr(s), re-
spectively. To decide which sponsor is to be selected to
broadcast the blinded key of vp, we consider two cases.
In the first case, if only one child node is renewed – say
vl is renewed but vr is not – Ml(s) can compute the se-
cret key of vp based on the unchanged blinded key of vr.
This implies that Ml(s) can broadcast the blinded keys
of vl and vp in one round. We therefore select Ml(s)

to broadcast the blinded key of vp. In the second case,
if both child nodes are renewed, i.e., vl and vr are re-
newed nodes, both sponsors have to wait for the updated
blinded keys of vl and vr to compute the secret key of
vp. They need two rounds to broadcast the blinded key
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Sponsor Coordination (T ) {T is the updated key tree with a set
of renewed nodes}

1: broadcast list = NULL
2: if holds the sponsor’s responsibility then
3: k node = leaf node of the member’s key path
4: while k node 6= T ’s root AND k node’s parent not renewed

do
5: k node = k node’s parent
6: insert k node into broadcast list

7: while k node 6= T ’s root do
8: if both k node and k node’s sibling not renewed OR

both k node and k node’s sibling renewed then
9: if k node is the right child then

10: insert k node’s parent into broadcast list

11: else
12: break the while loop
13: end if
14: else if k node not renewed AND k node’s sibling re-

newed then
15: break the while loop
16: else if k node renewed AND k node’s sibling not re-

newed then
17: insert k node’s parent into broadcast list

18: end if
19: k node = k node’s parent
20: end while
21: end while
22: end if
23: return broadcast list;

Fig. 3. Pseudo-code of the sponsor coordination process.

0

M1(S) M2(S)

1 2

3 4 5 6

1211 1413

M3 M4

23 24 2827

M5(S)

M6 M7(S)

M8(S)

M1 broadcasts BK3
M2 broadcasts BK4 and BK1
M5 broadcasts BK5
M7 broadcasts BK13
M8 broadcasts BK14,BK6,BK2,and BK0

Fig. 4. Example to illustrate the sponsor coordination process in
Figure 3.

of vp. We can therefore select any one sponsor, say the
sponsor Mr(s) under the right child node, to take this
responsibility. Combining the two cases, we can apply
similar arguments when vl is not a renewed node but
vr is and when both vl and vr are not renewed nodes.

3.5. Key Confirmation

Key confirmation (Ateniese et al., 1998) assures each
member that all other members are actually holding the
same group key. Providing complete key confirmation
requires every member to demonstrate its knowledge of
the group key to all other members. One way to achieve
this is to ask every member to broadcast the one-way
function result of the group key after it is generated.

However, this involves many broadcasts and may be in-
feasible. In another approach given in (Just and Vaude-
nay, 1996), each member only needs to prove its knowl-
edge of the group key to its neighbors, provided that
all members are arranged in a ring. However, such an
approach is vulnerable to the collusion attack (Just and
Vaudenay, 1996).

In SEAL, we design a weaker but feasible key con-
firmation approach. We appoint a sponsor based on the
sponsor-coordination algorithm to broadcast the blinded
group key which lets every member verify if its com-
puted blinded group key is identical to the one it re-
ceives. If a member finds that the keys are different, it
will report the error. The rekeying operation is finished
if every member verifies that both keys are identical.

We do not require any member to explicitly indicate
the successful verification of the group key. When a
member wants to broadcast a data message, it simply
encrypts the message with the latest group key that has
been obtained. Any member that has not yet confirmed
the correctness of the group key will cache the message
until the group key is verified. In general, the duration
of a rekeying operation is on the order of seconds (see
Section 6), so any cached encrypted message will be
decrypted after a short while.

3.6. Robustness

We close this section by discussing how SEAL
achieves robustness in a rekeying operation. It is possi-
ble that a group member leaves the group or encounters
system failures during the execution of a rekeying op-
eration. Depending on the type of the leaving member,
we consider two cases. First, if the leaving member is
neither the leader nor one of the sponsors, or if it is a
sponsor but has broadcast all necessary blinded keys
for the current rekeying operation, the communication
group continues with the existing rekeying operation
without being affected and the leave event is reflected
in the next rekeying operation. Second, if the leaving
member is the leader or a sponsor that has not yet
broadcast all required blinded keys, the communication
group first selects a new leader if the leaving mem-
ber is the leader (see Section 3.3). Then the leader
broadcasts a rekeying message to start a new rekey-
ing operation which reflects the current leave event.
Any renewed nodes whose blinded keys have not yet
been broadcast remain renewed in the new rekeying
operation. Also, the nodes that are on the key path of
the leaving member become the renewed nodes. Given
the set of renewed nodes, new sponsors are selected
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to broadcast the updated blinded keys according to the
sponsor-coordination algorithm (see Section 3.4). This
so-called self-stabilizing property (Kim et al., 2004) is
realized in our implementation.

In addition, within a single rekeying interval, a mem-
ber may join and then leave the communication group,
or it may leave and then join the group. In the former
case, the membership events of the member are simply
ignored in the next rekeying operation. The latter case,
however, is treated as two separate membership events:
the leave event of an existing member and the join event
of a new member.

4. Implementation Details of SEAL

In this section, we present the implementation details
of SEAL. We first describe the preliminary requirements
for the library. Then we discuss the system components
that constitute the implementation.

4.1. System Preliminaries

SEAL is implemented in C under Linux and requires
two toolkits: Spread (Amir et al., 2004a) (see Sec-
tion 3.2) and OpenSSL (Viega, 2002). Our implemen-
tation uses the exported API functions from Spread to
send or receive packets according to the view-synchrony
group communication model. OpenSSL is a security
toolkit offering a cryptography library and a certificate
generation tool. We use it to implement cryptographic
algorithms as well as to create public-key certificates
for the authentication of group members. Both toolkits
are the pre-requisites for the SEAL development.

We require that each group member applies digi-
tal signatures to every packet that is to be sent to the
network. Each group member should first obtain its
public-key certificate from a trusted certificate author-
ity (CA). Then the member signs the packets with its
long-term (permanent) private key before the packets
are sent over the network. In our implementation, we
select the X509 certificate standard (ITU-T Recommen-
dation X.509, 1993) and the 1024-bit RSA (Rivest et al.,
1978) with SHA-1 (National Institute of Standards and
Technology, 1995) signature scheme.

The implementation of SEAL contains several re-
quirements. First, we require that both Spread and
OpenSSL are pre-installed in a Linux system. Also, the
Diffie-Hellman parameters, which are 1024-bit long
in our implementation, should have been initialized
and stored in the SEAL source directory before SEAL
starts running. In addition, each group member should

have a configuration file stating the unique member
identifier, the membership details of all possible com-
munication groups, and the connectivity information
specifying which Spread daemon is to be connected.
Furthermore, each group member should beforehand
obtain its long-term private key and the certificates of
other group members from a trusted CA. For consis-
tency, a central repository can be set up to provide all
necessary information related to the requirements.

4.2. System Components

SEAL is composed of four types of components: (1)
engines, the entities which hold variables and methods
for various functionalities, (2) queues, the linked-list
structures which store and dispatch packets in first-in-
first-out order, (3) threads, the execution contexts which
handle all protocol operations, and (4) packets, the in-
formation which is exchanged between group members.

The SEAL packets are classified into two categories:
membership packets and regular packets. Membership
packets, including the JOIN, LEAVE, and DISCON-
NECT packets, are defined in the Spread specification
(Amir et al., 2004a). They store the membership infor-
mation essential for SEAL and the Spread daemons.
Regular packets, however, are defined by SEAL. They
are used by SEAL for rekeying operations and by un-
derlying group-oriented applications for secure group
communication. They include the REKEY, BKEY, and
MESSAGE packets. Figure 5 illustrates the formats of
the SEAL regular packets.

rekeying
sequence
number

rekeying
algorithm

joining
members

leaving
members

key
tree signature

key
tree
size

number
of

joins

number
of

leaves

signed

(a) REKEY packet

rekeying
sequence
number

rekeying
algorithm signature

number of
blinded
keys

a list of
blinded keys

signed

(b) BKEY packet

rekeying
sequence
number

message
length

signaturemessage

signed

encrypted

(c) MESSAGE packet

Fig. 5. Formats of the regular packets.

To achieve secure group communication, the mem-
ber applications that have SEAL installed will ex-
change SEAL packets with one another. The general
operations on the received packets can be summarized
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into several steps: (1) The received thread receives
packets from the connected Spread daemon and adds
them into the packet queue. (2) The process thread
retrieves packets from the packet queue if the queue is
non-empty. (3) The process thread verifies the signa-
tures attached to the packets. (4) Based on the packet
types, the process thread carries out the corresponding
operations with the member engine, the leader engine,
the keytree engine, the sesskey engine, and the mes-
sage queue. (5) If the process thread needs to send
packets, it creates packets with the packet engine.
(6) The process thread signs the packets with the
certkey engine. (7) Finally, the process thread sends the
packets via the packet engine to the connected Spread
daemon and then to the communication group. Figure 6
illustrates the operations on the received packets.

Network

Spread Daemon

receive
thread

packet
queue

process
thread

(3) verify packets

(4) process
packets

CertKey
Engine

Packet
Engine

(5) create packets

Member
Engine

Leader
Engine

Keytree
Engine

Sesskey
Engine message

queue

(1) add
packets

(2) retrieve
packets

(7) send packets

(6) sign packets

Fig. 6. General operations on the received packets.

Let us take a more detailed look at how the pro-
cess thread responds to the received packets according
to different packet types:
– Operations on a JOIN/LEAVE/DISCONNECT

packet: The process thread inserts the joining or
leaving member into the member engine. Also, de-
pending on the membership events, it performs leader
election, and creates the leader-specific components
if the member becomes the leader (the operations of
the leader-specific components are described later in
this subsection). It should be noted that the opera-
tions on the LEAVE and DISCONNECT packets are
both identical.

– Operations on a REKEY packet: The pro-
cess thread first retrieves the rekeying information
including the rekeying sequence number (the identi-
fier of a REKEY packet and hence a rekeying opera-

tion), the joining and leaving members, as well as the
key tree, from the received REKEY packet. The pro-
cess thread then starts the rekeying operation, which
consists of (1) specifying the leader’s identity in
the leader engine; (2) synchronizing the joining and
leaving members with those in the member engine;
(3) updating the key tree in the keytree engine based
on the selected interval-based algorithm; and (4) up-
dating the secret and blinded keys of the key path
in the sesskey engine and broadcasting any blinded
keys if the group member becomes a sponsor.

– Operations on a BKEY packet: The process thread
obtains the blinded keys from the packet, which is
composed of a sequence of blinded keys of some key
tree nodes on a key path. If the blinded keys help the
group key generation, the process thread computes
the secret keys along the key path, which is main-
tained by the sesskey engine. Besides, if the group
member is a sponsor and the sesskey engine con-
tains the new blinded keys to be broadcast, the pro-
cess thread will broadcast a BKEY packet consisting
of the blinded keys.

– Operations on a MESSAGE packet: The pro-
cess thread inserts the MESSAGE packet, which
contains the application-level messages, into the
message queue. The enqueued packets will later be
processed by the application. Here, we derive three
independent sub-keys from the latest group key
and encrypt/decrypt the message content based on
the Triple-DES-CBC standard (Schneier, 1996). In
addition, we use the “signature before encryption”
approach (Schneier, 1996) as shown in Figure 5.
If a group member is elected to be leader, the

process thread will create the leader-specific com-
ponents, composed of the rekey poll thread, the
rekey send thread, and the rekey queue. To send a
rekeying message to the group, the leader performs the
following procedure: (1) The rekey poll thread periodi-
cally issues a rekeying signal (the indicator of perform-
ing a rekeying operation) into the rekey queue and noti-
fies the rekey send thread to send REKEY packets. The
rekeying signal also specifies the interval-based algo-
rithm to be performed. (2) When the rekey send thread
is notified, it removes the rekeying signal from the
rekey queue. (3) The rekey send thread gathers the
rekeying sequence number from the leader engine, the
joining and leaving members from the member engine,
and the existing key tree from the keytree engine. (4)
The rekey send thread constructs the REKEY packet
based on the gathered details. (5) The rekey send thread
signs the REKEY packet with the certkey engine. (6)
Finally, the rekey send thread sends the packet over

9



the network.
To ensure that each REKEY packet contains the lat-

est information, the rekey send thread retrieves the next
rekeying signal from the rekey queue and sends its cor-
responding REKEY packet only after all engines are
updated in response to the previous rekeying operation.
Figure 7 illustrates the leader-specific components and
their interactions with other components.
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(2) retrieve
REKEY
signals

Leader-specific
components
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(6) send REKEY packets

(5) sign REKEY packets

Fig. 7. Leader-specific components.

5. SEAL API

SEAL comprises a number of API functions that al-
low developers to implement the interval-based algo-
rithms in their secure group-oriented applications. The
operations of the API functions rely on a SEAL session
object, which holds all the components constituting the
system architecture of SEAL. Table 1 describes the de-
tails of the API functions.

Figure 8 illustrates the flowchart of using the
SEAL API functions in a typical secure group-
oriented application. The flow is described as fol-
lows: (1) the application instantiates a SEAL session
object with SEAL init(); (2) it retrieves the long-
term private key from a password-protected file with
SEAL set passwd(); (3) it joins a specified communi-
cation group with SEAL join(); (4) it implements its
application protocols with SEAL send(), SEAL recv(),
and SEAL read membership() in order to send mes-
sages, receive messages, and read the current member-
ship status, respectively; (5) it leaves the group with
SEAL leave(); and (6) it either joins another or the
same group with SEAL join(), or destroys the SEAL
session object with SEAL destroy() and ends.

SEAL_init()

SEAL_join()

SEAL_destroy()

SEAL_leave()

SEAL_set_passwd()

(for application protocols)

SEAL_send()
SEAL_recv()

SEAL_read_membership()

Fig. 8. Flowchart of using the SEAL API functions.

6. Experiments

In this section, we evaluate SEAL under real net-
work settings. Using SEAL, we implemented Gauger,
a member application that repeatedly joins and leaves a
communication group at different times. We then used
Gauger to measure the performance of a rekeying op-
eration in Rebuild, Batch, and Queue-batch based on
different levels of membership dynamics.

We make two remarks for our evaluation. First, as
mentioned in Section 3.6, it is possible that at least one
sponsor leaves the group in the middle of the rekey-
ing operation. In this case, a member will receive more
than one rekeying message from the leader before the
group key is confirmed. Therefore, when we consider
the duration of a rekeying operation, it starts from the
instant at which a member receives the first rekeying
message that indicates the beginning of a rekeying op-
eration to the instant at which the updated group key
is confirmed. Second, for Queue-batch, we only con-
sider the Queue-merge phase but not the Queue-subtree
phase. The pre-processing steps in the latter do not in-
fluence the underlying secure communication, which is
protected with the current group key. Thus, by focusing
on the Queue-merge phase, our measurements reflect
the latency of generating the latest group key starting
from the beginning of a rekeying interval.

Our experiment consider the following metrics for a
rekeying operation:
– Rekeying time: It measures the duration (in seconds)

of a rekeying operation.
– Number of exponentiations: It measures the compu-

tational cost involving the exponentiation operations
in the secret key and blinded key computations.

– Number of broadcast blinded keys: It measures the
communication cost involving the number of blinded
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Table 1
Description of the SEAL API functions.

Functions Synopsis Return values

SEAL init() It creates and initializes an SEAL session object for subsequent SEAL operations. An initialized session object on
success and NULL on failure

SEAL set passwd() It retrieves the long-term private key from a password-protected file. 1 on success and 0 on failure

SEAL join() It connects to the Spread daemon and joins the specified communication group.
It also initializes all components inside the SEAL session object.

1 on success and 0 on failure

SEAL send() It encrypts the application messages with the current group key and sends them
to the communication group.

1 on success and 0 on failure

SEAL recv() It receives the application messages from the communication group and decrypts
them with the current group key.

1 on success and 0 on failure

SEAL read membership() It reports the current group membership status including the existing members,
the joining members and the leaving members.

1 on success and 0 on failure

SEAL leave() It disables any operations and frees the resources of all components inside the
SEAL session object. It then leaves the communication group and disconnects
from the Spread daemon.

1 on success and 0 on failure

SEAL destroy() It destroys the SEAL session object and free its resources. 1 on success and 0 on failure

keys being broadcast within a rekeying operation.
– Number of BKEY packets (see Section 4.2): It mea-

sures the number of broadcast packets of blinded keys
during a rekeying operation and hence the computa-
tional cost of signing or verifying the broadcast pack-
ets. Note that each packet may contain more than one
blinded key depending on the number of blinded keys
that can be computed in one round.
We point out that the measured rekeying time has a

higher value and a higher deviation than does the ac-
tual rekeying time because of the background processes
within the testbed machines. On the other hand, the
other three metrics are attributed to the rekeying algo-
rithms only.

6.1. Wired LAN

We start our evaluation with a communication group
residing in a wired LAN based on the following config-
urations. We are interested in a single communication
group with the group population size of 40 Gaugers.
We assign the group members evenly to eight Pen-
tium 4/2.5GHz Linux machines (i.e., each machine has
five Gaugers installed). All eight machines are intercon-
nected in a single LAN and are reachable from each
other through broadcasts. A Spread daemon with con-
figured parameters is running on each machine. When a
Gauger starts execution, it connects to the Spread dae-
mon in the same local machine. In addition, we fix the
length of the rekeying interval to be 15 seconds. To ob-
serve the effect of the length of the rekeying interval,
we vary the frequencies of join and leave events in our

experiments. Analysis of varied rekeying intervals can
be found in (Setia et al., 2000).

Each Gauger repeatedly joins and leaves the same
communication group. The duration for which a Gauger
stays inside and outside the group are respectively given
by Tin + c and Tout + c, where Tin and Tout are ex-
ponentially distributed, and c denotes a constant period
specifying the minimum duration between two mem-
bership events for a group member. The reason that we
add a constant to the time lengths is to prevent a mem-
ber from joining or leaving the communication group
abruptly so as to guarantee a sufficient amount of time
for the resources to be re-allocated between member-
ship events. Throughout our experiments, we set c to
be 10 seconds, meaning that a member may join (resp.
leave) and then leave (resp. join) the communication
group within a single rekeying interval (see Section 3.6).
We perform our measurements for two hours for each
specified pair of Tin and Tout.

Experiment 1 (Average analysis of Rebuild, Batch,
and Queue-batch with fixed Tout’s and varied Tin’s):
In this experiment, we evaluate the performance met-
rics of Rebuild, Batch and Queue-batch. We fix Tout to
be 30 and 90 seconds and vary Tin. The reason of fix-
ing Tout’s is to control the rate that members join the
communication group. The metrics are averaged over
the number of existing members in the group at each
rekeying interval and then over the number of rekeying
intervals.

Figures 9(a)-(h) present the results. The metric costs
at Tout = 30 seconds are larger than those at Tout = 90
seconds. With a smaller Tout, more members stay in
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the group and participate in a rekeying operation. Thus,
the size of the key tree is larger and more operations
are required to generate a group key. Also, we observe
Queue-batch outperforms the other two algorithms in all
metrics. For instance, its rekeying time is less than one
second on average for all values of Tin and Tout. This
shows the performance gain of Queue-batch by dispers-
ing its rekeying workload throughout the rekeying in-
terval. Although Rebuild has the worst performance as
compared to other two algorithms, it provides a simple
way to recover the whole key tree (see Section 2.2).
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Fig. 9. Experiment 1: Average analysis at different fixed Tout’s.

Experiment 2 (Average analysis of Batch and

Queue-batch under different levels of membership
dynamics): This experiment investigates the perfor-
mance of Batch and Queue-batch with respect to the
frequencies of the join and leave occurrences. We set
Tin equal to Tout and change the pair of Tin and Tout

from 30 seconds to 90 seconds. The smaller the values
of Tin and Tout are, the higher the membership dy-
namics is. We average the metrics as in Experiment 1.

Figures 10(a)-(d) depict the results. As stated at the
beginning of this section, the rekeying time has a higher
deviation as compared to the other metrics. Neverthe-
less, for both Batch and Queue-batch, the results of all
metrics show a decreasing trend when the membership
events occur less frequently (i.e., when Tin and Tout are
larger). Figures 10(b)-(d) show that Queue-batch per-
forms much better than Batch when the group is highly
dynamic (i.e., when Tin and Tout are small). This con-
forms to the simulation results in (Lee et al., 2002).
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Experiment 3 (Analysis of Queue-batch in each
rekeying operation): In Section 3.6, we mention how
our implementation achieves robustness in response to
the case where at least one of the sponsor leaves the
group in the middle of a rekeying operation. In this ex-
periment, we evaluate how Queue-batch addresses this
robustness issue in each rekeying operation. We con-
sider two cases of membership dynamics where Tin =
Tout = 30 seconds and Tin = Tout = 90 seconds, cor-
responding to the high and low membership dynamics,
respectively. Here, we focus on the rekeying time of
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each operation, which is averaged over the number of
members participating in the rekeying operation.

Figures 11(a)-(b) illustrate the rekeying times of the
first 200 rekeying operations. The “spikes” shown in
the figures indicate that the leader restarts the current
rekeying operation in response to the departures of the
previous leader or the sponsors that have not yet broad-
cast the blinded keys for which they are responsible.
Figure 11(a) shows more spikes than Figure 11(b), in-
dicating that under higher membership dynamics (i.e.,
smaller Tin and Tout), more members leave the group
during a rekeying operation, and thus the leader needs
to restart rekeying more frequently. In general, our im-
plementation can adapt quickly to the sponsors’ depar-
tures during rekeying and complete the whole rekeying
operation in no more than two seconds. This demon-
strates the robustness of our implementation. We point
out that this robustness property is achievable in our
implementation regardless of the choice of the interval-
based algorithms.
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Fig. 11. Experiment 3: Analysis of Queue-batch in each rekeying
operation.

6.2. Comparison Between a Wired LAN and a
Wireless LAN

We envision that the hybrid wired/wireless LAN en-
vironment would be a common platform for most re-
liable peer communication applications. Thus, in this
subsection, we further evaluate SEAL using both wired
and wireless LAN testbeds. Our objective is to study
how a wireless LAN, which offers less available com-
munication bandwidth than does a wired LAN, affects
the rekeying performance of SEAL.

Figure 12 illustrates the wired and wireless LAN
testbeds that are used in our evaluation. In Figure 12(a),
we interconnect three Pentium 4/1.8GHz Linux ma-
chines with a 100Mbps Fast Ethernet switch and thus
form a single wired LAN. Each machine has a Spread
daemon installed and is associated with five Gaugers.
This wired LAN testbed serves as a baseline for per-

Fast Ethernet
Switch

Campus-wide wireless LAN

(a) Wired LAN (b) Wireless LAN

Gauger

Machine with a
Spread daemon

Fig. 12. The wired and wireless LAN testbeds for the evaluation of
rekeying performance.

formance comparison. In Figure 12(b), we interconnect
the same three machines over a campus-wide wireless
LAN, which follows the IEEE 802.11g standard and has
a maximum data rate at 54Mbps.

Our measurements are based on the same setting as in
Section 6.1, i.e., each of the 15 Gaugers iteratively joins
and leaves the same communication group according to
the values of Tin and Tout. Here, we use Queue-batch
as the rekeying algorithm. values of Tin and Tout.

Table 2 presents the metric results for both wired
and wireless LAN testbeds when Tin = Tout = 30, 60,
and 90 seconds. Overall, the rekeying time in the wired
LAN testbed is about 0.40-0.45 seconds, while that in
the wireless LAN testbed is about 0.48-0.53 seconds.
As pointed out at the beginning of this section, the mea-
sured rekeying time is subject to a high deviation, so we
conjecture that the difference between the actual rekey-
ing times in both testbeds could be smaller. In fact, for
every pair of Tin and Tout, we note that both testbeds
have very close results in each of the metrics except the
rekeying time, with difference no more than 3%. There-
fore, the rekeying performance is still preserved in the
wireless LAN testbed despite its less available commu-
nication bandwidth.

Although the wireless LAN testbed may degrade the
performance of the Spread daemons in maintaining view
synchrony, we believe that the impact is quite insignif-
icant. Amir et al. (2004a) showed that reliable group
communication is scalable to at least 20 Spread dae-
mons with 1000 members in a Fast Ethernet network
and that messages can be delivered to all members re-
liably on the order of milliseconds. Since each of our
testbeds only involves three Spread daemons, the over-
head incurred by the Spread daemons should be mini-
mal.

This experiment aims to provide a preliminary in-
sight on how the deployment platforms with different
communication constraints influence the rekeying per-
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Table 2
Metric results for both wired and wireless LAN testbeds, with group size = 15. Note that the percentage difference is computed with respect
to the metrics in the wired LAN testbed.

Tin = Tout = 30 secs Tin = Tout = 60 secs Tin = Tout = 90 secs

Wired Wireless Diff. Wired Wireless Diff. Wired Wireless Diff.

Rekeying time (in seconds) 0.45 0.48 6.7% 0.43 0.53 23.3% 0.40 0.52 30.0%

No. of exponentiations 4.08 4.07 -0.2% 3.81 3.83 0.5% 3.66 3.73 1.9%

No. of broadcast blinded keys 7.16 7.13 -0.4% 6.70 6.67 -0.4% 6.39 6.56 2.7%

No. of BKEY packets 6.24 6.24 0.0% 5.83 5.79 -0.7% 5.59 5.76 3.0%

formance. We emphasize that the efficacy of SEAL also
depends on a variety of factors, including the compu-
tational resources, the size of a communication group,
the membership dynamics, and the choices of crypto-
graphic parameters. Also, connections with very scarce
bandwidth (e.g., dialup) can severely impair the perfor-
mance of SEAL and the Spread daemons. We plan to
study these factors in our future work.

7. Applications

To demonstrate how SEAL can be used in real-life
applications, we use the SEAL API functions to build a
secure chat-room application called Chatter. The Chat-
ter application encrypts the chat-room messages based
on the group key (see Section 4 for implementation de-
tails). Thus, the group communication is kept confiden-
tial against group outsiders.

We implemented Chatter in both graphical and text
modes. Its screenshots are illustrated in Figure 13. The
graphical mode is built atop the X Window system in
Linux. The text mode, on the other hand, is built to pro-
vide users with a text-based command console without
the need of any graphical-compliant platform. Both in-
terface modes are compatible and can be used together
within the same communication group.

In addition to the chat-room applications, SEAL is
feasible in a number of potential applications:
– Audio/video conferencing systems: Business par-

ties may hold audio/video conferences with their lap-
top or desktop computers. The conferencing systems
usually transfer massive streaming data which may
contain confidential business information. They can
hence use SEAL to agree upon a secret group key to
encrypt the streaming data.

– File sharing tools: File sharing is prevalent in peer-
to-peer networks. Most shared files usually do not in-
volve sensitive information, but some do. Therefore,
if a file sharing application intends to distribute a pri-
vate file to a group of users, SEAL will help protect
the file data.

(a) Graphical mode

(b) Text mode

Fig. 13. Illustration of Chatter.

– Programmable router communication: Software
programmable routers (Kohler et al., 2000; Yau et al.,
2005) provide programmable flexibility over tradi-
tional layer-3 routers. One application is to defend
against distributed denial-of-service (DDoS) attacks
(Yau et al., 2005). In this case, a communication
group is formed among routers. Any information ex-
changed within the communication group should be
inaccessible to the attackers in order for the defense
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mechanism to succeed. Therefore, SEAL can be used
to protect the exchanged information.

– Network games in strategy planning: In network
games, players may co-operate with each other in de-
ciding the winning strategies over other competitors.
This type of interaction involves numerous message
exchanges. Thus, the games can use SEAL to en-
crypt the messages against any cheating attacks, such
as eavesdropping and modification of the transmitted
game data.
In short, SEAL implements the interval-based algo-

rithms that achieve group key agreement without any
centralized key server, and hence is adequate for any
secure group-oriented applications in decentralized en-
vironments such as peer-to-peer networks or mobile ad
hoc networks.

8. Related Work

To achieve secure group communication, Wallner
et al. (1997) and Wong et al. (2000) independently pro-
posed the key tree approach that associates keys in a
hierarchical tree and rekeys in each join or leave event.
Li et al. (2001) and Yang et al. (2001) later applied
the periodic rekeying concept in Kronos (Setia et al.,
2000) to the key tree setting. All the key-tree-based
approaches (Li et al., 2001; Wallner et al., 1997; Wong
et al., 2000; Yang et al., 2001) require a centralized key
server for key generation.

Burmester and Desmedt (1995); Kim et al. (2001,
2004); Steiner et al. (1998) extend the Diffie-Hellman
protocol (Diffie and Hellman, 1976) to group key agree-
ment schemes for secure communications in a peer-to-
peer network. Burmester and Desmedt (1995) proposed
a computation-efficient protocol at the expense of high
communication overhead. Steiner et al. (1998) devel-
oped Cliques, in which every member introduces its key
component into the result generated by its preceding
member and passes the new result to its following mem-
ber. Cliques is efficient in rekeying for leave or partition
events, but imposes a high workload on the last mem-
ber in the chain. Kim et al. (2004) proposed TGDH to
arrange keys in a tree structure. Every member holds
the keys along its key path and the rekeying workload
is distributed to all members. The settings of TGDH are
similar to the One-Way Function Tree (OFT) scheme
(Sherman and McGrew, 2003) except that TGDH uses
Diffie-Hellman instead of one-way functions for the
group key generation. Kim et al. (2001) also suggested
a variant of TGDH called STR which minimizes the
communication overhead by trading off the computa-

tional complexity. All the above schemes are decentral-
ized and hence avoid the single-point-of-failure problem
in the centralized case, though they involve higher mes-
sage traffic for distributed communication. Kim et al.
(2001, 2004); Steiner et al. (1998) consider rekeying at
single join, single leave, merge, or partition events. Our
paper considers the more general case with a batch of
join and leave events.

Amir et al. (2004b); McDaniel et al. (2001); Wong
and Lam (2000) focus on the implementation issues
of secure group communication. Antigone protects the
group communication data via the specification of secu-
rity policies. In terms of group key management, Key-
stone (Wong and Lam, 2000) considers the architectural
design of the centralized group key distribution protocol
based on the key tree setting. It uses UDP over IP and
forward error correction (FEC) to provide efficient and
reliable delivery of keys. Another work that is closely
related to ours is Secure Spread (Amir et al., 2004b),
which implements a centralized group key distribution
protocol and a number of distributed group key agree-
ment protocols including the Burmester-Desmedt model
(Burmester and Desmedt, 1995), Cliques (Steiner et al.,
1998), TGDH (Kim et al., 2004), and STR (Kim et al.,
2001). The project studies the group key management
schemes under join, leave, merge, and partition events,
and provides a set of function calls suitable for secure
application development. In our work, we implemented
a programming library based on the interval-based ap-
proach and built applications with the library to demon-
strate its strengths and effectiveness.

9. Conclusion and Future Directions

This paper presents SEAL, an API library that im-
plements the group key agreement protocols. The li-
brary allows a dynamic peer group to undergo secure
group communication through the establishment of a
common secret group key without any centralized key
server. We described the implementation framework for
SEAL and addressed several design issues for imple-
menting the group key agreement protocols. We used a
set of API functions exported from SEAL to build two
group-oriented applications termed Gauger and Chat-
ter. We used Gauger as a performance testing tool to
evaluate the group key agreement algorithms in a local
area network and to demonstrate the robustness of our
implementation during a rekeying operation. We also
used Chatter, a secure chat-room application, to illus-
trate how developers can write secure group-oriented
applications readily.
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Several enhancements can be made to enrich our
current implementation. First, our current implementa-
tion assumes that multiple groups independently man-
age their own key tree. If there exist some members as-
sociated with more than one group, then it is possible to
bundle multiple key trees together to facilitate the im-
plementation (Jung et al., 2003). Second, we currently
assume that Spread daemons provide trusted member-
ship information. It would be interesting to incorporate
membership authentication into our future implementa-
tion. Finally, we seek to expand the scale of our evalu-
ation and investigate the scalability of our implementa-
tion.
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