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ABSTRACT
The performance of an edge computing system primarily de-

pends on the edge server provisionmode, the taskmigration scheme,
and the computing resource con�guration. This paper studies how
to perform dynamic resource con�guration for hybrid edge server
provision under two decentralized task migration schemes. We
formulate the dynamic resource con�guration as a multi-period
online cost minimization problem, aiming to jointly minimize the
performance degradation (i.e., execution latency) and the operation
expenditure. Due to the stochastic nature, one can only observe
the system performance for the currently installed con�guration,
which is also known as the partial feedback. To overcome this chal-
lenge, we derive a deterministic mean �eld model to approximate
the large-scale stochastic edge computing system. We then pro-
pose an online mean �eld aided resource con�guration policy, and
show that the proposed policy performs asymptotically as good as
the o�ine optimal con�guration. Numerical results show that the
mean �eld model can signi�cantly improve the convergence speed
in the online resource con�guration problem. Moreover, our pro-
posed policy under the two decentralized task migration schemes
considerably reduces the operating cost (by 23%) and incurs little
communication overhead.
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Figure 1: An illustrative scenario with M = 10 sources, N = 5
passive-mode edge servers, and K = 1 active-mode edge server.
Here the edge servers can be interconnected via a metropolitan-
area-network (MAN) or a local-area-network (LAN).

1 INTRODUCTION
1.1 Background and Motivation

The recent proliferation of smart city and Internet-of-Things
(IoT) applications are driving a rapid growth of connected devices
(e.g., IoT sensors and mobile users). These devices are the sources
that repeatedly generate computing tasks of various delay-sensitive
services. Edge computing, providing computation resource in close
proximity to the sources, is a promising paradigm to reduce the
latency for many network applications. The performance of an
edge computing system depends primarily on three factors: (1)
edge server provision, (2) task migration scheme, and (3) dynamic
resource con�guration, which are the main focus in this paper.

1.1.1 Edge Server Provision. The computing resource is typically
the edge servers in close proximity to the sources. It could be amicro
datacenter or servers attached to an access point [1]. In general,
edge servers may function in passive mode or active mode:
• The edge servers in passive mode will admit and process the
tasks o�oaded by sources (e.g., IoT sensors), which corre-
sponds to the studies on sources’ task o�oading problem
(e.g., [2][3]).
• The edge servers in active mode will not directly admit the
tasks o�oaded by sources, but will assist passive-mode edge
servers to process the waiting tasks. The interaction between
the active-mode and passive-mode edge servers corresponds
to the studies on collaborative edges (e.g., [6]-[9]).

Fig. 1 shows an illustrative scenario withM = 10 sources, N = 5
passive-mode edge servers, and K = 1 active-mode edge server. In
this paradigm, a source’s computing task �rst reaches a passive-
mode edge server, and may be extracted by an idle active-mode
edge server. The task execution progress is closely related to the
adopted task migration scheme, which is discussed next.

1.1.2 Task Migration Scheme. The task migration scheme depends
on the aforementioned edge server provision. An appropriate task
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migration scheme can signi�cantly reduce the task execution la-
tency, thus improves the Quality of Experience (QoE) of sources.
There have been studies on task migration under the coordina-
tion of the network operator who has the global information (e.g.,
[8][9]). In practice, however, it is costly to keep track of all the
required information globally and persistently, especially when
the number of sources M is large. This motivates us to consider
a more practical migration scheme under the hybrid edge server
provision. Speci�cally, we focus on two load-balancing policies,
i.e., Join-Shortest-Queue (JSQ) and Longest-Queue-First (LQF). As
shown in Fig. 1, the two migration schemes work as follows:
• JSQ(d) with d 2 {1, 2, ...,N }: Upon generating a task, the
source probes d passive-mode edge servers uniformly at
random, and migrates the task to the least loaded one among
the d samplings.
• LQF(b) with b 2 {1, 2, ...,N }: Whenever an active-mode
edge server has any capacity, it probes b passive-mode edge
servers uniformly at random, and extracts a waiting task
from the one with the heaviest workload among the b sam-
plings.

Note that as the parameters d and b increase, JSQ(d) and LQF(b)
are becoming the classic join-the-shortest-queue and serve-the-
longest-queue discipline, respectively. The previous studies (e.g.,
[17][18]) have shown that a small value can already ensure a good
performance in the heavy-demand scenario. However, it is not clear
yet whether this still holds when the operator needs to con�gure
the available computing resource in a dynamic fashion (i.e., the
third focus in this paper).

1.1.3 Resource Configuration. Despite the extensive studies on
the task migration, the computing resource allocation has been
overlooked in edge computing. A �xed resource con�guration will
inevitably result in either a low resource utilization or a poor perfor-
mance due to the workload �uctuation of the sources. Therefore, it
is crucial to con�gure the computing resource in a dynamic fashion
for the edge servers. Note that the “dynamic con�guration” naturally
relies on the underlying computation demand and the expenditure
of running the resource. Both of them are priori unknowns and
possibly time-varying in practice. This means that it is imperative
to study “online resource con�guration” for edge servers. The above
discussions lead to the following key questions in this paper:

������� 1. How to optimize the resource con�guration under
the hybrid edge servers provision in a dynamic fashion?

������� 2. Can one harness the bene�ts from JSQ(d) and LQF(b)
even when d and b are small in the dynamic scenario?

This paper will introduce a mean �eld model to estimate the
large-scale edge network, and proposes an online mean �eld aided
con�guration policy. We believe the results in this paper could lay
the groundwork for using mean �eld theory to analyze and design
dynamic hybrid edge server provision in edge computing.

1.2 Main Results and Key Contributions
This paper studies the multi-period operation of a large-scale

edge computing systemwith hybrid edge server provision, and aims
to minimize the total operating cost in an online fashion. At the

beginning of each period (e.g., every hour), the network operator
determines the resource con�guration for the edge servers in two
modes. During this period, the passive-mode edge servers receive
computation tasks of the sources under JSQ(d). The active-mode
edge servers assist the passive-mode ones in executing the waiting
tasks according to LQF(b). At the end of each period, the operator
observes the cost of operating the network, and then determines
the resource con�guration for the next period. Due to the stochastic
nature of the large-scale edge network, it is di�cult to anticipate
the cost of other con�guration decisions that were not adopted.
Therefore, the dynamic resource con�guration problem naturally
exhibits the partial feedback issue.

The main results and key contributions are as follows:

• Problem Formulation: We investigate the dynamic resource
con�guration for hybrid edge server provision under two
decentralized task migration schemes. The goal is to jointly
minimize the operation expenditure and the performance
degradation in an online fashion. To the best of our knowl-
edge, this is the �rst study on dynamic resource con�gura-
tion for edge computing.
• Resolving Partial Feedback via Mean Field: We introduce a
deterministic mean �eld model to represent the large-scale
stochastic edge network. We show that the original stochas-
tic system converges to the deterministic mean �eld model
as the system size and the period duration increase. As far
as we know, we are the �rst to integrate mean �eld theory
and online learning with the partial feedback issue.
• Online Mean Field aided Con�guration Policy: We devise an
online mean �eld aided con�guration policy, which �rst
discretizes the metric con�guration space, and then contin-
uously explores and exploits the �nite con�guration can-
didates. We show that the cost incurred by our proposed
policy is less than the sum of a constant multiple of the
o�ine minimal cost and an extra constant.
• Performance Evaluation: We carry out extensive evaluation
using real-world electricity market data. Results show that
the mean �eld model signi�cantly improves the convergence
speed in the online resource con�guration. Moreover, our
proposed mean �eld aided con�guration policy under the mi-
gration schemes JSQ(2) and LQF(2), considerably reduces the
total operating cost (by 23%) and incurs little communication
overhead.

The remainder of this paper is as follows. Section 2 reviews re-
lated literature. Section 3 introduces system model and problem
formulation. Section 4 derives a mean �eld model. Section 5 pro-
poses the online resource con�guration policy. Section 6 provides
the numerical results. We conclude this paper in Section 7.

2 LITERATURE REVIEW
We will review three streams of studies related to this paper,

including edge computing, load balancing, and online learning.

2.1 Edge Computing
There have been many excellent studies on edge computing [1].

We will focus on the recent studies that are mostly related to ours.
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2.1.1 Edge Server Provision & Task Migration. The passive-mode
edge server provision in this paper is related to the previous stud-
ies on the task o�oading problems. Chen et al. in [2] study this
problem as a potential game. The later studies further take into
account the energy-e�ciency (e.g., [3]) and the service caching
(e.g., [4][5]). The active-mode edge server provision is related to
edge collaboration. Sahni et al. in [6] study how to jointly schedule
the tasks and the network �ows in the collaborative edge comput-
ing. Galanopoulos et al. in [7] consider the cooperative IoT data
analytics on the edge nodes. Tang et al. in [8] propose a general
3C resource sharing framework. Poularakis et al. in [9] formulate a
static service placement and request routing problem, which can
generalize several previous studies on edge computing.

2.1.2 Resource Configuration. The resource con�guration problem
has not been widely studied in edge computing. A few studies (e.g.,
[10–12]) consider a static scenario. Zhang et al. in [10] investigate
how to allocate the computing resource of edge and cloud servers,
and propose a distributed optimization framework. Chen et al. in
[11] focus on energy consumption and study the optimal allocation
of both computation and communication resources. Meskar et al.
[12] focus on the fairness issue of multi-resource allocation for edge
servers. Zhou et al. in [13] study the dynamic server provision in
IoT data streaming, but do not consider the resource con�guration.

This paper di�ers from the above works in two aspects. First,
we focus on the dynamic resource con�guration with demand un-
certainty, which is seldom studied in edge computing. Second, we
consider the hybrid edge server provision together with two de-
centralized task migration schemes, which can generalize some
previous studies into a uni�ed framework. The two aspects above
are mutually connected and render the direct analysis of this prob-
lem highly non-trivial.

2.2 Load Balancing in Multi-Server System
The task migration scheme in this paper is related to the load-

balancing policies in multi-server systems, which studies how the
dispatcher routes the incoming jobs to di�erent servers [14]. In this
problem, mean �eld approximation is widely used to investigate
the steady state of the limiting system. Mitzenmacher in [15] char-
acterizes the average response time under JSQ(2) for the M/M/1
system, which unveils an exponential improvement compared to
the random dispatching. Later works extend this study from the
perspective of batch-job arrival (e.g., [16]), general serving time
distribution (e.g., [17]), resource budget (e.g., [18]), and resource
pooling (e.g., [19]). Furthermore, Ying in [20] explicitly derives the
approximation error in terms of the system size.

In this paper, the task migration scheme from sources to the
passive-mode edge severs share a similar idea with those in above
studies (e.g., [15]). The migration scheme for the active-mode edge
servers is a generalization of the resource pooling study in [19].

2.3 Online Learning Algorithm
To solve the dynamic resource con�guration, this paper proposes

an online mean �eld aided policy, which consists of the discretiza-
tion and learning phases. Speci�cally, the learning phase is based
on the multiplicative weight update (MWU) method [21], which
originates from the classic problem “prediction with expert advices”

[22]. However, the presence of discretization phase renders the
regret analysis of the proposed algorithm substantially di�erent
from the standard procedure of the classic MWU method.

3 SYSTEM MODEL
We consider a setM = {1, 2, ...,M } of sources (e.g., IoT sensors or

mobile users), which repeatedly generate computing tasks. The edge
computing operator adopts a hybrid edge server provision in prox-
imity to the sources. Speci�cally, there are a set N = {1, 2, ...,N }
of passive-mode edge servers and a set K = {1, 2, ...,K } of active-
mode edge servers. The system works as follows:
• The sources can o�oad their computing tasks to the N
passive-mode edge servers, but cannot access the active-
mode edge servers on their own.
• The K active-mode edge servers will assist the N passive-
mode edge servers to process the waiting tasks.

We de�ne � , N /M and � , K/M . Accordingly, the tuple
(� ,�) represents the operator’s hybrid edge server provision, which
depends on operator’s infrastructure deployment. For example, if
the operator decides to deploy 10 passive-mode edge servers and 1
active-mode edge server for every 100 IoT sensors within a region,
then we have (� ,�) = (0.1, 0.01). We will study how the system
scales asM increases, which captures the rapid growth of the delay-
sensitive applications in the future network.

Furthermore, the task generation rate of each sourcem 2 M
could be time-varying and unpredictable in practice. Therefore,
given the hybrid edge server provision (� ,�), the operator will
dynamically con�gure the available resource of the edge servers.
We consider an operation horizon with a set T = {1, 2, ...,T } of
periods (e.g., 1000 hours). Each period t 2 T has the equal time
duration � (e.g., 1 hour), and we let � 2 [0,�] be the time index
within each period t . The operator con�gures the available resource
of edge servers at the beginning of each period t , and then the
system runs under this con�guration until the end of this period.

Next we introduce the network model and characterize the net-
work state in Section 3.1 and Section 3.2, respectively. We then
formulate the operator’s problem in Section 3.3.

3.1 Network Model
We model the network based on the sources’ computation tasks,

the migration schemes, and the computing resource.

3.1.1 Computation Task. In period t , sourcem 2M will generate
multiple computation tasks. We model the stochastic nature of the
tasks based on the arriving time and the computing intensity.
• Arriving Time: We follow the previous studies (e.g., [4]) and
model the task arriving of sourcem 2M as a Poisson process
at rate �mt in period t . The rate �mt may vary over di�erent
periods, capturing the demand �uctuation of sourcem. Ac-
cordingly, we let �mt [i] 2 [0,�] denote the arriving time of
the i-th task of sourcem in period t . To facilitate our later
discussion, we let �̄[M]

t ,
PM
m=1 �

m
t /M denote the average

rate in period t .
• Computing Intensity: The computing intensity of a task rep-
resents its complexity and can be roughly measured by the
required CPU cycles [2]. We let lmt [i] denote the computing
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intensity of the i-th task of sourcem 2M in period t . We fol-
low the previous empirical studies (e.g., [23][24]) and model
lmt [i] as an exponentially distributed random variable with a
normalized mean value. Our later analysis can be extended
to the general distributions, which will be elaborated at the
end of Section 4.

Based on the above discussions, �mt [i] , {�
m
t [i], l

m
t [i]} represents

the i-th computation task of source m 2 M in period t . We let
�mt , {�mt [1],�

m
t [2], ...} denote the task pro�le of sourcem in period

t . Accordingly, �t , (�mt : 8m 2M) represents the task pro�le of
the entire system in period t .

3.1.2 Passive-Mode Edge Server Provision. Each sourcem 2M can
o�oad its tasks to the N passive-mode edge servers. Di�erent from
the previous studies on task o�oading (e.g., [2][3]), we focus on a
decentralized migration scheme JSQ(d), where d 2 {1, 2, ...,N }. It
works as follows:

• Upon generating a task (e.g., �mt [i] at time �mt [i] 2 [0,�]),
the sourcem 2M inquires about the number of tasks in d
passive-mode edge servers, which are uniformly selected at
random.
• The sourcem migrates the task �mt [i] to the one holding the
least tasks among the d samplings.

Note that a larger d leads to a better performance, but also in-
creases the communication overhead. Previous studies (e.g., [15][16])
have shown that a small parameter (e.g., d = 2) can already en-
sure a good performance in heavy-demand case. We will further
investigate the impact of the parameter d in Section 6.2.

3.1.3 Active-Mode Edge Server Provision. The K active-mode edge
servers will assist the passive-mode edge servers to execute the
waiting tasks o�oaded by sources. Di�erent from the previous stud-
ies on edge collaboration (e.g., [6][8]), we focus on a decentralized
scheme LQF(b), where b 2 {1, 2, ...,N }. It works as follows:
• Upon being idle, an active-mode edge server k 2 K selects
b passive-mode edge servers uniformly at random, and in-
quires about the number of tasks at the b selected servers.
• The active-mode edge server k will extract a task from the
most loaded one among the b samplings according to the
FIFO rule.

Note that a larger b leads to a better performance, but increases
the communication overhead. Section 6 will show that a small
parameter (e.g., b = 2) can already ensure a good performance.

3.1.4 Computing Resource. Each edge server is equipped with a
certain amount of computing resources. The operator needs to
con�gure the available computing resource (e.g., the number of
VMs) at the beginning of each period t without the knowledge
of the upcoming tasks �t . We let xt denotes the CPU frequency
(in cycles per second) of each passive-mode edge server. Hence
the total available computing resource at the passive-mode edge
servers is Nxt . We let �t denote the computing resource at each
active-mode edge server. Hence the total computing resource at
the active-mode edge server is K�t . We let zt = (xt ,�t ) denote the
resource con�guration in period t . The operator chooses zt in the

metric spaceZ, which is de�ned as

Z ,
(
(x ,�)��� xL  x  xH, �L  �  �H

)
, (1)

where the feasible ranges [xL,xH] and [�L,�H] depend on the hard-
ware in practice.

3.2 Network Characterization
We characterize the network state and introduce the perfor-

mance metric based on the above network model.

3.2.1 Network State. In each period t , we let Qn
t (� ) 2 B denote

the number of tasks in the passive-mode edge server n 2 N at
time � 2 [0,�], where B , {0, 1, ...,B} and B is the bu�er size.
Accordingly,Qt (� ) = {Qn

t (� ) 2 B : 8n 2 N} is the network state
at time � in period t . Note that {Qt (� ) 2 BN : 8� 2 [0,�]} is an
N -dimensional continuous time Markov chain (CTMC). We have
two-fold elaboration on it:
• Given the migration scheme JSQ(d), Qn

t (� ) depends on the
task pro�le of the passive-mode edge server n, as well as the
task pro�les of other passive-mode edge servers.
• Given the migration scheme LQF(b), Qn

t (� ) depends on the
resource con�guration in both the passive-mode and active-
mode edge servers.

To emphasize these dependencies, we will often use Qn
t (� ,zt ,�t )

to denote the number of tasks in the passive-mode edge server n
at time � . Accordingly, the average workload among the N passive-
mode edge servers at time � 2 [0,� ] is

L[N]t (� ,zt ,�t ) ,
1
N

NX

n=1
Qn
t (� ,zt ,�t ), (2)

where the superscript [N] denotes the average is taken over the N
passive-mode edge servers. Moreover, the time-average workload is

L[N][� ]t (zt ,�t ) ,
1
�

Z �

0
L[N]t (� ,zt ,�t )d� , (3)

where the superscript [� ] represents that the average is taken over
the period duration � .

Next we elaborate why the time-average workload (3) is a crucial
performance metric for the operator to optimize.

3.2.2 Performance Metric. The operator aims to expedite the task
execution and improve the Quality of Experience (QoE) of theM
sources. Hence the execution latency (i.e., the time that a task spends
in the system) is a crucial performance metric for the operator to
optimize. Speci�cally, (3) implies that the time-average number of
tasks in all the passive-mode edge servers is NL[N][� ]t (zt ,�t ). The
sources’ total task arrival rate is M�̄[M]

t . By Little’s Law [25], the
average execution latency of the tasks �t in period t is

N · L[N][� ]t (zt ,�t )

M · �̄[M]
t

=
� · L[N][� ]t (zt ,�t )

�̄[M]
t

, (4)

where � = N /M is the passive-mode edge server provision ratio.
Therefore, the time-average workload (3) is proportional to the
task execution latency. In Section 3.3, we will model the network
performance degradation based on it.
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3.3 Problem Formulation
In the following, we de�ne the operator’s cost and formulate the

dynamic resource con�guration problem.

3.3.1 Operator’s Cost. We characterize the operator’s cost based
on the operation expenditure and the performance degradation.

Operation expenditure is the monetary cost for the operator.
We let � Pt 2 [0, � Pmax] denote the operation expenditure per unit
computing resource at the passive-mode edge server in period t .
Similarly, we let � At 2 [0, � Amax] denote the operation expenditure
per unit computing resource at the active-mode edge server in
period t . In practice, � Pt and � At depend on many factors such as
the infrastructure management, the energy consumption, and the
electricity price. The operator usually does not know (� Pt , �

A

t ) until
the end of period t . Mathematically, the con�guration zt = (xt ,�t )
incurs the operation expenditure � Pt Nxt + � At K�t in period t . As we
will see later, it is important to investigate how the system changes
when the number of sourcesM increases. Hence the e�ective metric
is the following average operation expenditure in period t

� Pt Nxt + � At K�t
M

= � Pt �xt + �
A

t ��t , (5)

where � = N /M and � = K/M represent the operator’s hybrid edge
server provision.

Performance degradation measures the sources’ QoE reduction
due to the increase in latency. In each period t , we measure the
QoE reduction based on the time-average workload L[N][� ]t (zt ,�t ).
Mathematically, we adopt a general formulation and letG (L) denote
the degradation given the time-average workload L. Speci�cally,
G (L) is continuous and increasing in L with G (0) = 0.

Based on the discussion above, we de�ne the operator’s cost in
period t as follows:

C[N][� ]
t (zt ,�t ) , G

✓
L[N][� ]t (zt ,�t )

◆
+ � Pt �xt + �

A

t ��t , (6)

which comprises the performance degradation and the average op-
eration expenditure. The operator can �exibly choose the function
G (·) to balance how much it prioritizes the system performance
over the monetary expenditure. That is, given an appropriate func-
tion G (·), the operator achieves its desired outcome by minimizing
the cost (6) over zt 2 Z.

3.3.2 Operator’s Problem. The operator determines the resource
con�guration zt sequentially at the beginning of period t , aiming
to minimize the total cost during the T periods. However, the oper-
ator cannot observe the task pro�le �t and the per-unit operation
expenditure (� Pt , �

A

t ) until the end of period t . That is, the operator
needs to solve the following online cost minimization problem:

P������ 1 (O����� C���M����������� P������).

min
TX

t=1
C[N][� ]
t (zt ,�t )

s.t., zt 2 Z, 8t 2 T .
(7)

Problem 1 is an online optimization problem. The key challenges
for the operator to solve it are two-fold:
• First, Problem 1 exhibits the partial feedback issue in terms
of the performance degradation. Speci�cally, the operator

can observe the performance degradation after adopting
the con�guration zt , but the operator does not know the
performance of other con�guration due to the stochastic
nature of the system.
• Second, the operator does not know the explicit gradient
of C[N][� ]

t (zt ,�t ) with respect to zt , let alone its convex-
ity. Hence the gradient-based online algorithms (e.g., online
gradient decent) do not work in Problem 1.

To overcome the challenges, we �rst introduce how to tackle the
partial feedback issue via the mean �eld theory in Section 4. We
then propose an online mean �eld aided policy in Section 5.

4 MEAN FIELD MODEL
In Section 3, we characterize the hybrid edge network as an

N -dimensional stochastic CTMC. This section introduces a deter-
ministic mean �eld model that approximates the N -dimensional
stochastic CTMC. Mathematically, we want to estimate the time-
average workload L[N][� ]t (z,�t ) for any con�guration z 2 Z based
on the mean �eld model. For notation simplicity, we will focus on
a generic period and suppress the period index t in this section.

We will �rst introduce the density-based state and the mean �eld
model in Section 4.1 and Section 4.2, respectively. We then study
the relationship between the deterministic mean �eld model and
the original stochastic system in Section 4.3.

4.1 Density-Based State
Recall thatQn (� ) represents the number of tasks in passive-mode

edge server n 2 N at time � 2 [0,�]. That is, Q (� ) = {Qn (� ) 2
B : 8n 2 N} is a quantity-based state characterization. Now we
introduce a density-based state and let S[N]i (� ) denote the “fraction”
of passive-mode edge servers with at least i tasks at time � , i.e.,

S[N]i (� ) ,
1
N

NX

n=1
I
⇣
Qn (� ) � i

⌘
, 8i 2 B, (8)

where I(·) is an indicator function and the superscript [N] repre-
sents that there are N passive-mode edge servers. Note that we
have S[N]0 (� ) = 1 for any � by de�nition. Moreover, S[N] (� ) =
{S[N]i (� ) : 8i 2 B} is the density-based state characterization for the
system. Proposition 1 demonstrates the relationship betweenQ (� )
and S[N] (� ). The proof follows directly from the de�nition (8).

P���������� 1. The quantity-based stateQ (� ) and the density-
based state S[N] (� ) satisfy the following equality

1
N

NX

n=1
Qn (� ) =

BX

i=1
S[N]i (� ), 8� 2 [0,� ], (9)

which represents the average workload L[N] (� ,z,�).

Proposition 1 essentially introduces two ways of calculating
the average workload L[N] (� ,z,�). As we will see later, it is more
convenient to depict the system dynamics based on the density-
based state S[N] (� ). Therefore, we will derive the mean �eld model
based on the density-based state next.
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4.2 Derivation of Mean Field Model
We �rst introduce the state transition and the expected drift.

Afterwards, we formally de�ne our mean �eld model.

4.2.1 State Transition. The density-based state is associated with
two types of transitions, i.e., task admission and task execution. We
will introduce the two transitions based on the vector ea = {eai :
8i 2 B} de�ned as eai , I(i = a)/N for any i 2 B.
• Task admission transition occurs whenever a passive-mode
edge server admits a new task from the sources under JSQ(d).
If the admission transition occurs to a passive-mode edge
server holding a � 1 tasks at time � , then S[N]a (� ) increases
by 1/N , while the other elements of S[N] (� ) do not change.
That is, the density-based state becomes S[N] (� ) + ea .
• Task execution transition occurswhenever a task in a passive-
mode edge server is completed or migrated to one of the
active-mode edge servers. If an execution transition occurs
at a passive-mode edge server holding a tasks at time � ,
then S[N]a (� ) decreases by 1/N , while the other elements
of S[N] (� ) do not change. That is, the density-based state
becomes S[N] (� ) � ea .

Next we introduce the expected drift of the density-based state
S[N] (� ) based on the two types of state transitions above.

4.2.2 Expected Dri�. The expected drift of the density-based state
S[N] (� ) at time � is de�ned as

Fi
⇣
S[N] (� )

⌘
, lim

�!0

E

S[N]i (� + �) � S[N]i (� )

�
�

, 8i 2 B, (10)

which measures the increasing rate of S[N]i (� ). We present the
expression of Fi (·) in Proposition 2 and elaborate the rationale in
the following proof sketch.

P���������� 2. Given the resource con�guration (x ,�) and the
average task arrival rate �̄[M], the expected drift at the density-based
state s = {si 2 [0, 1] : 8i 2 B} is given by F0 (s ) = 0 and

Fi (s ) =
�̄[M]

�

⇣
sdi�1 � sdi

⌘
� x (si � si+1)

� �

�
· �

f
(1 � si+1)b � (1 � si )b

g
, 81  i  B,

(11)

where the tuple (� ,�) represents the hybrid edge server provision and
we let sB+1 = 0 for consistency.

P���� S����� �� P���������� 2. To derive (11), we consider
a time interval [� ,� + �] and compute the following term

E
f
S[N]i (� + �) � S[N]i (� )

g
. (12)

Based on the previous discussion, the task admission transition
ei and the task execution transition �ei lead to the increment
1/N and the decrement �1/N for S[N]i (� ), respectively. To calculate
(12), we consider the expected times that the transitions ±ei occur
during the interval [� ,� + �]. Next we introduce an event (i.e., SAi )
leading to the task admission transition ei and another two events
(i.e., PEi and AEi ) leading to the task execution transition �ei .

• Source-task-admission event SAi means that a new task from
the sources arrives at one of the passive-mode edge servers
holding exactly i�1 tasks under JSQ(d). First, sourcem 2M
generates new tasks at rate �m , thus there are �

PM
m=1 �

m

arrival tasks during the interval [� ,� +�] on average. Second,
the migration scheme JSQ(d) indicates that a new task is
migrated to a passive-mode edge server holding exactly i � 1
tasks with the probability [S[N]i�1 (� )]

d � [S[N]i (t )]d . The event
SAi leads to the following increment for (12):

1
N
�M�̄[M]

 
S[N]i�1 (t )

�d
�

S[N]i (t )

�d !
. (13)

• Passive-execution event PEi means that one of the passive-
mode edge servers holding i tasks completes a task. First,
there are [S[N]i (t ) � S[N]i+1 (t )]N passive-mode edge servers
holding i tasks. Second, the exponentially distributed com-
puting intensity (i.e., lmt [i] ⇠ Exp(1)) and the CPU frequency
x in a passive-mode edge server indicate that event PEi oc-
curs at rate x . That is, there are �x tasks completed during
the interval [� ,� + �] on average. Hence event PEi leads to
the following decrement for (12):

� 1
N
�x


S[N]i (t ) � S[N]i+1 (t )

�
N . (14)

• Active-execution event AEi means that the active-mode edge
server completes a task for a passive-mode edge server hold-
ing i tasks under LQF(b). First, the LQF(b) scheme implies
that the heaviest load among the b samplings is i with proba-
bility [1�S[N]i+1 (t )]

b�[1�S[N]i (t )]b . Second, the exponentially
distributed computing intensity (i.e., lmt [i] ⇠ Exp(1)) and the
CPU frequency K� of all the active-mode edge servers indi-
cate that event AEi occurs at rate K�. Hence event AEi leads
to the following decrement for (12)

� 1
N
�K�

 
1 � S[N]i+1 (t )

�b
�

1 � S[N]i (t )

�b !
. (15)

Finally, (12) equals to the summation of (13)⇠(15). Substituting
it into (10) leads to the expression in (11). ⇤

4.2.3 Mean Field Model. Next we will formally de�ne our mean
�led model using lowercase notations {si (� ) : 8i 2 B} for clarity.

D��������� 1. The mean �eld model s (� ) = {si (� ) 2 [0, 1] : 8i 2
B}, is de�ned by the following three types of conditions:
• Initial condition s (0) = s0.
• Boundary condition s0 (� ) = 1, 8� � 0.
• Drift condition ds (� )

d� = F (s (� )) where the set of functions
F (s ) = {Fi (s ) : 8i 2 B} are given in (11).

Note that the above mean �eld model is a set of ordinary di�er-
ential equations, which are deterministic. Speci�cally, the initial
condition speci�es where the mean �eld starts to evolve. The bound-
ary condition coincides with the de�nition of the density-based
state in (8). The drift condition is the same as the expected drift
of the original stochastic system S[N] (� ). Next we introduce the
connection between the deterministic mean �eld model s (� ) and
the original stochastic system S[N] (� ).
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4.3 Fixed Point and Convergence
We �rst present the �xed point of the mean �eld model. We then

introduce the convergence relation between the deterministic mean
�eld model and the original stochastic system.

4.3.1 Fixed Point. The �xed point of the mean �eld model is a state
s̃ , at which the mean �eld model does not change. That is, we have
s (� 0) = s̃ for any � 0 � � if s (� ) = s̃ . Theorem 1 presents the �xed
point. The proof is given in our technical report [26].

T������ 1. The �xed point s̃ = {s̃i : 8i 2 B} of the mean �eld
model in De�nition 1 is given by

s̃i =

8>>><>>>:

1, if i = 0,
�(s̃i+1;� ), if 1  i < B,
�(0;� ), if i = B,

(16)

where the function �(s;� ) is given by

� (s;� ) ,
266664
�xs � �� (1 � s )b + �

�̄[M]

377775
1
d

. (17)

Moreover, the constant � solves �(1+B) (0;� ) = 1, where the function
�(1+B) (·,� ) is the (1 + B)-th iterate of �(·;� ).

Based on Theorem 1, one can e�ciently compute the �xed point
s̃ given the con�guration (x ,�) and the average arrival rate �̄[M].
Accordingly, we often use s̃ (x ,�, �̄[M]) to emphasize the depen-
dency. Recall that this section aims to estimate the time-average
workload L[N][� ] (x ,�,�) based on the mean �eld model. For this
goal, we de�ne l (x ,�, �̄[M]) based on the �xed point as follows

l
⇣
x ,�, �̄[M]⌘ ,

BX

i=1
s̃i

⇣
x ,�, �̄[M]⌘, (18)

which is an accurate estimation of L[N][� ] (x ,�,�). The following
convergence result ensures the accuracy.

4.3.2 Convergence. In Theorem 2, we introduce the relationship
between the original stochastic system and the deterministic mean
�eld model. The proof is given in our technical report [26].

T������ 2. Given the edge server provision (� ,�) for the M
sources, the limiting system (i.e.,M ! 1) satis�es

lim
M!1
N=M�

lim
�!1

���L[N][� ] (x ,�,�) � l
⇣
x ,�, �̄[M]⌘��� = 0, (19)

where � is the duration of a single period.

Theorem 2 shows that the mean �eld model is an accurate ap-
proximation of the time-average workload if the system sizeM and
the period duration � are large. The intuitions are two-fold:
• The stochastic system is characterized by a CTMC {S[N] (� ) :
� 2 [0,� ]} in each period. As the period duration � increases,
the CTMC is approaching to its steady state.
• The drift condition of the mean �eld model is de�ned by the
expected drift of the stochastic system. As N increases, the
CTMC {S[N] (� ) : � 2 [0,� ]} behaves closer to its expectation
(i.e., the mean �eld model) by the Law of large number [20].

So far, we have introduced the connection between the determin-
istic mean �eld model and the stochastic edge network. Although
the above analysis assumes that the computing intensity follows the
exponential distribution, one can obtain similar results under the
general distributions with decreasing hazard rate based on asymp-
totic independence or propagation of chaos [27]. We refer interested
readers to Section 9.1 of [14] for more details.

5 AN ONLINE MEAN FIELD POLICY
This section proposes an online mean �eld aided con�guration

policy A, which leverages themean �eldmodel to address the partial
feedback issue in Problem 1. To proceed, we �rst de�ne the mean
�eld cost in period t as follows

Ct
⇣
zt , �̄

[M]
t

⌘
, G

✓
l
⇣
zt , �̄

[M]
t

⌘◆
+ � Pt �xt + �

A

t ��t , (20)

which replaces the time-average workload L[N][� ]t (zt ,�t ) with the
deterministic formula l (zt , �̄

[M]
t ). Moreover, the mean �eld cost has

the following features.
• Theorem 2 implies that the mean �eld cost (20) is an accurate
estimation for the operator’s real cost (6).
• At the end of period t , the operator can e�ciently compute
the mean �eld cost for any con�guration z 2 Z after observ-
ing the average arrival rate �̄[M]

t and the per-unit expenditure
(� Pt , �

A

t ).
Although the mean �eld cost exhibits an explicit expression, one

can check that it is not convex in zt . Therefore, the classic online
convex optimization algorithms (e.g., OGD) cannot preserve a good
performance in our problem. Next we will introduce our approach
in Section 5.1 and analyze its performance in Section 5.2.

5.1 Online Mean Field Aided Policy
5.1.1 Basic Idea. The proposed policy A works in two phases: (a)
discretization phase and (b) learning phase. In the discretization
phase, we discretize the metric space Z into a �nite set A of re-
source candidates. In the learning phase, we learn about the optimal
resource candidate based on the past observations and the mean
�eld model. Note that the mean �eld model enables the learning
phase to obtain a full feedback. Moreover, we will show that the
discretization phase only incurs a bounded performance loss. We
summarize the proposed policy A in Algorithm 1 and elaborate it
in the following.

5.1.2 Discretization Phase. We discretize the metric spaceZ based
on a parameter � > 0, i.e., Line 1 and Line 2. Speci�cally, for the
passive-mode edge servers, we de�ne x[i] as follows

x[i] , min
⇣
xH,xL (1 + � )i

⌘
, 8i 2 {1, 2, ...,Ax }, (21)

where Ax ,
j
log1+�

xH
xL

k
depends on the parameter � and d·e is

the ceil function. Note that the set {x[i] : 81  i  Ax } includes all
powers of 1+ � in the range [xL,xH]. Similarly, for the active-mode
edge servers, we de�ne �[j] as follows:

�[j] , min
⇣
�H,�L (1 + � ) j

⌘
, 8j 2 {1, 2, ...,A� }, (22)

where A� ,
j
log1+�

�H
�L

k
.
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Algorithm 1:Mean Field aided Con�guration Policy A
Output :Decisions (x[it ],�[jt ]) for each period t .

1 Initial � 2 (0, 1) and � > 0.
2 De�ne the resource candidate (x[i],�[j]) for any tuple
(i, j ) 2 A based on (21) and (22).

3 Initialw1 (i, j ) = 1 for any tuple (i, j ) 2 A
4 for t = 1 to T do
5 Calculate pt = {pt (i, j ) : 8(i, j ) 2 A} based on (23)
6 Determine (x[it ],�[jt ]) by drawing a tuple (it , jt ) 2 A

randomly according to the probability distribution pt
7 Calculate the normalized mean-�eld cost ct (i, j ) for any

(i, j ) 2 A based on (24)
8 Update weight matrixwt+1 according to (25)
9 end

Based on the discussions above, the set A , {(i, j ) : 81  i 
Ax , 1  j  A� } contains all the resource candidates after discretiz-
ingZ based on the parameter � . Note that a smaller parameter �
leads to a more precise discretization, thus a larger set A. We will
show how the parameter � a�ects the theoretical performance of
the proposed policy A in Section 5.2.

Next we introduce the learning phase based on the set A.

5.1.3 Learning Phase. The learning phase of policy A follows the
multiplicative weight update (MWU) method [21]. Speci�cally, we
maintain a weight matrix wt = {wt (i, j ) 2 [0, 1] : 8(i, j ) 2 A} in
each period t . As we will see later, the weight wt (i, j ) in period t
is negatively related to the total mean �eld cost incurred by the
candidate (x[i],�[j]) before period t . Hence a larger weight cor-
responds to a better resource con�guration. Moreover, policy A
uses the weight matrixwt to calculate the probabilistic selection
matrix pt = {pt (i, j ) : 8(i, j ) 2 A}, and determines the resource
con�guration probabilistically based on pt . Overall, the resource
candidate with a larger weight is selected with a higher probability.

As shown in Algorithm 1, the learning phase includes Lines 3⇠8.
Speci�cally, policy A will initialize the weight matrix equally and
repeat the following two steps:
• Line 5 to Line 6: We calculate the probabilistic selection
matrix pt based on the weight matrixwt as follows:

pt (i, j ) ,
wt (i, i )P

(i0, j0)2A wt (i 0, j 0)
, 8(i, j ) 2 A. (23)

We then determine the resource con�guration (x[it ],�[jt ]) in
period t by randomly drawing a tuple (it , jt ) 2 A according
to the probability distribution pt .
• Line 7 to Line 8: At the end of period t , the operator observes
the average arrival rate �̄[M]

t , and calculates the normalized
mean �eld cost ct (i, j ) based on the mean �eld model as
follows:

ct (i, j ) ,
Ct (x[i],�[j], �̄

[M]
t )

C̄
, 8(i, j ) 2 A. (24)

where C̄ , G (B) + xH� Pmax +�H�
A
max represents the maximal

mean �eld cost. Finally, we update the weightwt+1 for the

next period according to

wt+1 (i, j ) = wt (i, j ) · (1 � � )ct (i, j ) , 8(i, j ) 2 A. (25)

where � 2 (0, 1) is a parameter initialized in Line 1.
So far we have introduced the proposed policy A in Algorithm 1.

Next we move on to the performance analysis.

5.2 Performance Analysis
Recall that Theorem 2 shows the convergence relationship be-

tween the original stochastic edge network and the mean �eld
model. In this section, we will focus on the mean �eld cost in per-
formance analysis. Speci�cally, the total mean �eld cost incurred
by policy A is

CAT =
X

t 2T
E

Ct

⇣
x[it ],�[jt ], �̄

[M]
t

⌘ ��� pt
�
, (26)

where the expectation is taken over the randomness in Line 6 of
Algorithm 1. We will analyze the performance gap between the
proposed policy A and the o�ine optimal solution (x⇤,�⇤), i.e.,

(x⇤,�⇤) , argmin
(x,� )2Z

X

t 2T
Ct

⇣
x ,�, �̄[M]

t
⌘
. (27)

Accordingly, we let C⇤T ,
P
t 2T Ct (x⇤,�⇤, �̄

[M]
t ) denote the o�ine

minimal mean �eld cost.
The performance gap betweenC⇤T andCAT depends on the two pa-

rameters (�, � ) in Algorithm 1. Roughly speaking, the performance
loss of policy A consists of the discretization loss and the learning
loss, which are presented in Lemma 1 and Lemma 2, respectively.
We provide the proof in our technical report [26].

L���� 1 (D������������� L���). There exists a tuple (i⇤, j⇤) 2
A satisfying the following conditions

X

t 2T
Ct

⇣
x[i⇤],�[j⇤], �̄

[M]
t

⌘
 (1 + � )2C⇤T . (28)

Lemma 1 shows that the discretization scheme in policy A in-
creases at most a constant factor of (1+ � )2 compared to the o�ine
minimal cost C⇤T . To reduce the discretization loss, we need to
choose a smaller � . However, as shown by Lemma 2, a smaller �
leads to a larger learning loss, since a smaller � enlarges the set A.

L���� 2 (L������� L���). For any tuple (i, j ) 2 A, we have

CAT  �(�, � ) +
1
�
ln

✓ 1
1 � �

◆ X

t 2T
Ct (x[i],�[j], �̄

[M]
t ), (29)

where
P
t 2T Ct (x[i],�[j], �̄

[M]
t ) is the total mean �eld cost incurred

by (x[i],�[j]). Moreover, the constant �(�, � ) is given by

�(�, � ) ,
C̄

�
ln *.
,
(1 + � ) ln xH

xL
ln(1 + � )

·
(1 + � ) ln �H

�L
ln(1 + � )

+/
-
. (30)

Lemma 2 indicates that the learning loss of policy A jointly
depends on the two parameters � and � . Note that the constant
�(�, � ) decreases in � , while the coe�cient 1

� ln
⇣

1
1��

⌘
increases in

� . Hence there is a trade-o� in choosing the parameter � . Moreover,
the constant �(�, � ) decreases in the parameter � , thus a smaller �
reduces the discretization loss, but increases the learning loss.

Theorem 3 presents the relationship between CAT and C⇤T by
combining Lemma 1 and Lemma 2.
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Figure 2: Mean �eld evolution
(a) (d, b ) = (1, 1) (b) (d, b ) = (2, 2) (c) (d, b ) = (3, 3)

Figure 3: Average workload in the stochastic edge network

T������ 3. For any � 2 (0, 1) and � > 0, policy A can attain
the following performance

CAT  �(�, � ) +
1
�
ln

✓ 1
1 � �

◆
(1 + � )2C⇤T . (31)

Theorem 3 shows that the expected cost incurred by the policy
A is no greater than the sum of a constant multiple of the o�ine
minimal cost C⇤T and an extra constant.

6 NUMERICAL RESULTS
We carry out extensive evaluation on the proposed policy A

based on empirical data. We will consider a hybrid edge server
provision mode (� ,�) = (0.5, 0.1) and investigate the impact of
system sizeM . We start with single-period demonstration in Section
6.1, and then carry out multi-period evaluation in Section 6.2.

6.1 Single-Period Demonstration
We consider a single period and compare the mean �eld model

to the stochastic edge network. Speci�cally, we will �x the resource
con�guration (x ,�) = (1, 5) and the task arrival rate �m = 0.9 for
each sourcem 2M.

Fig. 2 shows how the mean �eld model s (� ) evolves from the ini-
tial state s0 = 0. The vertical axis represents the average workloadPB
i=1 si (� ) and the three curves correspond to di�erent migration

parameters (d,b), respectively. As time � increases, the mean �eld
model converges to the �xed point s̃ de�ned in Theorem 1.

Fig. 3 shows the average workload L[N] (� ,x ,�,�) of the stochas-
tic edge network. The three sub-�gures correspond to di�erent mi-
gration parameters, respectively. In each sub-�gure, the three solid
curves represent di�erent numbers of sources, i.e.,M 2 {10, 40, 200}.
The black dash curve is the same as that in Fig. 2. Note that the
three solid curves are all centered on the black dash curve with
some �uctuation. Moreover, a larger system size corresponds to
a smaller �uctuation. These observations are consistent with the
convergence results in Theorem 2.

Comparing the three sub-�gures in Fig. 3, we �nd it signi�cantly
reduces the average workload by changing the parameters (d,b)
from (1, 1) to (2, 2). Also, it merely leads to a tiny reduction by
further increasing to (3, 3). This means that the migration schemes
JSQ(2) and LQF(2) slightly increase the communication overhead,
but can reduce the average workload considerably. We will verify
this claim in the dynamic setting with multiple periods.

6.2 Multi-Period Evaluation
We evaluate the proposed policy A based on the real world

electricity market prices in US [28]. Fig. 4 plots the hourly prices
of the �rst three months in 2020. That is, we consider a total of
T = 2208 periods (i.e., hours). We let pt denote the price in period t ,
and quantify the operation expenditure according to � Pt = 0.1pt and
� At = 0.08pt . Furthermore, we �rst generate the sources’ task arrival
rate in di�erent periods according to a uniform distribution on the
support [0, 1]. We then generate the task pro�le�t accordingly. The
feasible resource ranges of the edge servers are [0.2, 2] and we use
G (l ) = 30l to measure the performance degradation. We evaluate
the proposed policy A with the parameters (�, � ) = (0.2, 0.5) and
compare the following three cases:
• Case Mfm represents the mean �eld model and measures the
mean �eld cost incurred by Algorithm 1.
• Case Alg(N ) corresponds to the edge network with N = �M
passive-mode edge servers, and measures operator’s real
cost incurred by Algorithm 1.
• Case Bch(N ) is the benchmark of case Alg(N ) without the
mean �eld model. That is, Bch(N ) adopts the same discretiza-
tion phase as in Algorithm 1, but only relies on the observed
partial feedback in the learning phase.

We run the evaluation for one hundred times and visualize the re-
sults in Fig. 5. The two sub-�gures correspond to di�erent migration
parameters, i.e., (d,b) = (1, 1) and (d,b) = (2, 2). In each sub-�gure,
the black dash line represents the time-average o�ine minimal
cost, i.e., C⇤T /T . The black circle curve corresponds to the case Mfm.
The blue and red curves with markers represent case Alg(5) and
case Alg(10), respectively. The blue and red curves without marker
represent Bch(5) and Bch(10), respectively.

In each sub-�gure of Fig. 5, we have the following observations:
• The black circle (i.e., Mfm) curve converges to the black dash
line, which veri�es the performance of policy A.
• The blue triangle curve (i.e., Alg(5)) and the red square curve
(i.e., Alg(10)) have a slight di�erence compared to black cir-
cle curve (i.e., Mfm), which is due to the mean �eld approxi-
mation. The red square curve is closer to the black curve than
the blue triangle curve, indicating that the approximation
error decreases in the system size.
• Comparing the two blue curves shows that case Bch(5) takes
much longer time to converge to C⇤T /T than case Alg(5).
The two red curves also lead to a similar observation. These
observations imply that the mean �eld model can speed up
the convergence of online resource con�guration.
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Figure 4: Electricity prices
(a) (d, b ) = (1, 1) (b) (d, b ) = (2, 2)

Figure 5: Time-average cost of the operator Figure 6: Impact of (d,b)

Comparing the two sub-�gures in Fig. 5, we note that the larger
migration parameters (d,b) lead to the lower operating cost. This
motivates us to investigate the impact of (d,b) in the following.

Fig. 6 investigates the in�uence of the migration parameters in
cases Mfm and Alg(10). Speci�cally, Fig. 6 plots the time-average
performance degradation (PeDe) and the operation expenditure
(OpEx) over the T periods. At the top of each bar, we label the
percentage of the cost reduction compared to (d,b) = (1, 1). We
have the following two observations.

• Increasing the migration parameters (d,b) can reduce the
operator’s total operating cost up to 45%. However, the com-
munication overhead also increases linearly in d and b.
• The cost reduction when (d,b) = (2, 2) is already greater
than half of that when (d,b) = (7, 7).

The above observations show that themigration schemes JSQ(2) and
LQF(2) under the proposed policy A can considerably reduce the
operating cost with a small increase in communication overhead.

7 CONCLUSION
This paper considers a hybrid edge server provision under two

decentralized task migration schemes, and studies how to con�gure
the computing resource in an online dynamic fashion. Speci�cally,
the dynamic resource con�guration of a large-scale stochastic edge
network corresponds to an online cost minimization problem with
partial feedback. To resolve the partial feedback issue, we derive a
deterministic mean �eld model, and use it to estimate the perfor-
mance of the stochastic system. Moreover, we propose an online
mean �eld aided con�guration policy, and show that the proposed
policy can asymptotically perform as good as the optimal o�ine
con�guration. As far as we know, we are the �rst to integrate mean
�eld theory and online learning with partial feedback. We believe
that our results in this paper can improve the e�ciency of edge
server provision and facilitate the large-scale implementation.
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