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Abstract—Characterizing motif (i.e., locally connected sub-
graph patterns) statistics is important for understanding complex
networks such as online social networks and communication
networks. Previous work made the strong assumption that the
graph topology of interest is known in advance. In practice,
sometimes researchers have to deal with the situation where the
graph topology is unknown because it is expensive to collect and
store all topological and meta information. Hence, typically what
is available to researchers is only a snapshot of the graph, i.e.,
a subgraph of the graph. Crawling methods such as breadth
first sampling can be used to generate the snapshot. However,
these methods fail to sample a streaming graph represented as a
high speed stream of edges. Therefore, graph mining applications
such as network traffic monitoring use random edge sampling
(i.e., sample each edge with a fixed probability) to collect edges
and generate a sampled graph, which we called a “RESampled
graph”. Clearly, a RESampled graph’s motif statistics may be
quite different from those of the underlying original graph. To
resolve this, we propose a framework and implement a system
called Minfer, which takes the given RESampled graph and
accurately infers the underlying graph’s motif statistics. We also
apply Fisher information to bound the errors of our estimates.
Experiments using large scale datasets show the accuracy and
efficiency of our method.

I. INTRODUCTION

Complex networks are widely studied across many fields
of science and technology, from physics to biology, and from
nature to society. Networks which have similar global topolog-
ical features such as degree distribution and graph diameter can
exhibit significant differences in their local structures. There is
a growing interest to explore these local structures (also known
as “motifs”), which are small connected and induced subgraph
(or CIS) patterns that form during the growth of a network.
For a set of nodes in the graph G of interest, its induced
subgraph is defined as a graph that consists of all of the edges
that connect them in G. Motifs have many applications, for
example, they are used to characterize communication and
evolution patterns in online social networks (OSNs) [1]–[4],
pattern recognition in gene expression profiling [5], protein-
protein interaction prediction [6], and coarse-grained topology
generation of networks [7]. For instance, 3-node motifs can
reveal relationships like “the friend of my friend is my friend”

and “the enemy of my enemy is my friend”, which are well
known evolution patterns in signed (i.e., friend/foe) social
networks. Kunegis et al. [2] considered the significance of
motifs in Slashdot Zoo1 and how they impact the stability
of signed networks. Other more complex examples include
4-node motifs such as bi-fans and bi-parallels defined in [8].

Although motifs are important in helping researchers un-
derstand the underlying network, one major technical hurdle
is that it is computationally expensive to enumerate and count
all CISes in a large network. Note that there exist a large
number of CISes even for a medium size network with less
than one million edges. For example, the graphs Slashdot [9]
and Epinions [10], which contain approximately 1.0 × 105

nodes and 1.0 × 106 edges, contain more than 2.0 × 1010 4-
node connected and induced subgraphs [11]. To address this
problem, several sampling methods have been proposed to
estimate the frequency distribution of motifs [11]–[14]. How-
ever, all previous methods focus on designing computationally
efficient methods to characterize motifs when the entire graph
of interest either fits into memory, or an I/O efficient neighbor
query API exists to allow one to explore the graph topology,
when it is stored on disk. In summary, these methods assume
that the entire graph topology is known.

?

G
*

G

Figure 1. An example of the available G∗ and the underlying graph G.

In practice the graph of interest may not be known, and
the available dataset is just a subgraph sampled from the
original graph, because it is expensive to collect and store
all topological and meta information. A simple example is
given in Fig. 1, where the sampled graph G∗ is derived from
the dataset representing G. G∗ can be generated by crawling
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methods such as breadth first sampling. However, these meth-
ods fail to sample a streaming graph represented as a high
speed stream of edges. In this work, we assume the available
graph G∗ is an RESampled graph that is obtained through
random edge sampling, i.e, each edge in G is independently
sampled with the same probability 0 ≤ p ≤ 1. In practice,
this sampling method is popular and easy to implement for
streaming graphs. Obtaining a RESampled graph is easy and
cheap (the computational and space complexities are both
O(1)). A RESampled graph can also be used to estimate
many other graph statistics such as average node degree, node
label distribution, and edge label distribution, which have been
studied in previous work [15]. These properties make the
random edge sampling technique suitable for the following
applications.

• Network Traffic Analysis. Network traffic on net-
work devices such as routers can be represented as
a sequence of network packets/flows. Sampling is
inevitable for collecting network traffic on backbone
routers in order to study the network graph, where a
node in the graph represents a host and an edge (u, v)
represents a connection from host u to host v, because
packets go through routers at too high a rate to gather
information from all packets. Therefore, current net-
work devices support simple sampling techniques such
as random packets/flows sampling, where random flow
sampling can be viewed as random edge sampling over
the network graph.

• Network Data Publishing. It is common for service
providers to release a small sampled dataset (e.g., a
RESampled graph) for a third-party research.

Formally, we denote the graph G∗ as a RESampled graph of G.
One easily observes that a RESampled graph’s motif statistics
differ from those of the original graph due to uncertainties
introduced by sampling. For example, Fig. 2 shows that s∗ is
a 4-node induced subgraph in the RESampled graph G∗, but
we do not know which original induced subgraph s in G it
derives from. In fact, s could be any one of the five subgraphs
depicted in Fig. 2.

s*

s

?

Figure 2. s∗ is a 4-node induced subgraph in the RESampled graph G∗,
and s is the original induced subgraph of s∗ in the original graph G.

Unlike previous methods [11]–[14], in this paper we as-
sume that it is impossible or computationally expensive to
apply graph traversal algorithms over G and we aim to design
an accurate method to infer the motif statistics of the original
graph G from an available RESampled graph G∗. Note that
previous methods focus on designing computationally efficient
sampling/crawling methods based on sampling induced sub-
graphs in G to avoid the problem shown in Fig. 2. Hence they
fail to infer the underlying graph’s motif statistics from the
given RESampled graph. The gSH method in [16] can be used
to estimate the number of connected subgraphs from sampled
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Figure 3. 4-node CISes vs. 4-node connected subgraphs.

edges. However it cannot be applied to characterize motifs,
because motif statistics can differ from connected subgraph
statistics. For example, Fig. 3 shows that 75% of a graph’s
4-node connected subgraphs are isomorphic to a 4-node line
(i.e., the 1st motif in Fig. 4(b)), while 50% of its 4-node CISes
are isomorphic to a 4-node line.

Contribution: To the best of our knowledge, we are the
“first” to study and provide an accurate and efficient solution
to estimate motif statistics from a given RESampled graph.
Hence, we do away with the previous assumption requiring
the entire topology of the graph to be available. We introduce
a probabilistic model to study the relationship between motifs
in the RESampled graph and in the underlying graph. Based on
this model, we propose an accurate method, Minfer, to infer
the underlying graph’s motif statistics from the RESampled
graph. We also provide a Fisher information based method to
bound the error of our estimates. Experiments on real world
datasets show that our method can accurately estimate the
motif statistics of a graph based on a small RESampled graph.

This paper is organized as follows: The problem formula-
tion is presented in Section II. Section III presents our method
(i.e. Minfer) for inferring subgraph class concentrations of the
graph under study from a given RESampled graph. Section IV
presents methods for computing the given RESampled graph’s
motif statistics. The performance evaluation and testing results
are presented in Section V. Section VI summarizes related
work. Concluding remarks then follow.

II. PROBLEM FORMULATION

In this section, we first introduce the concept of motif
concentration and then discuss the challenges of computing
motif concentrations in practice.

Denote the underlying graph of interest as a labeled undi-
rected graph G = (V,E, L), where V is a set of nodes, E is
a set of undirected edges, E ∈ V ×V , and L is a set of labels
lu,v associated with edges (u, v) ∈ E. For example, we attach
a label lu,v ∈ {→,←,↔} to indicate the direction of the edge
(u, v) ∈ E for a directed network. Edges may have other labels
too, for instance, in a signed network, edges have positive or
negative labels to represent friend or foe relationship. If L
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(a) 3-node

    1               2               3               4               5               6

(b) 4-node

1             2               3             4              5               6                7                   8                    9                     10                 11
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(c) 5-node

Figure 4. All classes of three-node, four-node, and five-node undirected and connected motifs (The numbers are the motif IDs).

 1            2            3           4            5            6            7 8           9          10        11           12          13

Figure 5. All classes of three-node directed and connected motifs (The numbers are the motif IDs).

is empty, then G is an unlabeled undirected graph, which is
equivalent to an undirected graph.

Motif concentration is a metric that represents the distribu-
tion of various subgraph patterns that appear in G. To illustrate,
we show the 3-, 4- and 5-node subgraph patterns in Figs. 4, 5,
and 6 respectively. To define motif concentration formally,
we first introduce some notation. For clarity of presentation,
Table I depicts the notation used in this paper.

Table I. TABLE OF NOTATION.

G G = (V,E, L) is the graph under study
G∗ G∗ = (V ∗, E∗, L∗) is a RESampled graph

V (s), s ∈ C(k) set of nodes for k-node CIS s

E(s), s ∈ C(k) set of edges for k-node CIS s
M(s) associated motif of CIS s
Tk number of k-node motif classes

M
(k)
i ith k-node motif

C(k) set of k-node CISes in G

C
(k)
i set of CISes in G isomorphic to M

(k)
i

n(k) = |C(k)| number of k-node CISes in G

n
(k)
i = |C(k)

i | number of CISes in G isomorphic to M
(k)
i

m
(k)
i number of CISes in G∗ isomorphic to M

(k)
i

ω
(k)
i =

n
(k)
i

n(k) concentration of motif M
(k)
i in G

P matrix P = [Pij ]1≤i,j≤Tk

Pi,j

probability that a k-node CIS s∗ in G∗

isomorphic to M
(k)
i given its original

CIS s in G isomorphic to M
(k)
j

φi,j
number of subgraphs of M

(k)
j isomorphic

to M
(k)
i

n
(k)

n
(k) = (n

(k)
1 , . . . , n

(k)
Tk

)T

m
(k)

m
(k) = (m

(k)
1 , . . . ,m

(k)
Tk

)T

m(k) m(k) =
∑Tk

i=1 m
(k)
i

ρ
(k)
i =

m
(k)
i

m(k) concentration of motif M
(k)
i in G∗

p probability of sampling an edge
q q = 1 − p

An induced subgraph of G, G′ = (V ′, E′, L′), V ′ ⊂ V ,

E′ ⊂ E and L′ ⊂ L, is a subgraph whose edges and associated
labels are all in G, i.e. E′ = {(u, v) : u, v ∈ V ′, (u, v) ∈ E},
L′ = {lu,v : u, v ∈ V ′, (u, v) ∈ E}. We define C(k) as the
set of all CISes with k nodes in G, and denote n(k) = |C(k)|.
For example, Fig. 3 depicts all possible 4-node CISes. Let Tk

denote the number of k-node motifs and M (k)
i denote the ith

k-node motif. For example, T4 = 6 and M (4)
1 , . . . ,M (4)

6 are
the six 4-node undirected motifs depicted in Fig. 4(b). Then we

partition C(k) into Tk equivalence classes, or C(k)
1 , . . . , C(k)

Tk
,

where CISes within C(k)
i are isomorphic to M (k)

i . Note that in
this paper node labels are not taken into account when check-
ing the isomorphism. When there exist multiple isomorphisms
between a CIS and a motif, we only count one of them.

1

+ +

2

+
_

3

_ _

4

+ +

+
5

+ +

_

6

_ _

+
7

_ _

_

Figure 6. All classes of three-node signed and undirected motifs (The
numbers are the motif IDs).

Let n(k)
i denote the frequency of motif M (k)

i , i.e., the

number of CISes in G isomorphic to M (k)
i . Formally, we have

n(k)
i = |C(k)

i |, which is the number of CISes in C(k)
i . Then

the concentration of M (k)
i is defined as

ω(k)
i =

n(k)
i

n(k)
, 1 ≤ i ≤ Tk.

Thus, ω(k)
i is the fraction of k-node CISes isomorphic to motif

M (k)
i among all k-node CISes. In this paper, we make the

follow assumptions:

• Assumption 1: The complete G is not available to
us, but a RESampled graph G∗ = (V ∗, E∗, L∗) of G
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is given, where V ∗ ∈ V , E∗ ∈ E, and L∗ are node,
edge, and edge label sets of G∗ respectively. G∗ is
obtained by random edge sampling, i.e., each edge in
E is independently sampled with the same probability
0 < p < 1, where p is known in advance.

• Assumption 2: The label of a sampled edge (u, v) ∈
G∗ is the same as that of (u, v) in G, i.e., l∗u,v = lu,v.

These two assumptions are satisfied by many applications’
data collection procedures. For instance, the data generated
by an application such as network traffic monitoring is given
as a stream of directed edges. The following simple method
is computationally and memory efficient for collecting edges
and generating a small RESampled graph that can be sent to
remote network traffic analysis center: Each incoming directed
edge u → v is sampled when τ(u, v) ≤ ρp, where ρ
is an integer (e.g., 10,000) and τ(u, v) is a hash function
satisfying τ(u, v) = τ(v, u) and mapping edges into integers
0, 1, . . . , ρ − 1 uniformly. The property τ(u, v) = τ(v, u)
guarantees that edges u → v and u ← v are either both
sampled or discarded. Hence the label of a sampled edge
(u, v) ∈ E∗ is the same as that of (u, v) in G. Using universal
hashing [17], a simple instance of τ(u, v) is given as the
following function when each v ∈ V is an integer smaller
than ∆

τ(u, v) = (a(min{u, v}∆+max{u, v})+b) mod γ mod ρ,

where γ is a prime larger than ∆2, a and b are any integers
with a ∈ {1, . . . , ρ − 1} and b ∈ {0, . . . , ρ − 1}. We can
easily find that τ(u, v) = τ(v, u) and τ(u, v) maps edges
into integers 0, 1, . . . , ρ− 1 uniformly. The computational and
space complexities of the above sampling method are both
O(1), which make it practical for data collection. As alluded
before, in this paper, we aim to accurately infer the motif
concentrations of G based on the given RESampled graph G∗.

III. MOTIF STATISTICAL INFERENCE

The motif statistics of RESampled graph G∗ and original
graph G can be quite different. In this section, we introduce
a probabilistic model to bridge the gap between the motif
statistics of G∗ and G. Using this model, we will establish
a simple and concise relationship between the motif statistics
of G and G∗. We then propose an efficient method to infer
the motif concentration of G from G∗. Finally, we also give
a method to construct confidence intervals of our estimates of
motif concentrations.

A. Probabilistic Model of Motifs in G∗ and G

To estimate the motif statistics of G based on G∗, we
develop a probabilistic method to model the relationship be-
tween the motifs in G∗ and G. Define P = [Pi,j ] where Pi,j

is the probability that s∗ is isomorphic to motif M (k)
i given

that s is isomorphic to motif M (k)
j , i.e., Pi,j = P (M(s∗) =

M (k)
i |M(s) = M (k)

j ).

To obtain Pi,j , we first compute φi,j , which is the number

of subgraphs of M (k)
j isomorphic to M (k)

i . For example, M (3)
2

(i.e., the triangle) includes three subgraphs isomorphic to M (3)
1

(i.e., the wedge) for the undirected graph shown in Fig. 4(a).

Thus, we have φ1,2 = 3 for 3-node undirected motifs. When
i = j, φi,j = 1. Note that it is not easy to compute φi,j

manually for 4- and 5-node motifs. Hence we provide a simple
method to compute φi,j in Algorithm 1. The computational
complexity is O(k2k!). We want to emphasize that the cost
of computing φi,j is not a big concern, because these values
are static and independent of the input graph, and they can be
computed once and for all and stored in a static table. Denote
by V (s) and E(s) the sets of nodes and edges in subgraph s
respectively. We have the following equation

Pi,j = φi,jp
|E(M(k)

i )|q(|E(M
(k)
j )|−|E(M

(k)
i )|),

where q = 1−p. The above model implies that in expectation,
the fraction of these CISes that appear as CISes isomorphic to

M (k)
i in G∗ is Pi,j .

Algorithm 1: Pseudo-code of computing φi,j , i.e., the

number of subgraphs of M (k)
j that are isomorphic to

M (k)
i .

1: Step 1: Generate two graphs Ĝ = ({v1, . . . , vk}, Ê, L̂)
and G̃ = ({u1, . . . , uk}, Ẽ, L̃), isomorphic to motifs

M (k)
i and M (k)

j respectively, where Ê and L̂ are the

edges and edge labels of Ĝ with nodes v1, . . . , vk, and Ẽ
and L̃ are the edges and edge labels of G̃ with nodes
u1, . . . , uk.

2: Step 2: Initialize a counter yi,j = 0. For each
permutation (x1, . . . , xk) of integers 1, . . . , k, yi,j stays

unchanged when there exists an edge (va, vb) ∈ Ê
satisfying (uxa

, uxb
) /∈ Ẽ or l̂va,vb ̸= l̃uxa ,uxb

, and
yi,j = yi,j + 1 otherwise.

3: Step 3: Initialize a counter zj = 0. For each permutation
(x1, . . . , xk) of integers 1, . . . , k, zj stays unchanged

when there exists an edge (va, vb) ∈ Ê satisfying
(vxa

, vxb
) /∈ Ê or l̂va,vb ̸= l̂vxa ,vxb

, and zj = zj + 1
otherwise.

4: Step 4: Finally, φi,j = yi,j/zj .

B. Motif Concentration Estimation

Using the above probabilistic model, we propose a method
Minfer to estimate motif statistics of G from G∗. Denote by

m(k)
i , 1 ≤ i ≤ Tk, k = 3, 4, . . ., the number of CISes in G∗

isomorphic to motif M (k)
i . The method to compute m(k)

i is

presented in the next section. Then, the expectation of m(k)
i is

computed as

E[m(k)
i ] =

∑

1≤j≤Tk

n(k)
j Pi,j . (1)

In matrix notation, Equation (1) can be expressed as

E[m(k)] = Pn
(k),

where P = [Pij ]1≤i,j≤Tk
, n

(k) = (n(k)
1 , . . . , n(k)

Tk
)T, and

m
(k) = (m(k)

1 , . . . ,m(k)
Tk

)T. Then, we have

n
(k) = P−1

E[m(k)].
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Thus, we estimate n
(k) as

n̂
(k) = P−1

m
(k),

where n̂
(k) = (n̂(k)

1 , . . . , n̂(k)
Tk

)T. We easily have

E[n̂(k)] = E[P−1
m

(k)] = P−1
E[m(k)] = n

(k),

therefore n
(k) is an unbiased estimator of n

(k). Finally, we

estimate ω(k)
i as follows

ω̂(k)
i =

n̂(k)
i

∑Tk

j=1 n̂
(k)
j

, 1 ≤ i ≤ Tk. (2)

Denote by ρ(k)i the concentration of motif M (k)
i in G∗, i.e.,

ρ(k)i =
m

(k)
i

m(k) . We observe that (2) is equivalent to the following
equation, which directly describes the relationship between

motif concentrations of G and G∗. Let ω̂ = [ω̂(k)
1 , . . . , ω̂(k)

Tk
]T

and ρ = [ρ(k)1 , . . . , ρ(k)Tk
]T, then we have

ω̂ =
P−1ρ

W
, (3)

where W = [1, . . . , 1]P−1ρ is a normalizer. For 3-node

undirected motifs, P =

(

p2 3qp2

0 p3

)

, and the inverse of

P is P−1 =

(

p−2 −3qp−3

0 p−3

)

. Due to limited space, we

present the expressions for P and P−1 for 3-node signed
undirected motifs, 3-node directed motifs, 4-node undirected
motifs, and 5-node undirected motifs in [18].

C. Lower Bound on Estimation Errors

It is difficult to directly analyze the errors of our estimate
ω̂, because it is complex to model the dependence of sampled
CISes due to their shared edges and nodes. Instead, we derive
a lower bound on the mean squared error (MSE) of ω̂ using
the Cramér-Rao lower bound (CRLB) of ω̂, which gives the
smallest MSE that any unbiased estimator of ω can achieve.
For a k-node CIS s selected from k-node CISes of G at
random, the probability that s is isomorphic to the j th k-

node motif is P (M(s) = M (k)
j ) = ω(k)

j . Let s∗ be the
induced subgraph of the node set V (s) in RESampled graph
G∗. Clearly, s∗ may not be connected. Furthermore, there may
exist nodes in V (s) that are not present in G∗. We say s∗ is
evaporated in G∗ for these two scenarios. Let P0,j denote the
probability that s∗ is evaporated given that its original CIS s
is isomorphic to the j th k-node motif. Then, we have

P0,j = 1−
Tk
∑

l=1

Pl,j .

For a random k-node CIS s of G, the probability that its
associated s∗ in G∗ is isomorphic to the ith k-node motif is

ξi = P (M(s∗) = M (k)
i ) =

Tk
∑

j=1

Pi,jω
(k)
j , 1 ≤ i ≤ Tk,

and the probability that s∗ is evaporated is ξ0 =
∑Tk

j=1 P0,jω
(k)
j . When s∗ is evaporated, we denote M(s∗) = 0.

Then, the likelihood function of M(s∗) with respect to ω(k)

is
f(i|ω(k)) = ξi, 0 ≤ i ≤ Tk.

The Fisher information of M(s∗) with respect to ω(k) is
defined as a matrix J = [Ji,j ]1≤i,j≤Tk

, where

Ji,j = E

[

∂ ln f(l|ω(k))

∂ωi

∂ ln f(l|ω(k))

∂ωj

]

=
Tk
∑

l=0

∂ ln f(l|ω(k))

∂ωi

∂ ln f(l|ω(k))

∂ωj
ξl =

Tk
∑

l=0

Pl,iPl,j

ξl
.

For simplicity, we assume that the CISes of G∗ are independent
(i.e., no overlapping edges). Then the Fisher information
matrix of all k-node CISes is n(k)J . The Cramér-Rao Theorem
states that the MSE of any unbiased estimator is lower bounded
by the inverse of the Fisher information matrix, i.e.,

MSE(ω̂(k)
i ) = E[(ω̂(k)

i − ω(k)
i )2] ≥

(J−1)i,i − ω(k)(ω(k))T

n(k)

provided some weak regularity conditions hold [19]. Here the
term ω(k)(ω(k))T corresponds to the accuracy gain obtained

by accounting for the constraint
∑Tk

i=1 ω
(k)
i = 1. The CRLB

method provides us a way to set p properly, i.e., we can
perform a pilot study to estimate/guess the original graph’s
statistics, and then use the CRLB method to evaluate the
estimation errors for different p.

IV. ENUMERATE 3-, 4-, AND 5-NODE CIS ES

The existing generalized graph enumeration method [13]
can be used for enumerating all k-node CISes in RESampled
graph G∗, while it is not easy to apply and is (computationally
and memory) inefficient for small values of k = 3, 4, 5. In
this section, we first present a method (an extension of the
NodeIterator++ method in [20]) to enumerate and count 3-node
CISes in G∗. Then, we propose new methods to enumerate
and count 4 and 5-node CISes in G∗ respectively. In what
follows, we denote N∗(u) as the neighbors of u in G∗. Note
that in this section G∗ is the default graph when we define a
function. For example, the CIS with nodes u, v, and w refers
to the CIS with nodes u, v, and w in G∗. We would like
to point out in this paper we focus on obtaining an accurate
estimate from a given RESampled graph, and our aim is not
to reduce the computational cost, so the method in this section
can be replaced when there exist other more efficient methods
of counting motifs.

A. Enumerate 3-node CIS

Algorithm 2 shows our 3-node CISes enumeration method.
Similar to the NodeIterator++ method in [20], we “pivot” (the
associated operation is discussed later) each node u ∈ V ∗ to
enumerate CISes including u. For any two neighbors v and w
of u, we can easily find that the induced graph s with nodes
u, v and w is a 3-node CIS. Thus, we enumerate all pairs of
two nodes in N∗(u), and update their associated 3-node CIS
for u. We call this process “pivoting” u for 3-node CISes.

Clearly, a 3-node CIS s is counted three times when the
associated undirected graph of s by discarding edge labels is
isomorphic to a triangle, once by pivoting each node u, v, and
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Algorithm 2: 3-node CIS enumeration via pivoting.

input : G∗ = (V ∗, E∗, L∗)
/* m

(3)
i

records the number of CISes in G∗

isomorphic to motif M
(3)
i

, 1 ≤ i ≤ T3. */

output: m(3) = (m(3)
1 , . . . ,m(3)

T3
)T

for u ∈ V ∗ do
for v ∈ N∗(u) do

for w ∈ N∗(u) and w ≻ v do
/* induced(G∗,Γ) returns the CIS with

the node set Γ of G∗. */

s← induced(G∗, {u, v, w});
if (w, v) ∈ E∗ and u ≻ v then

continue();
end
/* M(s) is the motif class ID

of s. */
i←M(s);

m(3)
i ← m(3)

i + 1;
end

end
end

w. Let ≻ be an arbitrary total order on all of the nodes, which
can be easily defined and obtained, e.g. from array position
or pointer addresses. To ensure each CIS is enumerated once
and only once, we let one and only one node in a CIS be the
leader of the CIS, which is “responsible” for making sure the
CIS gets counted. When we “pivot” u and enumerate a CIS s,
s is counted if u is the leader of s. Otherwise, s is discarded
and not counted. We use the same method in [20], [21], i.e.,
let the node with lowest order in a CIS whose associated
undirected graph is isomorphic to a triangle be the leader. For
the other classes of CISes, their associated undirected graphs
are isomorphic to an unclosed wedge, i.e., the 1st motif in
Fig. 4(a). For each of these CISes, we let the node in the
center of its associated undirected graph (e.g., the node with
degree 2 in the unclosed wedge) be the leader.

B. Enumerate 4-node CISes

Algorithm 3 shows our 4-node CISes enumeration method.
To enumerate 4-node CISes, we “pivot” each node u as
follows: For each pair of u’s neighbors v and w where w ≻ v,
we compute the neighborhood of u, v, and w , defined as
Γ = N∗(u)∪N∗(v)∪N∗(w)−{u, v, w}. For any node x ∈ Γ,
we observe that the induced graph s consisting of nodes u, v,
w, and x is a 4-node CIS. Thus, we enumerate each node x
in Γ, and update the 4-node CIS consisting of u, v, w, and x.
We repeat this process until all pairs of u’s neighbors v and
w are enumerated and processed.

Similar to 3-node CISes, some 4-node CISes may be
enumerated and counted more than once when we “pivot”
each node u as above. To solve this problem, we propose
the following methods for making sure each 4-node CIS s
is enumerated and gets counted once and only once: When
(u, x) ∈ E∗ and w ≻ x, we discard x. Otherwise, denote by ŝ
the associated undirected graph of s by discarding edge labels.
When ŝ includes one and only one node u having at least 2
neighbors in V (ŝ), we let u be the leader of s. For example,

the node 4 is the leader of the 1st subgraph in Fig. 7. When
ŝ includes more than one node having at least 2 neighbors
in V (ŝ), we let the node with lowest order among the nodes
having at least 2 neighbors in V (ŝ) be the leader of s. For
example, the nodes 6 and 3 are the leaders of the 2nd and 3rd

subgraphs in Fig. 7.

4

3 7

6 4

3 7

6 4

7

6

3

Figure 7. Examples of the leaders of 4-node CISs. Graphs shown are CISes’
associated undirected graphs, and the number near to a node represents the
node order. Red nodes are the leaders.

Algorithm 3: 4-node CIS enumeration via pivoting.

input : G∗ = (V ∗, E∗, L∗)
/* m

(4)
i

records the number of CISes in G∗

isomorphic to motif M
(4)
i

, 1 ≤ i ≤ T4. */

output: m(4) = (m(4)
1 , . . . ,m(4)

T4
)T

for u ∈ V ∗ do
for v ∈ N∗(u) do

for w ∈ N∗(u) and w ≻ v do
Γ = N∗(u) ∪N∗(v) ∪N∗(w)− {u, v, w};
for x ∈ Γ do

if (u, x) ∈ E∗ and w ≻ x then
continue();

end
/* induced(G∗, {u, v, w, x}) is defined

same as Alg. 2. */

s← induced(G∗, {u, v, w, x});
/* undirected(s) returns the

associated undirected graph of

s by discarding edge labels. */

ŝ← undirected(s);
/* findNodes(ŝ, t) returns the set

of nodes in V (ŝ) having at

least t neighbors in V (ŝ). */

Λ← findNodes(ŝ, 2);
if |Λ| ≥ 2 then

/* minNodes(Λ) returns the node

with the lowest order in

V (ŝ). */

if u ≻ minNodes(Λ) then
continue();

end
end
i←M(s);

m(4)
i ← m(4)

i + 1;
end

end
end

end

C. Enumerate 5-node CISes

Algorithm 4 describes our 5-node CISes enumeration
method. For a 5-node CIS s, we classify it into two types
according to its associated undirected graph ŝ:
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• Type 1 5-node CIS s: ŝ includes at least one node
with more than two neighbors in V (ŝ);

• Type 2 5-node CIS s: All nodes in ŝ have no more
than two neighbors in V (ŝ), i.e., ŝ is isomorphic to
a 5-node line or a circle, i.e., the 1st or 6th motifs in
Fig. 4(c).

We propose two different methods to enumerate these two
types of 5-node CISes respectively.

To enumerate type 1 5-node CISes, we “pivot” each node u
as follows: When u has at least three neighbors, we enumerate
each combination of three nodes v, w, x ∈ N∗(u) where x ≻
w ≻ v, and then compute the neighborhood of u, v, w, and x,
defined as Γ← N∗(u)∪N∗(v)∪N∗(w)∪N∗(x)−{u, v, w, x}.
For any node y ∈ Γ, we observe that the induced graph s
consisting of nodes u, v, w, x, and y is a 5-node CIS. Thus,
we enumerate each node y in Γ, and update the associated
5-node CIS consisting of u, v, w, x, and y. We repeat this
process until all combinations of three nodes v, w, x ∈ N∗(u)
are enumerated and processed. Similar to 4-node CISes, we
propose the following method to make sure each 5-node s
is enumerated and gets counted once and only once: When
(y, u) ∈ E∗ and y ≻ x, we discard y. Otherwise, let ŝ be
the associated undirected graph of s, and we then pick the
node with lowest order among the nodes having more than two
neighbors in V (ŝ) be the leader. The 3rd and 4th subgraphs in
Fig. 8 are two corresponding examples.

To enumerate type 2 5-node CISes, we “pivot” each node
u as follows: When u has at least two neighbors, we first
enumerate each pair of u’s neighbors v and w where (v, w) /∈
E∗. Then, we compute Γv defined as the set of v’s neighbors
not including u and w and not connected to u and w, that
is, Γv ← N∗(v) − {u,w} − N∗(u) − N∗(w). Similarly, we
compute Γw defined as the set of w’s neighbors not including
u and v and not connected to u and v, i.e., Γw ← N∗(w) −
{u, v} − N∗(u) − N∗(v). Clearly, Γv ∩ Γw = ∅. For any
x ∈ Γv and y ∈ Γw, we observe that the induced graph s
consisting of nodes u, v, w, x, and y is a type 2 5-node CIS.
Thus, we enumerate each pair (x, y) ∈ Γv × Γw, and update
the 5-node CIS consisting of u, v, w, x, and y. We repeat this
process until all pairs of u’s neighbors v and w are enumerated
and processed. To make sure each CIS s is enumerated and
gets counted once and only once, we let the node with lowest
order be the leader when the associated undirected graph ŝ of
s isomorphic to a 5-node circle. When ŝ is isomorphic to a
5-node line, we let the node in the center of the line be the
leader. The 1st and 2nd subgraphs in Fig. 8 are two examples.

4

3

7

9
1

4 3

7 9

1

4

3

79

1 43

7 9

1

Figure 8. Examples of the leaders of 5-node CISs. Graphs shown are CISes’
associated undirected graphs, and the number near to a node represents the
node order. Red nodes are the leaders.

V. EVALUATION

In this section, we first introduce our experimental datasets
and then present results of experiments used to evaluate the

Algorithm 4: 5-node CIS enumeration via pivoting.

input : G∗ = (V ∗, E∗, L∗)
/* m

(5)
i

records the number of CISes in G∗

isomorphic to motif M
(5)
i

, 1 ≤ i ≤ T5. */

output: m(5) = (m(5)
1 , . . . ,m(5)

T5
)T

/* The functions findNodes, minNodes, induced,

and undirected are defined in Algorithms 2

and 3. */

for u ∈ V ∗ do
for v ∈ N∗(u) do

for w ∈ N∗(u) and w ≻ v do
/* Enumerate and update CIS s with

undirected(s) not isomorphic to a

5-node line and circle. */

for x ∈ N∗(u) and x ≻ w do
Γ← N∗(u) ∪N∗(v) ∪N∗(w) ∪
N∗(x)− {u, v, w, x};
for y ∈ Γ do

if (y, u) ∈ E∗ and x ≻ y then
continue();

end
s← induced(G∗, {u, v, w, x, y});
ŝ← undirected(s);
Λ← findNodes(ŝ, 3);
if |Λ| ≥ 2 then

if u ≻ minNodes(Λ) then
continue();

end
end
i←M(s);

m(5)
i ← m(5)

i + 1;
end

end
/* Enumerate and update s with

undirected(s) isomorphic to a

5-node line or circle. */

if (v, w) /∈ E∗ then
Γv ← N∗(v)−{u,w}−N∗(u)−N∗(w);
for x ∈ Γv do

/* s with undirected(s)

isomorphic to a 5-node

circle. */

Γw ←
N∗(w) − {u, v}−N∗(u)−N∗(v);
for y ∈ Γw do

if (x, y) ∈ E∗ and
u ≻ minNodes({u, v, w, x, y})
then

continue();
end
s←
induced(G∗, {u, v, w, x, y});
i←M(s);

m(5)
i ← m(5)

i + 1;
end

end
end

end
end

end
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Table II. GRAPH DATASETS USED IN OUR SIMULATIONS, “EDGES”
REFERS TO THE NUMBER OF EDGES IN THE UNDIRECTED GRAPH

GENERATED BY DISCARDING EDGE LABELS, “MAX-DEGREE” REPRESENTS

THE MAXIMUM NUMBER OF EDGES INCIDENT TO A NODE IN THE

UNDIRECTED GRAPH.

Graph nodes edges max-degree

Flickr [22] 1,715,255 15,555,041 27,236
Pokec [23] 1,632,803 22,301,964 14,854

LiveJournal [22] 5,189,809 48,688,097 15,017
YouTube [22] 1,138,499 2,990,443 28,754
Wiki-Talk [24] 2,394,385 4,659,565 100,029

Web-Google [25] 875,713 4,322,051 6,332
soc-Epinions1 [10] 75,897 405,740 3,044
soc-Slashdot08 [9] 77,360 469,180 2,539
soc-Slashdot09 [9] 82,168 504,230 2,552
sign-Epinions [26] 119,130 704,267 3,558

sign-Slashdot08 [26] 77,350 416,695 2,537
sign-Slashdot09 [26] 82,144 504,230 2,552

com-DBLP [27] 317,080 1,049,866 343
com-Amazon [27] 334,863 925,872 549

p2p-Gnutella08 [28] 6,301 20,777 97
ca-GrQc [29] 5,241 14,484 81

ca-CondMat [29] 23,133 93,439 279
ca-HepTh [29] 9,875 25,937 65

Table III. VALUES OF ω
(3)
i

, THE CONCENTRATIONS OF 3-NODE

UNDIRECTED AND DIRECTED MOTIFS. (i IS THE MOTIF ID.)

i Flickr Pokec
LiveLive- Wiki- Web-
Journal Talk Google

undirected 3-node motifs
1 9.60e-01 9.84e-01 9.55e-01 9.99e-01 9.81e-01
2 4.04e-02 1.60e-02 4.50e-02 7.18e-04 1.91e-02

directed 3-node motifs
1 2.17e-01 1.77e-01 7.62e-02 8.91e-01 1.27e-02
2 6.04e-02 1.11e-01 4.83e-02 4.04e-02 1.60e-02
3 1.28e-01 1.60e-01 3.28e-01 3.91e-03 9.28e-01
4 2.44e-01 1.74e-01 1.14e-01 5.43e-02 3.09e-03
5 1.31e-01 1.91e-01 1.73e-01 5.48e-03 1.92e-02
6 1.80e-01 1.71e-01 2.15e-01 3.88e-03 1.92e-03
7 5.69e-05 7.06e-05 2.74e-05 1.37e-05 4.91e-05
8 6.52e-03 2.49e-03 8.66e-03 1.81e-04 6.82e-03
9 1.58e-03 1.03e-03 1.06e-03 8.42e-05 2.84e-04
10 5.19e-03 1.91e-03 6.63e-03 1.28e-04 2.77e-03
11 6.46e-03 2.03e-03 6.27e-03 8.03e-05 5.98e-03
12 1.07e-02 5.13e-03 9.82e-03 1.78e-04 1.21e-03
13 9.86e-03 3.45e-03 1.26e-02 6.65e-05 2.00e-03

performance of our method, Minfer, for characterizing CIS
classes of size k = 3, 4, 5.

A. Datasets

We evaluate the performance of our methods on publicly
available datasets taken from the Stanford Network Analysis
Platform (SNAP)(www.snap.stanford.edu), which are summa-
rized in Table II. We start by evaluating the performance of
our methods in characterizing 3-node CISes over million-node
graphs: Flickr, Pokec, LiveJournal, YouTube, Web-Google,

Table IV. NRMSES OF ω̂
(3)
i

, THE CONCENTRATION ESTIMATES OF

3-NODE UNDIRECTED MOTIFS FOR p = 0.01 AND p = 0.05 RESPECTIVELY.
(i IS THE MOTIF ID.)

i Flickr Pokec
LiveLive- Wiki- Web-
Journal Talk Google

p = 0.01
1 1.92e-03 3.26e-03 2.69e-03 5.21e-03 2.93e-04
2 4.56e-02 6.92e-02 1.64e-01 2.67e-01 4.00e-01

p = 0.05
1 2.90e-04 4.10e-04 2.64e-04 6.06e-04 2.92e-05
2 6.90e-03 8.68e-03 1.61e-02 3.11e-02 3.99e-02

Table V. VALUES OF ω
(3)
i

, THE CONCENTRATIONS OF 3-NODE SIGNED

AND UNDIRECTED MOTIFS. (i IS THE MOTIF ID.)

i sign-Epinions sign-Slashdot08 sign-Slashdot09
1 6.69e-01 6.58e-01 6.68e-01
2 2.12e-01 2.32e-01 2.25e-01
3 9.09e-02 1.02e-01 9.96e-02
4 2.29e-02 5.86e-03 5.75e-03
5 2.76e-03 9.74e-04 9.34e-04
6 2.49e-03 1.14e-03 1.13e-03
7 3.81e-04 1.80e-04 1.76e-04

Table VI. VALUES OF ω
(4)
i

, THE CONCENTRATIONS OF 4-NODE

UNDIRECTED MOTIFS. (i IS THE MOTIF ID.)

i
soc- soc- soc- com-

Epinions1 Slashdot08 Slashdot09 Amazon
1 3.24e-01 2.93e-01 2.90e-01 2.10e-01
2 6.15e-01 6.86e-01 6.89e-01 6.99e-01
3 2.78e-03 1.25e-03 1.30e-03 2.37e-03
4 5.45e-02 1.86e-02 1.84e-02 7.69e-02
5 3.01e-03 7.77e-04 8.48e-04 1.05e-02
6 2.25e-04 9.19e-05 9.36e-05 1.55e-03

and Wiki-talk, contrasting our results with the ground truth
computed through an exhaustive method. It is computationally
intensive to calculate the ground-truth of 4-node and 5-node
CIS classes in large graphs. For example, we easily observe
that a node with degree d > 4 is included in at least
1
6d(d− 1)(d− 2) 4-node CISes and 1

24d(d− 1)(d− 2)(d− 3)
5-node CISes, therefore it requires more than O(1015) and
O(1019) operations to enumerate the 4-node and 5-node CISes
within the Wiki-talk graph, which contains one node with
100,029 neighbors. Even for a relatively small graph such
as soc-Slashdot08, it takes almost 20 hours to compute all
of its 4-node CISes. To solve this problem, the experiments
for 4-node CISes are performed on four medium-sized graphs
soc-Epinions1, soc-Slashdot08, soc-Slashdot09, com-DBLP,
and com-Amazon, and the experiments for 5-node CISes are
performed on four relatively small graphs ca-GR-QC, ca-HEP-
TH, ca-CondMat, and p2p-Gnutella08, where computing the
ground-truth is feasible. We also evaluate the performance of
our methods for characterizing signed CIS classes in graphs

Table VII. VALUES OF ω
(5)
i

, CONCENTRATIONS OF 5-NODE

UNDIRECTED MOTIFS. (i IS THE MOTIF ID.)

i
com-A com- p2p-Gn ca- ca-Con ca-
mazon DBLP utella08 GrQc dMat HepTh

1 2.9e-2 1.4e-1 2.6e-1 9.8e-2 1.4e-1 2.6e-1
2 7.5e-1 1.8e-1 1.8e-1 5.2e-2 2.2e-1 8.2e-2
3 1.6e-1 4.4e-1 4.6e-1 2.1e-1 4.3e-1 4.4e-1
4 6.0e-3 4.8e-2 1.1e-2 1.0e-1 4.9e-2 6.0e-2
5 2.3e-3 1.1e-3 2.7e-2 1.4e-3 2.1e-3 5.4e-3
6 3.6e-5 5.0e-5 1.4e-3 9.2e-5 1.1e-4 4.1e-4
7 1.5e-2 5.6e-2 2.7e-2 1.1e-1 5.5e-2 6.4e-2
8 3.5e-2 7.9e-2 2.2e-2 1.2e-1 8.0e-2 5.2e-2
9 1.4e-3 4.2e-3 1.4e-3 1.5e-2 7.0e-3 8.4e-3
10 1.7e-4 1.4e-4 1.0e-3 6.5e-4 3.0e-4 8.0e-4
11 7.3e-3 8.1e-3 4.3e-3 2.3e-2 9.9e-3 1.0e-2
12 5.3e-4 6.4e-3 2.8e-4 2.3e-2 4.5e-3 3.6e-3
13 8.2e-5 3.5e-6 7.4e-4 4.5e-6 6.4e-6 3.5e-5
14 3.9e-4 5.2e-4 1.7e-4 2.8e-3 6.6e-4 1.0e-3
15 6.7e-4 2.6e-2 7.6e-5 1.5e-1 5.9e-3 5.3e-3
16 7.1e-4 3.4e-4 1.4e-4 1.4e-3 9.2e-4 4.4e-4
17 3.9e-5 1.1e-5 8.0e-5 4.3e-5 2.9e-5 8.4e-5
18 2.3e-5 4.9e-6 6.0e-6 2.3e-5 8.5e-6 3.0e-5
19 2.4e-4 2.8e-3 1.5e-5 1.9e-2 9.8e-4 5.8e-4
20 5.8e-5 4.2e-4 7.0e-7 8.0e-3 1.4e-4 8.2e-5
21 7.2e-6 7.9e-3 1.5e-8 6.1e-2 1.5e-4 3.2e-3
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sign-Epinions, sign-Slashdot08, and sign-Slashdot09.

B. Error Metric

In our experiments, we focus on the normalized root
mean square error (NRMSE) to measure the relative error
of the estimator ω̂i of the subgraph class concentration ωi,
i = 1, 2, . . . . NRMSE(ω̂i) is defined as:

NRMSE(ω̂i) =

√

MSE(ω̂i)

ωi
, i = 1, 2, . . . ,

where MSE(ω̂i) is defined as the mean square error (MSE) of
an estimate ω̂i with respect to its true value ωi > 0, that is

MSE(ω̂i) = E[(ω̂i − ωi)
2] = Var(ω̂i) + (E[ω̂i]− ωi)

2 .

We note that MSE(ω̂i) decomposes into a sum of the variance
and bias of the estimator ω̂i. Both quantities are important
and need to be as small as possible to achieve good estimation
performance. When ω̂i is an unbiased estimator of ωi, then we
have MSE(ω̂i) = Var(ω̂i) and thus NRMSE(ω̂i) is equivalent
to the normalized standard error of ω̂i, i.e., NRMSE(ω̂i) =
√

Var(ω̂i)/ωi. Note that our metric uses the relative error.
Thus, when ωi is small, we consider values as large as
NRMSE(ω̂i) = 1 to be acceptable. In all our experiments,
we average the estimates and calculate their NRMSEs over
1,000 runs.

C. Accuracy Results

1) Inferring 3-node motif concentrations: Table III shows
the real values of the 3-node undirected and directed motifs’
concentrations for the undirected graphs and directed graphs
of Flickr, Pokec, LiveJournal, Wiki-Talk, and Web-Google.
Among all 3-node directed motifs, the 7th motif exhibits the
smallest concentration for all these five directed graphs. Here
the undirected graphs are obtained by discarding the edge
directions of directed graphs. Flickr, Pokec, LiveJournal,Wiki-
Talk, and Web-Google have 1.35×1010, 2.02×109, 6.90×109,
1.2×1010, and 7.00×108 3-node CISes respectively. Table IV
shows the NRMSEs of our estimates of 3-node undirected
motifs’ concentrations for p = 0.01 and p = 0.05 respectively.
We observe that the NRMSEs associated with the sampling
probability p = 0.05 is about ten times smaller than the
NRMSEs when p = 0.01. The NRMSEs are smaller than 0.04
when p = 0.05 for all five graphs. Fig. 9 shows the NRMSEs
of our estimates of 3-node directed motifs’ concentrations for
p = 0.01 and p = 0.05 respectively. Similarly, we observe the
NRMSEs when p = 0.05 are nearly ten times smaller than the
NRMSEs when p = 0.01. The NRMSE of our estimates of

ω(3)
7 (i.e., the 7th 3-node directed motif concentration) exhibits

the largest error. Except for ω(3)
7 , the NRMSEs of the other

motif concentrations’ estimates are smaller than 0.2 when
p = 0.05. Web-Google exhibits larger errors than the other
graphs, because it has less 3-node CISes.

Table V shows the real values of 3-node signed mo-
tifs’ concentrations for sign-Epinions, sign-Slashdot08, and
sign-Slashdot09. Sign-Epinions, sign-Slashdot08, and sign-
Slashdot09 have 1.72 × 108, 6.72 × 107, and 7.25 × 107 3-
node CISes respectively. Fig. 10 shows the NRMSEs of our
estimates of 3-node signed and undirected motifs’ concentra-
tions for p = 0.05 and p = 0.1 respectively. For all these three

signed graphs, the NRMSEs are smaller than 0.9 and 0.2 when
p = 0.05 and p = 0.1 respectively.
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Figure 10. NRMSEs of ω
(3)
i

, the concentration estimates of 3-node signed
and undirected motifs for p = 0.05 and p = 0.1 respectively.
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Figure 11. NRMSEs of ω̂
(4)
i

, the concentration estimates of 4-node
undirected motifs for p = 0.1, and p = 0.2 respectively.

2) Inferring 4-node motif concentrations: Table VI shows

the real values of ω(4)
i , i.e., the concentrations of 4-node

undirected motifs for soc-Epinions1, soc-Slashdot08, soc-
Slashdot09, and com-Amazon. Soc-Epinions1, soc-Slashdot08,
soc-Slashdot09, and com-Amazon have 2.58 × 1010, 2.17 ×
1010, 2.42× 1010, and 1.78× 108 4-node CISes respectively.

Fig. 11 shows the NRMSEs of ω̂(4)
i , the concentration esti-

mates of 4-node undirected motifs for p = 0.05, p = 0.1, and

p = 0.2 respectively. We observe that motifs with smaller ω(4)
i

exhibit larger NRMSEs. Except for ω(4)
3 , the NRMSEs of the

motif concentration estimates are smaller than 0.2 for p = 0.2.

3) Inferring 5-node motif concentrations: Table VII

shows the real values of ω(5)
i , i.e., the concentrations of 5-

node undirected motifs for com-Amazon, com-DBLP, p2p-
Gnutella08, ca-GrQc, ca-CondMat, and ca-HepTh. Com-
Amazon, com-DBLP, p2p-Gnutella08, ca-GrQc, ca-CondMat,
and ca-HepTh contains 8.50× 109, 3.34 × 1010, 3.92 × 108,
3.64× 107, 3.32× 109, and 8.73× 107 5-node CISes respec-

tively. Fig. 12 shows the NRMSEs of ω̂(5)
i , the concentration

estimates of 5-node undirected motifs for p = 0.1, p = 0.2,
and p = 0.3 respectively. We observe that NRMSE decreases
as p increases, and the 6th, 10th, 13th, 17th, 18th 5-node motifs

with small ω(5)
i exhibit large NRMSEs. We generate a large

graph G consisting of R soc-Amazon graphs, i.e., G has R
components, and each component is an instance of the soc-
Amazon graph. Clearly G has the same motif distributions
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Figure 9. NRMSEs of ω̂
(3)
i

, the concentration estimates of 3-node directed motifs for p = 0.01 and p = 0.05 respectively.

1 3 6 9 12 15 18 21
10

−2

10
0

10
2

10
4

motif ID

E
rr

o
r:

 N
R

M
S

E

 

 p=0.1

p=0.2

p=0.3

(a) com-Amazon

1 3 6 9 12 15 18 21
10

−2

10
0

10
2

10
4

10
6

motif ID

E
rr

o
r:

 N
R

M
S

E

 

 p=0.1

p=0.2

p=0.3

(b) com-DBLP

1 3 6 9 12 15 18 21
10

−2

10
−1

10
0

10
1

10
2

motif ID

E
rr

o
r:

 N
R

M
S

E

 

 p=0.1

p=0.2

p=0.3

(c) p2p-Gnutella08

1 3 6 9 12 15 18 21
10

−1

10
0

10
2

10
4

10
6

motif ID

E
rr

o
r:

 N
R

M
S

E

 

 p=0.1

p=0.2

p=0.3

(d) ca-GrQc

1 3 6 9 12 15 18 21
10

−2

10
0

10
2

10
4

motif ID

E
rr

o
r:

 N
R

M
S

E

 

 p=0.1

p=0.2

p=0.3

(e) ca-CondMat

1 3 6 9 12 15 18 21
10

−2

10
0

10
2

10
4

10
6

motif ID

E
rr

o
r:

 N
R

M
S

E

 

 p=0.1

p=0.2

p=0.3

(f) ca-HepTh

Figure 12. NRMSEs of ω̂
(5)
i

, the concentration estimates of 5-node undirected motifs for p = 0.1, p = 0.2, and p = 0.3 respectively.

as the soc-Amazon graph. Fig. 13 shows that the NRMSEs
decreases as R increases, which indicates that our methods
may exhibit small errors for characterizing 5-node motif of
large graphs.

D. Error Bounds

Figure 14 shows the root CRLBs (RCRLBs) and the root
MSEs (RMSEs) of our estimates of 3-node directed motifs’
concentrations, 4-, and 5-node undirected motifs’ concentra-
tions, where graphs LiveJournal, soc-Epinions, and com-DBLP
are used for studying 3-node directed motifs, 4-, and 5-node
undirected motifs respectively. We observe that the RCRLBs
are smaller than the RMSEs, and fairly close to the RMSEs.
The RMSEs and RCRLBs are almost indistinguishable for 3-
node directed motifs, where p = 0.01 and LiveJournal is used.

It indicates that the RCRLBs can efficiently bound the errors
of our motif concentration estimations.

VI. RELATED WORK

There has been considerable interest in designing efficient
sampling methods for counting specific subgraph patterns such
as triangles [16], [30]–[33], cliques [34], [35], and cycles [30],
[36], because it is computationally intensive to compute the
number of the subgraph pattern’s appearances in a large graph.
Similar to the problem studied in [11]–[14], [37], in this
work we focus on characterizing 3-, 4-, and 5-nodes CISes
in a single large graph, which differs from the problem of
estimating the number of subgraph patterns appearing in a
large set of graphs studied in [38]. OmidiGenes et al. [37]
proposed a subgraph enumeration and counting method using
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Figure 14. RCRLBs and RMSEs of concentration estimates of 3, 4, and 5-node directed motifs.
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Figure 13. NRMSEs of ω̂
(5)
i

, the concentration estimates of 5-node
undirected motifs for a graph consisting of R soc-Amazon graphs, where
p = 0.2.

sampling. However this method suffers from an unknown
sampling bias. To estimate subgraph class concentrations,
Kashtan et al. [12] proposed a subgraph sampling method, but
their method is computationally expensive when calculating
the weight of each sampled subgraph, which is needed to
correct for the bias introduced by sampling. To address this
drawback, Wernicke [13] proposed an algorithm, FANMOD,
based on enumerating subgraph trees to detect network motifs.
Bhuiyan et al. [14] proposed a Metropolis-Hastings based
sampling method GUISE to estimate 3-node, 4-node, and
5-node subgraph frequency distribution. Wang et al. [11]
proposed an efficient crawling method to estimate online social
networks’ motif concentrations, when the graph’s topology is
not available in advance and it is costly to crawl the entire
topology. Work on graph sparsifiers such as [39] focuses on
designing methods to obtain a sparse graph similar to the
original graph with respect to a specific graph metric such as
triangle count. We are interested in a different problem, to infer
the original graph’s motif statistics from a given RESampled
graph and we assume the original graph is not available or
cannot be explored. Triangle sparsifiers is used to estimate the
original graph’s triangle count. It cannot characterize 4- and
5-node motifs, and 3-node directed motifs, because it does not
consider how to remove the uncertainty that a sampled 3-node
CIS may differ from its original CISes. In summary, previous
methods focus on designing efficient sampling methods and
crawling methods for estimating motif statistics when the

graph is directly available or indirectly available (i.e., it is not
expensive to query a node’s neighbors [11]). They cannot be
applied to solve the problem studied in this paper, i.e., we
assume the graph is not available but a RESampled graph
is given and we aim to infer the underlying graph’s motif
statistics from the RESampled graph. At last, we would like
to point out our method of estimating motif statistics and its
error bound computation method are inspired by methods of
estimating flow size distribution for network traffic measure-
ment and monitoring [40]–[43].

VII. CONCLUSIONS

In this paper, we study the problem of inferring the under-
lying graph’s motif statistics when the entire graph topology
is not available, and only a RESampled graph is given. We
propose a model to bridge the gap between the underlying
graph’s and its RESampled graph’s motif statistics. Based
on this probabilistic model, we develop a method Minfer to
infer the underlying graph’s motif statistics, and give a Fisher
information based method to bound the error of our estimates.
and experimental results on a variety of known data sets
validate the accuracy of our method.
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