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Abstract—Recently, datacenter carbon emission has become
an emerging concern for the cloud service providers. Previous
works are limited on cutting down the power consumption of
the datacenters to defuse such a concern. In this paper, we
show how the spatial and temporal variabilities of the electricity
carbon footprint can be fully exploited to further green the
cloud running on top of geographically distributed datacenters.
We jointly consider the electricity cost, service level agreement
(SLA) requirement, and emission reduction budget. To navigate
such a three-way tradeoff, we take advantage of Lyapunov
optimization techniques to design and analyze a carbon-aware
control framework, which makes online decisions on geographical
load balancing, capacity right-sizing, and server speed scaling.
Results from rigorous mathematical analyses and real-world
trace-driven empirical evaluation demonstrate its effectiveness in
both minimizing electricity cost and reducing carbon emission.

I. INTRODUCTION

Geographically distributed datacenters which host cloud
applications such as web search, social networks and video
streaming have quickly ascended to the spotlight in terms
of the enormous energy demand and carbon emission. It is
estimated [1] that datacenters will consume about 8% of the
worldwide electricity by 2020, and produce 2.6% of the global
carbon emission. As one of the leading cloud service providers,
Google emitted 1.68⇥10

6 tons of carbon in 2011 [2], 15.86%
more than the emission of 2010, which is on a par with the
carbon emission of the headquarter of United Nations [3].

Intuitively, as most previous works [4]–[9] have shown,
carbon emission reduction may be achieved by cutting down
the energy consumption. In general these approaches fall into
three categories. Geographical load balancing [4] utilizes the
server heterogeneity of geo-distributed datacenters to distribute
requests so that the energy cost can be reduced. Capacity right-
sizing [7] dynamically turns off/on redundant servers when
demand decreases/increases. Finally, server speed scaling [9]
is a technique that adjusts the CPU frequency and thus service
rate of a server in order to save its energy consumption.

However, for geographically distributed datacenters, energy
savings may not necessarily imply carbon emission reduction.
This is because of the spatial and temporal variabilities of the
electricity carbon footprint, as illustrated in Fig. 1. For one,
different regions generate electricity with their respective fuel
mixes, and have different carbon footprints. For another, the
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Fig. 1: Grams of carbon emission per kWh electricity at three different
locations in north America on Sep 30th 2012. Data is provided by each
Regional Transmission Organization (RTO) [12].

time-varying fuel mix also leads to temporal differences in
carbon footprint even for the same location. Such diversity
ought to be fully exploited if we want to further green the
cloud.

One recent work [1] proposed to reduce datacenter carbon
footprint by utilizing the above variabilities. Unfortunately, it
found that the current carbon tax is too low to incentivize
providers to reduce carbon output, though 10% carbon emis-
sion reduction can be achieved without any cost. In reality,
carbon tax is only one of the three most practical policies to
inhibit carbon emission. For the other two policies —“Cap
and Trade” and “Baseline and Credit”, each carbon source
is usually operated within an allowance or budget [10]. In
practice, most of the leading providers have also announced
their emission reduction budgets. For instance, Google targets
to cut 30% of the carbon emission by 2020 [11]. There is
a fundamental challenge when considering such an emission
budget: how can we make real-time decisions to enforce the
long-term emission budget without future knowledge of the
bursty workload which is hard to acquire in realistic cloud? To
the best of our knowledge, no previous work has considered
the optimal operation of the cloud under an emission reduction
budget. In this paper, we aim to bridge this gap.

Specifically, we jointly consider the electricity cost, service
level agreement (SLA) requirement and emission reduction
budget of geographically distributed datacenters. To navigate
such a three-way tradeoff, we rigorously design and analyze
a carbon-aware online control framework using Lyanunov
Optimization [13], [14], which can effectively incorporate
the long-term carbon emission constraints into real-time opti-
mization. Our framework dynamically makes three decisions:
geographical load balancing, capacity right-sizing [4], and
server speed scaling [9], corresponding to the below three



different levels. (1) At the service level, we determine how to
distribute user requests to appropriate datacenters according to
the current electricity prices and carbon emission rates; (2) at
the datacenter level, we determine how many servers to activate
at each datacenter; and (3) at the server level, we determine
how to set the service rate of each activated server.

Given the control parameter V which represents how much
we emphasize the cost minimization compared to emission
enforcement, our proposed framework is rigorously proved to
facilitate a delicate [O(1/V ), O(V )] cost-emission tradeoff,
due to the fact that the greener energy is usually more
expensive. With such a tradeoff, the geo-distributed cloud can
achieve a time-averaged electricity cost arbitrarily close to the
optimal, while still maintaining the long-term carbon emission
budget. Moreover, with an empirical evaluation using the
arrival rates of empirical workload traces [15] from Microsoft’s
enterprise storage systems, as well as real-world electricity
generation and price data, we show that our proposed solution
is practical to achieve a specified long-term emission reduction
goal, without incurring excessive cost rising.

The rest of this paper is organized as follows. In Sec. V, we
survey the related works. In Sec. II, we present the three-way
tradeoff model. We further construct a carbon-aware online
control framework to optimize such a three-way tradeoff and
demonstrate its effectiveness in both minimizing electricity
cost and enforcing carbon emission budget in Sec. III. We
also evaluate the performance of our proposed framework in
Sec. IV and conclude in Sec. VI.

II. THE THREE-WAY TRADEOFF MODEL

We consider a provider running cloud services on the
top of N geographically distributed datacenters, denoted by
D = {1, 2, ..., N}, each datacenter j 2 D consists of M

j

ho-
mogeneous servers. Although we assume that all the servers at
one datacenter are homogeneous, note that our model is quite
general and can be easily extended to capture the heteroge-
neous case with a few additional notations. The cloud deploys
M front-end proxy servers, denoted by S = {1, 2, ...,M}
at various regions to direct user requests to the appropriate
datacenters. Inspired by the latest modeling work on datacen-
ters [4], we consider a discrete time-slotted system where the
time slot length can range from hundreds of milliseconds to
minutes [8]. In every time slot t = (0, 1, 2, ..., ⌧, ...), user
requests arrive and aggregate at each front-end proxy server.
Let A

i

(t), 8i 2 S denote the request arrival rate at front-end
proxy server i during time slot t.

A. Control Decisions

Under the workload model above, we focus on three control
decisions:

1) Geographical load balancing: At the geographical
level, energy cost and carbon emission can be reduced by
balancing workload across datacenters according to the spatial
variability of energy price and carbon output. In each time slot
t, given the aforementioned request arrival rate A

i

(t), 8i 2 S
at front-end proxy server i, the control decision is to update
the request routing from the front-end proxy server i to the

datacenter j, which is denoted as R
ij

(t), 8i 2 S, 8j 2 D.
Therefore, we have:

N

X

j=1

R
ij

(t) = A
i

(t), 8i 2 S, (1)

R
ij

(t) � 0. (2)

2) Datacenter right sizing: At the datacenter level, energy
cost and carbon emission can be reduced by dynamically
adjusting the number of active servers, which is known as
“right sizing” [4]. Let m

j

(t) denote the number of servers
to be activated in datacenter j at time slot t, and note that
cloud datacenter typically contains thousands of active servers.
Hence, the integer constraints on m

j

(t), 8j 2 D, 8t can be
relaxed. Then, m

j

(t) should satisfy the following constraint:

0  m
j

(t)  M
j

, 8j 2 D. (3)

3) Server speed scaling: At the server level, energy cost
and carbon emission can be reduced by flexibly controlling the
CPU speed of each active server, which is known as “speed
scaling” [9]. Let µ

j

(t) denote the service rate of each active
server in datacenter j. Typically, for each µ

j

(t), it cannot
exceed the maximum service rate s

j

. Thus, we have:

0  µ
j

(t)  s
j

, 8j 2 D. (4)

B. Power Consumption Model

It has been widely demonstrated that [6], the amount
of power consumed by a server running at speed µ can
be characterized by ↵µ⌫

+ �, where ↵ is a positive factor,
� represents the power consumption in idle state, and the
exponent parameter ⌫ is empirically determined as ⌫ � 1,
with a typical value of ⌫ = 2 in practice [8]. Based on the
above power model, given the number of active servers m

j

(t),
parameters ↵

j

,�
j

, ⌫
j

and the power usage efficiency metric
PUE

j

in datacenter j, the power consumption of datacenter j
in time slot t can be quantified by E

j

(t) as follows:

E
j

(t) = PUE
j

·m
j

(t) · [↵
j

µ
⌫j

j

(t) + �
j

], (5)

The power usage efficiency metric PUE [16] represents the
ratio of the total amount of power used by the entire datacenter
facility to the power delivered to the computing equipment.
Inefficient datacenter facilities can have a PUE 2 [2.0, 3.0],
while leading industry datacenter facilities are announced to
approach a PUE of around 1.2 [17].

C. Real-time SLA Model

Arguably, for most cloud applications such as web search,
response time is the most critical performance metric. When
there is a large response delay, the provider may suffer a
substantial drop in users. Therefore, the response time of a
delay-sensitive service is typically enforced at an acceptable
limit [18]. In this paper we focus on the average queuing delay
in datacenters as it largely outweighs the network delay form
a front-end proxy server to a processing datacenter [5].

To this end, we take the M/M/n queuing model to
estimate the response time in each datacenter. Specifically,
given the request arrival rate

P

M

i=1 Rij

(t) and service rate



m
j

(t)µ
j

(t) in datacenter j at time slot t, the corresponding
average response time [5] can be formulated as

W
j

(t) =
1

m
j

(t)µ
j

(t)�
P

M

i=1 Rij

(t)
.

To provide good experience to users, we enforce the following
constraint:

W
j

(t)  W
j

,

where W
j

is the maximal tolerable response delay in datacen-
ter j. Therefore, we have the following SLA constraint:

m
j

(t)µ
j

(t)�
M

X

i=1

R
ij

(t) � 1

W
j

. (6)

D. Long-term Carbon Reduction Model

To characterize the spatial and temporal variability in
electricities carbon emission rate, we use electricity generation
data from each Regional Transmission Organization (RTO)
website, where we can get the real-time electricity fuel mix
of all states for the seven major types of fuel (e.g., the real-
time data of New England is updated every 5-minutes in [19]).
Thus, by summing the weighted contribution from each fuel
type, we can estimate the carbon emission rate in location j
at time slot t as follows:

C
j

(t) =

P

e
kj

(t)⇥ c
k

P

e
kj

(t)
, (7)

where e
kj

(t) represents the electricity generated from fuel type
k in location j at time slot t, and c

k

(measured in g/kWh) is
the carbon emission rate of fuel type k given in Table I.

TABLE I: Carbon dioxide emission per kilowatt-hour for the most com-
mon fuel types [1].

Fuel Type Nuclear Coal Gas Oil Hydro Wind
CO2 g/kWh 15 968 440 890 13.5 22.5

Based on the above C
j

(t) and aforementioned power con-
sumption E

j

(t) in Eq. (5), the corresponding carbon emission
is E

j

(t) · C
j

(t). In practice, as most real-world datacenters
are operated within a certain carbon emission budget in a
given time interval (usually one year or longer), we impose a
long-term time-averaged carbon emission budget C

j

for each
datacenter j to reduce the carbon emission:

lim sup

T!1

1

T

T�1
X

t=0

E{E
j

(t) · C
j

(t)}  C
j

. (8)

E. Characterizing the Three-way Tradeoff

With the real-time SLA constraint and long-term carbon
reduction constraint above, our objective is to minimize the
long-term time-averaged electricity cost. Specifically, given
the power consumption E

j

(t) and electricity price P
j

(t) in
datacenter j at time slot t, the total electricity cost of N dat-
acenters at time slot t can be quantified by

P

N

j=1 Ej

(t)P
j

(t).
Then, the optimization of the three-way tradeoff which jointly
considers electricity cost, SLA requirement and carbon emis-
sion reduction under the control decisions R

ij

(t),m
j

(t) and

µ
j

(t), 8i 2 S, 8j 2 D, 8t can be formulated as the following
stochastic program:

min lim sup

T!1

1

T

T�1
X

t=0

N

X

j=1

E{E
j

(t)P
j

(t)}, (9)

subject to the constraints (1), (2), (3), (4), (6), and (8).

For realistic geo-distributed datacenters, there is a potential
conflict when solving this optimization problem: Since the
datacenters’ workload as well as the carbon emission rate
is time-varying and unpredictable, how can we guarantee
the current control decisions are able to minimize the time-
averaged electricity cost, while still maintaining the long-term
carbon emission budget?

III. CARBON-AWARE ONLINE CONTROL FRAMEWORK

To address the challenge of the optimization problem (9),
we use Lyapunov optimization techniques [14] to design a
carbon-aware online control algorithm, called COCA, that
is able to explicitly transform the long-term objective and
constraints to an optimization in each time slot. In particular,
COCA can be proved to achieve a time-averaged electricity
cost arbitrarily close to optimum, while still maintaining the
long-term carbon emission budget.

A. Problem Transformation Using Lyapunov Optimization

To accommodate the long-term carbon emission constraint
(8), we first transform it into a queue stability problem [14].
Specifically, we introduce virtual queues Q

j

(t) for each dat-
acenter j. Initially, we define Q

j

(0) = 0, 8j 2 D, and then
update the queues per each time slot as follows:

Q
j

(t+ 1) = max[Q
j

(t)� C
j

+ E
j

(t)C
j

(t), 0], (10)

where C
j

, E
j

(t) and C
j

(t) are defined in Sec. II-D. 8j 2 D,
E

j

(t)C
j

(t) can be viewed as the ”arrivals” of virtual queue
Q

j

(t), while the constant C
j

can be viewed as the service rate
of such a virtual queue.

Intuitively, the value of Q
j

(t) is the historical measurement
of the backlog between the time-averaged emission during the
interval [0, t�1] and the emission budget C

j

, and a large value
of Q

j

(t) implies that the emission during the interval [0, t�1]

exceeds the budget C
j

. In fact, the carbon emission constraint
(8) for each datacenter is enforced on the condition that the
virtual queue Q

j

(t) is stable, i.e., lim

T!1
E{Q

j

(T )}/T = 0.
Specifically, from Eq. (10) it is clear that:

Q
j

(t+ 1) � [Q
j

(t)� C
j

+ E
j

(t)C
j

(t)].

By summing this inequality over time slots t 2 {0, 1, ..., T�1}
and then dividing the result by T , we have:

Q
i

(T )�Q
j

(0)

T
+ C

j

� 1

T

T�1
X

t=0

E
j

(t)C
j

(t).

With Q
j

(0) = 0, taking expectations of both sides yields:

lim

T!1

E{Q
j

(t)}
T

+ C
j

� lim

T!1

1

T

T�1
X

t=0

E{E
j

(t)C
j

(t)}. (11)



If the virtual queues Q
j

(T ) are stable, then lim

T!1
E{Q

j

(T )}/T
= 0 (Note that we will prove the strong stability of virtual
queues Q

j

(T ) in Theorem 1 later). Subtracting this into (11)
yields the inequality (8).

1) Characterizing the Emission-Cost Tradeoff: Let Q(t) =
(Q

j

(t)) denote the vector of all the virtual queues. Then, we
define the Lyapunov function as follows:

L(Q(t)) =
1

2

N

X

j=1

Q2
j

(t). (12)

This represents a scalar metric of congestion [14] of all the
virtual queues. For example, a small value of L(Q(t)) implies
that all the queue backlogs are small. The implication is that
all the virtual queues have strong stability.

To keep the virtual queues stable (i.e., to enforce the emis-
sion budget) by persistently pushing the Lyapunov function
towards a lower congestion state, we introduce �(Q(t)) as
the one-step conditional Lyapunov drift [14]:

�(Q(t)) = E{L(Q(t+ 1))� L(Q(t))|Q(t)}.

Under the Lyapunov optimization, the underlying objective of
our optimal control decisions R

ij

(t),m
j

(t) and µ
j

(t), 8i 2
S, 8j 2 D, 8t is to minimize an supremum bound on the
following drift-plus-cost expression in each time slot:

�(Q(t)) + V E
n

N

X

j=1

E
j

(t)P
j

(t)
o

. (13)

Remark: The control parameter V (� 0) represents a
design knob [8], [20] of the emission-cost tradeoff, i.e., how
much we shall emphasize the cost minimization (Problem (9))
compared to emission budget (Constraint (8)). It empowers
datacenter operators to make flexible design choices among
various tradeoff points between carbon emission and electricity
cost. For example, one may prefer to incur as smaller expected
cost as possible, while having to keep �(Q(t)) small to avoid
exceeding the carbon emission budget.

2) Bounding Drift-Plus-Cost: To derive the supremum
bound of the drift-plus-cost expression given in Eq. (13), we
need the following lemma.

Lemma 1: In each time slot t, given any possible control
decisions m

j

(t), µ
j

(t) and R
ij

(t), the Lyapunov drift �(Q(t))
can be deterministically bounded as follows:

�(Q(t))  B �
N

X

j=1

Q
j

(t)E{C
j

� E
j

(t)C
j

(t)|Q(t)}, (14)

where the constant B , 1
2 (
P

N

j=1 C
2
j

+NC2
max

), and C
max

=

max

j,t

{E
j

(t)C
j

(t)}.

Proof: Please refer to the Appendix A.

Based on Lemma 1, adding the expression V E{
P

N

j=1
E

j

(t)P
j

(t)|Q(t)} to both sides of Eq. (14) yields an supre-
mum bound of drift-plus-cost expression of the datacenter

system:

�(Q(t)) + V E
n

N

X

j=1

E
j

(t)P
j

(t)|Q(t)
o

 B �
N

X

j=1

Q
j

(t)C
j

+

N

X

j=1

E{E
j

(t)[V P
j

(t) +Q
j

(t)C
j

(t)]|Q(t)}. (15)

B. Carbon-aware Online Control Algorithm (COCA)

Instead of directly minimizing the drift-plus-cost expres-
sion in Eq. (13) that involves unknown information Q

j

(t+1),
our carbon-aware online control algorithm COCA seeks to
minimize the supremum bound given above (i.e., equivalent
to maximizing the right-hand-side term of inequality (15)),
without undermining the optimality and performance of the
algorithm according to [14].

Algorithm 1: Carbon-aware Online Control Algorithm
(COCA)

1) In the beginning of each time slot t, observe the
current queue backlog Q

j

(t) and other information
P
j

(t) and C
j

(t) at each datacenter j.
2) Determine the control decisions m

j

(t), µ
j

(t) and
R

ij

(t), 8i 2 S, 8j 2 D to minimize the term
P

N

j=1 E{Ej

(t)[V P
j

(t) +Q
j

(t)C
j

(t)]|Q(t)} in the
right-hand-side of inequality (15).
3) Update the queues Q(t+ 1) according to Eq. (10)
and the newly determined control decisions.

Till now, we have transformed the long-term optimization
(9) to the following optimization at each time slot t:

min

N

X

j=1

E
j

(t)[V P
j

(t) +Q
j

(t)C
j

(t)], (16)

s.t. (1), (2), (3), (4), (6) are satisfied.

Remark: The transformed problem (16) embodies an
economic interpretation. At each time slot t, we strive to
minimize the total cost of current power consumption and the
penalty of carbon emission, as priced by the queue backlog
Q(t). This balances our interest in minimizing the long-term
electricity cost and enforcing the long-term carbon emission
within the predefined budget, and V is the control knob to
adjust our emphasis on cost minimizing compared to emission
enforcement.

The transformed optimization problem (16) is a nonlinear
problem that has been studied extensively, and there exist some
practical methods developed to solve these nonlinear problems
with special structures. In this work, we can solve the problem
(16) by using KKT conditions [21], [22] and generalized
Benders decomposition (GBD) [5], [23]. The detailed solution
can be found in Appendix B.

C. Optimal Analysis

We further analyze the optimality of the above proposed
online control algorithm, in terms of a tradeoff between the
cost minimization and emission enforcement.



Theorem 1: Suppose the carbon emission rate C
j

(t), 8j 2
D is i.i.d over time slots, for any control parameter V > 0

(the stability-cost tradeoff parameter defined in Sec. III-A),
implementing the above COCA algorithm for all time slots
can achieve the following performance guarantee:

lim sup

T!1

1

T

T�1
X

t=0

N

X

j=1

E{E
j

(t)P
j

(t)}  P ⇤
+

B

V
, (17)

lim sup

T!1

1

T

T�1
X

t=0

N

X

j=1

E{Q
j

(t)}  B + V P ⇤

✏
. (18)

where P ⇤ is the optimal solution to the optimization prob-
lem (9), representing the theoretical lower bound of the time-
averaged electricity cost, ✏ > 0 is a constant which repre-
sents the distance between the time-averaged carbon emission
achieved by some stationary control strategy and the carbon
emission budget, and B is a finite constant parameter defined
in Lemma 1.

Remark: The theorem demonstrates an [O(1/V ), O(V )]

cost-emission tradeoff. By using the COCA algorithm with an
arbitrarily lager V , we can make the time-averaged electricity
cost arbitrarily close to the optimum P ⇤ while maintaining the
emission budget as virtual queues Q

j

(t), 8j 2 D are stable ac-
cording to Eq. (18). Such cost reduction is achieved at the cost
of a larger emission, as Eq. (18) implies that the time-averaged
queue backlog grows linearly with V . However, if the emission
budget (C1, C2, ..., CN

) is too tight, i.e., it is insufficient to
serve all the requests, COCA will strive to reduce the actual
emission as much as possible in a best-effort manner while
serving all of the requests. Further, note that COCA can also
be flexibly extended to strictly enforce the emission budget
by denying an appropriate amount of requests [24], which
is known as request admission control. Interested readers are
referred to our Appendix C for a complete proof of Theorem 1.

IV. PERFORMANCE EVALUATION

In this section, we conduct trace-driven simulations to
realistically evaluate the performance of our carbon-aware
online control algorithm COCA. Our simulations are based
on real-world workload traces, electricity price data sets, and
electricity generation data sets. To fully exploit the temporal
diversity of both electricity price and carbon footprint, while
still reducing the overhead of switching the servers ON/OFF
frequently, we set each of the discrete time slots to be 10-min.

A. Simulation Setup

We simulate a cloud with M = 4 front-end proxy servers,
and deploy N = 3 datacenters in three locations in North
America: California, Alberta and Oklahoma. We now describe
the real-world data sets and system parameters in more details.

Workload Data: In this simulation, the real-world workload
data we use is a set of I/O traces taken from four RAID
volumes of a enterprise storage cluster in Microsoft [15].
The trace includes the timestamp, hostname, disknumber, etc.
Specifically, we use the trace from each RAID volume to
represent the workload of each front-end proxy server, and we
can calculate the arrival rate A

i

(t) at each time slot according
to the timestamp information. For the purpose of illustration,
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Fig. 2: The total workload trace, and the electricity price trace, carbon
emission rate trace at each datacenter.

we merge the traces from the four front-end proxy servers
into one, which does not affect the performance of COCA
according to our analysis in Appendix B. The merged trace
is plotted in the top of Fig. 2, with a peak-to-average ratio of
2.49. To evaluate the long-term effectiveness of COCA, we
repeat the original one-week trace to get a 3-week workload
trace.

Electricity Price Data: We download the locational
marginal prices (LMP, in unit of $/MWh) in real-time elec-
tricity markets of the three locations from the website of
each regional transmission organization (RTO) or independent
system operator (ISO). Specifically, the LMP for California
and Alberta is hourly, while the LMP for Oklahoma is 5-min
data. Based on this data, we obtain the average electricity price
over each time slot with a 10-minute interval. The time period
of this data is from Aug. 1, 2012 to Aug. 21, 2012, including
three weeks or 3024 time slots. This trace is plotted in the
middle of Fig. 2, and one can observe that DC#3 (Oklahoma)
enjoys a relatively cheaper price when compared to the other
two datacenters.

Electricity Generation Data: To estimate the carbon emis-
sion rate of each state hosting the datacenter, we first download
the electricity generation data of each location from the website
of the corresponding RTO or ISO. They report the hourly
electricity fuel mix of each region for the major types of fuel.
Then, we calculate the hourly carbon emission rates (in unit
of g/KWh) of the three locations according to Eq. (7) given
in Sec. II-D. The time period of this data is also from Aug.
1, 2012 to Aug. 21, 2012, the same as that of the electricity
price data. This trace plotted in the bottom of Fig. 2 strongly
suggests that the electricity generated in California (DC#2) has
a “greener” carbon emission rate than those of the other two
regions.

System Parameters: We first choose a higher energy effi-
ciency level, i.e., PUE

j

= 1.3 for all of the three datacenters in
our simulation. We also choose a typical setting [8] of exponent
parameter ⌫

j

= 2 for the three datacenters. The other server
parameters at each datacenter are presented in Table II. The
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Fig. 3: Total electricity cost and time-averaged carbon emission of
each datacenter under electricity-oblivious scheme (EOS) and carbon-
oblivious scheme (COS).

average queuing delay at each datacenter is enforced to be
within 1 ms, thus, W

j

= 0.001s.

TABLE II: Server parameters in three datacenters.

Location sj (requests/s) ↵j �j (Watt) Mj (servers)
Alberta 20 0.3 120 1250

California 25 0.2 125 1800
Oklahoma 20 0.25 100 1500

B. Performance Benchmark

In order to analyze the performance improvement of our
COCA framework, and set an appropriate carbon emission
budget for each datacenter, we use the following bench-
mark schemes that represent the two extreme tradeoff points
between cost minimization and emission minimization: (i)
Carbon-oblivious scheme (COS). This scheme is proposed by
[5], which only minimizes the electricity cost at each time
slot, without considering the carbon emission. (ii) Electricity-
oblivious scheme (EOS). As the other extreme, EOS solely
focuses on carbon emission minimization at each time slot,
and discards the electricity cost.

The total electricity cost and time-averaged carbon emis-
sion of EOS and COS are plotted in Fig. 3. We observe
that: (1) Under EOS, DC#2 (California) dominantly outputs
89.3% (39.73/44.49) of the total carbon emission and con-
sumes 93.6% (7782.7/8312.1) of the total electricity cost.
This is because the carbon emission rate in California is
much lower than those in the other regions (revealed in
Fig. 2), attracting more workload being routed to DC#2.
(2) Similarly, under COS, DC#3 (Oklahoma) chiefly con-
tributes 48.9% (2653.5/5424.5) of the total electricity cost
and emits 55.9% (30.28/54.21) of the total emission, as
Oklahoma provides the cheapest electricity price among the
three regions. (3) When compared with EOS, COS consumes
52.5% (8312.1/5452.5�1) less electricity cost, at the expense
of producing 21.9% (54.21/44.49�1) more carbon emission.

C. Performance Evaluation of COCA

Intuitively, the total carbon emission of the three datacen-
ters can be reduced by migrating some amount of workload
from DC#1 and DC#3 to DC#2, since DC#2 enjoys the
greenest electricity supply. In this section, we first evaluate
the performance of our COCA framework under different
configurations of workload migration. Specifically, we initially
set the time-averaged carbon reduction target of the cloud to be
4.21Kg, meaning that the total time-averaged emission budget
of the three datacenters is equal to 50Kg. Then, we set three
different migration configurations corresponding to different

amounts of workload migrated to DC#2: Low (10, 16, 24)Kg,
Medium (9, 20, 21)Kg, High (8, 25, 17)Kg.

Optimality. Fig. 4 plots the time-averaged electricity cost
for different values of the control parameter V in our COCA
algorithm under various emission configurations. We make the
following observation. First, as the value of V increases, the
time-averaged cost achieved by COCA reduces significantly
and converges to the minimum level for larger values of V .
This quantitatively corroborates Theorem 1 in that COCA can
approach the optimal cost with a diminishing gap (1/V ) (cap-
tured by Eq. (17)). However, such a cost reduction diminishes
with the increase of V , as the cost will eventually achieve the
minimum. Second, as a comparison, we plot the time-averaged
electricity cost under COS and EOS. Fig. 4 shows that the
time-averaged electricity cost achieved by COCA is always
between that achieved by COS and EOS, and gets closer and
closer to that achieved by COS as V increases. This implies
a cost-effective tradeoff between electricity cost and carbon
emission as achieved by COCA. Third, when comparing
the time-averaged electricity cost under different emission
configurations, we find that the more emission migrated to
DC#2, the higher the cost would be, since DC#2 pays for the
most expensive electricity.

Queue stability. Fig. 5 plots the total time-averaged queue
backlog for different values of V in our COCA algorithm un-
der various emission configurations. As V increases, the total
time-averaged queue backlog with all configurations increases
almost linearly, which is captured by Eq. (18) in Theorem 1.
Along with Fig. 4, this reflects the tradeoff between queue
stability and cost minimization, and the control parameter V
is the design knob to tune such a tradeoff. Furthermore, it
clearly shows that the more emission migrated to DC#2, the
less congested the queue backlog would be, meaning a stronger
enforcement of the emission budget according to the inequality
(11) in Sec. III-A. This is due to the fact that DC#2 enjoys
the greenest electricity supply among the three datacenters.

Carbon emission. Fig. 6 plots the total time-averaged
carbon emission of the three datacenters for various values
of V under different emission configurations. As we observe,
the tighter emission configuration that migrates less emission
budget to DC#2 actually outputs more carbon emission. Fur-
thermore, though the emissions of the two relatively tighter
configurations, low and medium configuration are not enforced
within the budget as V changes, they are still far below the
emission of EOS. These demonstrate that COCA would strive
to reduce the emission as much as possible in a best-effort
manner, which has been discussed in the remark of Theorem 1.

In order to avoid the case that an emission configuration
is too tight to serve all requests, and to show the effectiveness
of our COCA framework, we redefine the queue Q(t) so to
limit the emission of the cloud rather than limit the emission
of each datacenter:

Q(t+ 1) = max[Q(t)� C +

N

X

j=1

E
j

(t)C
j

(t), 0],

where C represents the emission budget of the cloud, and Q(t)
is the historical measurement of the backlog between the total
time-averaged emission during the interval [0, t � 1] and the
cloud’s emission budget C. Then, the objective of COCA is
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Fig. 4: Time-averaged electricity
cost vs. different values of the con-
trol parameter V under different
emission configuration.

0 0.5 1 1.5 2

x 10
8

2000

3000

4000

5000

6000

7000

V

T
im

e
−

a
ve

ra
g
e
d
 Q

u
e
u
e
 B

a
ck

lo
g

 

 

Low
Medium
High

Fig. 5: Time-averaged queue back-
log vs. different values of the control
parameter V under different emis-
sion configuration.

0 0.5 1 1.5 2

x 10
8

49

50

51

52

53

54

55

V

T
im

e
−

a
ve

ra
g

e
d

 E
m

is
si

o
n

 (
K

g
)

 

 

Low Medium High Budget COS
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sion vs. different values of the con-
trol parameter V under different
emission configuration.
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ferent emission budget, with V =
1⇥ 107.
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different values of the control pa-
rameter V , with C = 50Kg.
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sion configuration, and V = 1⇥107.

now transformed to minimize the term
P

N

j=1 Ej

(t)[V P
j

(t) +
Q(t)C

j

(t)] at each time slot.

The emission-cost tradeoff. To explore the delicate trade-
off between electricity cost and actual carbon emission, we
vary the emission budget C from 45Kg to 54Kg, with a step
size of 1Kg. Fig. 7 illustrates the tradeoff curves under different
values of V , we observe the following interesting trends. First,
given the control parameter V , with the decline of emission
budget C, the actual emission of the cloud also drops slightly.
Such a reduction of actual emission, on the other hand, incurs a
markedly increase of the electricity cost. The rationale of such
a tradeoff is that under a lowered emission budget, COCA
would migrate an appropriate amount of workload from the
low-price datacenters to the low-carbon datacenters, leading
to both emission reduction and cost rising. Second, under
the same level of actual carbon emission, a larger value of
V would bring a lower cost, since the control parameter V
represents how much we emphasize the cost compared to the
emission, as revealed in Sec. III-A. Third, when comparing to
COS, COCA is effective in reducing carbon emission without
incurring excessive cost increase, especially under a large value
of V . Specifically, we calculate the changes of performance of
the points A–D plotted in Fig. 7, and list the result in Table III.

TABLE III: Changes of Performance Brought by COCA.

Point A B C D
Cost Rising (%) 0.89 1.70 3.05 5.09

Emission Reduction (%) 2.86 4.85 6.87 8.57

Enforcement of carbon emission. In Fig. 7, we observe
that as long as the emission budget C is relatively small,
the actual emission is not enforced within the budget. In

this section, we demonstrate the effectiveness of the emission
enforcement by tuning the length of simulated period from
3024 time slots to 21168 time slots (i.e., 147 days) as shown in
Fig. 8. It clearly shows that, as the number of time slots grows,
the actual emission diminishes significantly and gradually gets
closer and closer to the emission budget, even though such a
decline is at the cost of a slight increase of electricity cost.
Note that in real-world cloud systems, the emission reduction
target is usually carried out on a cycle of several years. Thus,
the COCA framework is efficient to enforce the emission of
a practical cloud system.

Carbon migration. To further understand how COCA
works to arbitrate the emission-cost tradeoff, we separately
tune the emission budget C and the control parameter V ,
then compare the carbon emission of each datacenter. The
results are illustrated in Fig. 9 and Fig. 10, respectively.
Specifically, Fig. 9 suggests that, when relaxing the emission
budget, a larger proportion of the actual emission would be
migrated from the low-carbon datacenter DC#2 to the low-
price datacenters DC#1 and DC#3. We also learn from Fig. 10
that, with the increase of the control parameter V , more
emission would be migrated from the low-carbon datacenter
DC#2 to the low-price datacenters DC#1 and DC#3 to meet
the stronger emphasis on cost minimization. Meanwhile, the
total emission of the cloud also deteriorates as V increases,
demonstrating the important role of the control parameter V
as the design knob of the emission-cost tradeoff.

SLA requirement. In practice, the cloud usually deploys
redundant capacity to guarantee the average response delay of
the workload. In this simulation, we investigate the impact of
SLA requirement on the electricity cost. We adjust the SLA
requirements while fixing other control and system parameters.
We choose W

j

= {0.5, 0.8, 1, 2, 3}ms and fix the control



parameter V = 1 ⇥ 10

7, under the medium emission config-
uration. As illustrated in Fig. 11, the decline of the maximal
tolerable response delay W

j

gives more opportunity to cut
down the total electricity cost, since fewer capacity needs to
be deployed.

V. RELATED WORK

The huge energy consumption and carbon emission in dat-
acenters have motivated extensive research. However, almost
all of these works focused on reducing the power consumption
or electricity bill [4]–[9], [25], [26]. Our work is different from
those works in that we directly study the carbon emission
aspect. While recognizing the significance of the existing
works [1], [27] on managing carbon emission of datacenters,
our study is different from and complementary to these works.

Compared to [1] that managed the aforementioned three
potentially conflicting objectives, our study differs substan-
tially in at least two important aspects. First, we consider the
alternative mechanisms —“Cap and Trade” and “Baseline and
Credit”—to reduce carbon emission, which is complementary
to work [1]. Second, the work [1] is based on the assumption
of power-proportional datacenters, while our framework is able
to dynamically shut off unnecessary servers and adjust CPU
speed to build power-proportional datacenters.

Compared to [27] that also targets a specified emission
reduction budget, our study is different in the following ways.
First, [27] focused on renewable energy capacity planning for
a single datacenter to reduce emission, while our proposed
framework is based on the spatial and temporal variabilities of
the carbon footprint to green the geo-distributed datacenters.
Intuitively, our framework can be extended to incorporate
the use of renewable energy to further green the cloud.
Second, with capacity right-sizing and server speed scaling,
our proposed framework can efficiently cut down the power
consumption without violating the SLA of user requests,
whereas [27] treats the datacenter as a black box. Third, [27]
heavily relies on an initial prediction of entire future workload.
However, in the context of a production cloud, it may not
be feasible to make accurate predictions of the entire future
workload, due to the fact that they are, in general, bursty and
nonstationary. One advantage of our framework is that it does
not need any future knowledge of workload, and can makes
online decisions to enforce the long-term emission budget.

VI. CONCLUSION

In response to the enormous energy demand and carbon
emission of the geographically distributed datacenters, this
paper investigates the possibility of exploiting the spatial and
temporal variabilities to cut down the carbon emission of the
cloud. Specifically, we designed and analyzed a carbon-aware
online control framework to balance the three-way tradeoff
between electricity cost, SLA requirement and emission reduc-
tion budget. By applying Lyapunov optimization techniques,
our carbon-aware online control framework can dynamically
make decisions on three important control decisions, including
geographical load balancing, capacity right-sizing, and server
speed scaling. We prove that our carbon-aware online control
framework can approach a delicate [O(1/V ), O(V )] cost-
emission tradeoff. Specifically, the achieved tradeoff allows

the geo-distributed cloud to achieve a time-averaged electricity
cost that is arbitrarily close to the optimum, while still main-
taining the long-term carbon emission budget. Through sim-
ulations with empirical real-world workload traces, electricity
price and generation data, we demonstrate the effectiveness of
our proposed framework in both minimizing electricity cost
and cutting down carbon emission.
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APPENDIX A
PROOF OF LEMMA 1

Proof: Squaring Eq. (10) and leveraging the fact that
(max[a� b+ c, 0])2  a2 + b2 + c2 � 2a(b� c), 8a, b, c � 0,
we have:
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Based on Eq. (19), we have:
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),
the above expression can be simplified to Eq. (14).

APPENDIX B
SOLUTION OF PROBLEM (16)

A. Decomposition of Transformed Problem (16)

We first decompose Problem (16) to two sub-problems by
defining R

j

(t) =
P

M

i=1 Rij

(t), which represents the workload
distributed to datacenter j at time slot t. Then, we obtain an
assignment problem (20) which determines R

ij

(t) according
to R

j

(t) and A
i

(t) as follows:
M

X

i=1

R
ij

(t) = R
j

(t),

N

X

j=1

R
ij

(t) = A
i

(t),

R
ij

(t) � 0. (20)

As well as a transformed optimal problem (21) which deter-
mines R

j

(t),m
j

(t) and µ
j

(t) by minimizing the objective (16)
as follows

min

Rj(t),mj(t),µj(t)
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(t) +Q
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(t)  m
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(t)µ
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(t)� 1

W
j

,

N

X

j=1

R
j

(t) = A(t),

and constraints (3), (4), (21)

where A(t) represents the total workload arriving to the system
at time slot t.

The Problem (20) is a simple assignment problem and can
be solved by existing algorithms in graph theory. Next, we’ll
focus on solving Problem (21).

B. Solution of Problem (21)

As in [5], by using the KKT conditions, we can conclude
that the optimal solution, if exists, must satisfy the following:

R
j

(t) = m
j

(t)µ
j

(t)� 1

W
j

.

Hence, we can rewrite the optimal problem (21) to a non-linear
optimization problem (22) according to the equality constraint
in problem (20).

min

Rj(t),mj(t),µj(t)

N

X

j=1

E
j

(t)[V P
j

(t) +Q
j

(t)C
j

(t)],

s.t.
N
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j=1

m
j

(t)µ
j

(t)� 1

W
j

= A(t),

and constraints (3), (4). (22)

To solve the problem (22), we extend the efficient GBD
[5] technique. Some basic definitions should be given here at
first.

We define the optimization problem function F (m,µ) and
the constraint function G(m,µ) as follow:

F (m,µ) =

N

X

j=1

E
j

(t)[V P
j

(t) + C
j

(t)Q
j

(t)],

G(m,µ) = A(t)�
N
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[m
j

(t)µ
j

(t)� 1

W
j

].

Considering the fact that V, P
j

(t), C
j

(t), Q
j

(t) and PUE
j

are
already known at time slot t. So function F (m,µ) can be
transformed to

F (m,µ) =
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where K
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(t) can be treated as a constant at time slot t for
K

j

(t) = PUE
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2
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j

], 8j 2 D} and I = {m 2 M |G(m,µ)  0, µ 2 N}. For
any fixed m 2 I , define the subproblem (23) as follows:

min

µ2N

F (m,µ),

s.t. G(m,µ)  0. (23)

And the explicit definition of I:

if m 2 M and satisfies
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µ2N

 TG(m,µ)  0, 8 2 ⇤,

where ⇤ ⌘ { 2 Rq| � 0 and
q
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i

= 1},

then m 2 I



Since the constraint function G(m,µ) is one-dimensional, we
can obtain q = 1. Then we conclude that  ⌘ 1 .

Let L(m,�) = inf

µ2S

F (m,µ) + �G(m,µ), where � is the
optimal multiplier for Problem (23). We define the master
problem as follows:

min

m2M

↵,

s.t. ↵ � L(m,�), 8� � 0,

0 � inf

µ2S

 TG(m,µ), 8 2 ⇤.

We have  = 1 here according to definition of I .

Based on the above definitions, an iterative schema is
developed as follows.

Algorithm 2: Algorithm for Solving Problem (21)
Step 1. Set p = 1,choose m1 2 I . Solve the subproblem
(23), so we obtain an optimal solution µ1 and an
optimal multiplier �1. Set UB = F (m1, µ1

).
Step 2. Solve the current relaxed master problem (24)
by any applicable algorithm.

min

m2M

↵,

s.t. ↵ � L(m,�j), j = 1, 2, ..., p,

0 � inf

µ2S

G(m,µ). (24)

Let (m,µ,↵) be the optimal solution. Set LB = ↵. If
LB � UB,then terminate, and the final optimal solution
of the original problem is (m,µ,↵).Else, increase p by
1, and set mp

= m.
Step 3. Solve the updated subproblem (23). Obtain an
optimal solution µp and an optimal multiplier �p. If
F (mp, µp

)  LB, then terminate, and the final optimal
solution is (mp, µp, F (mp, µp

)). Else, if F (mp, µp

) 
UB , set UB = F (mp, µp

). Return to Step 2.

APPENDIX C
PROOF OF THEOREM 1

To prove the time-averaged electricity cost and queue
backlog bound in Eq. (17), Eq. (18) in Theorem 1, we have
the following Lemma 2:

Lemma 2: (Existence of Optimal Randomized Station-
ary Policy): There exists at least one randomized station-
ary control policy ⇡ that chooses feasible control decisions
R⇡

ij

(t),m⇡

j

(t), µ⇡

j

(t) for 8i 2 S, 8j 2 D, 8t, independent of
the current queue backlogs, and yields the following steady
state values:

N

X

j=1

E{E
j

(t)P
j

(t)} = P ⇤,

E{E
j

(t)C
j

(t)}  C
j

,

) E{E
j

(t)C
j

(t)}  C
j

� ✏, ✏ � 0, (25)

where P ⇤ is defined as the theoretical lower bound on the
time-averaged electricity cost. As Lemma 2 can be proved by
applying similar techniques as [14], we omit the details for

brevity. Based on Lemma 2, we can now to prove the time-
averaged electricity cost and queue backlog bound in Eq. (17)
and Eq. (18) under our COCA algorithm as follows.

Recall that our COCA algorithm seeks to choose those
decision variables that can minimize the right-hand-side of
inequality (15) among all feasible decisions (including the
control decision ⇡ in Lemma 2) in each time slot, by applying
Eq. (25) to inequality (15), we obtain:

�(Q(t)) + V

N

X

j=1

E{E
j

(t)P
j

(t)|Q(t)}  B

�✏
N

X

j=1

Q
j

(t) + V P ⇤. (26)

Taking an expectation for inequality (26) with respect to the
distribution of Q

j

(t) and using iterative expectation law results
in:

E{L(Q(t+ 1))� L(Q(t))}+ V

N

X

j=1

E{E
j

(t)P
j

(t)} 

B � ✏
N

X

j=1

E{Q
j

(t)}+ V P ⇤. (27)

Summing the above over time slots t 2 {0, 1, ..., T � 1} and
then dividing the result by T , we have:

E{L(Q(T ))}� E{L(Q(0))}
T

+

V

T

T�1
X

t=0

N

X

j=1

E{E
j

(t)P
j

(t)}

 B � ✏

T

T�1
X

t=0

N

X

j=1

E{Q
j

(t)}+ V P ⇤ (28)

Rearranging terms and considering the fact that L(⇥(t)) � 0

and E
j

(t)P
j

(t) � 0 yields:

1

T

t�1
X

t=0

N

X

j=1

E{Q
j

(t)}  B + V P ⇤
+ E{L(Q(0))}/T

✏

Taking limits as T ! 1 results in the time-averaged backlog
bound in Eq. (18).

Similarly rearranging inequality (28) we obtain:

1

T

t�1
X

t=0

N

X

j=1

E{E
j

(t)P
j

(t)}  P ⇤
+

B

V
+

E{L(Q(0))}
T

Again taking limits as T ! 1 results in Eq. (17).


