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ABSTRACT
Multi-armed bandits (MAB) is an online learning and decision-

making model under uncertainty. Instead of maximizing the ex-
pected utility (or reward) in a classical MAB setting, the variance of
the utility should be considered when making risk-aware decisions.

In this paper, we propose a risk-aware multi-agent MAB (MAMAB)

model, which considers both the “independent” and “correlated” risk
when multiple agents make arm-pulling decisions. Specifically, the

system includes a platform that owns a number of tasks (or arms)

awaiting a group of agents to accomplish. We show how to calculate

the arm-pulling strategy of agents with potentially different eligible

arm sets under a Nash equilibrium point. From the perspective of

the platform, each arm has its maximal capacity to accommodate

arm-pulling agents. We design the platform’s optimal payment

algorithms for its risk-aware revenue maximization (a regret mini-

mization) under both independent and correlated risks. We prove

that our algorithms achieve the sub-linear regret under indepen-

dent risks when the platform can or cannot differentiate the utility

on each arm. We also prove that our algorithm achieves the sub-

linear regret under correlated risks. We also carry out experiments

to quantify the merits of our algorithms for various networking

applications, such as crowdsourcing and edge computing.
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• Computing methodologies → Multi-agent systems.
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1 INTRODUCTION
1.1 Motivations
Stochastic multi-armed bandits (MAB) [1] is an online learning and

decision-making model under uncertainty. The utility (or reward)

of making each decision (or pulling each arm) is drawn from an

unknown distribution. A classical stochastic MAB system involves

an agent choosing an arm from a set of arms at each time step, and

the agent receives its corresponding utility upon pulling the chosen

arm. To maximize the total utility of pulling the arms, the agent

needs to balance between learning the arms with high uncertainty

(exploration) and choosing the arms with high empirical mean

utility so far (exploitation). The performance of the arm-pulling

policy is measured by regret, which is the average cumulative utility

differences between the optimal arm and the selected arms.

Instead of maximizing the expected utility in a classical stochastic
MAB setting, an agent may also be interested in reducing the risk

(or uncertainty) when making decisions. A widely adopted measure-

ment of risk (or uncertainty) ismean-variance (MV), which trades off

between mean and variance. Bandits with MV provide a risk-aware

model compared with the risk-neutral one in the classical setting.

Nowadays, due to the extensive requirements of risk-aversion deci-

sions, bandits with MV have received increasing attention [2–4].

However, bandits with MV only consider the setting that one agent

only pulls one arm (with variances of individual arms) at each time.

In many real-world scenarios, we have multiple agents making

their decisions simultaneously, which leads to “correlated risks”. For
example, multiple types of drugs (or arms) of a treatment may cause

correlated effects and risks, or multiple signal transmissions choos-

ing the same channel (or arm) may cause high delay or channel

contention. Existing multi-agent MAB (MAMAB) studies usually

focus on how agents cooperatively play the same MAB and achieve

a common goal, i.e., the maximum total cumulative utility. The

existing bandits model with MV [2–4], however, do not handle this

MAMAB problem with correlated risks.

In this paper, we propose a risk-aware MAMAB model, which

considers both the independent and correlated risk of decisions

when multiple agents are involved. In the system, we consider a

platform Foap [5] which owns multiple tasks (or arms) waiting for

a number of agents to accomplish. The platform publishes multiple

tasks (arms) of collecting photos with money rewards (payments).

Each uploaded photo on one task generates a random utility for

the platform. Based on the platform’s payment, each “selfish” agent

needs to choose and finish one specific task per time step. plat-

form also gives out payment to those agents who select that arm.

The platform aims to maximize its risk-aware revenue from the

accomplished tasks, while agents aim to maximize its payoff (i.e.,

the difference between the payment and cost of selecting the tasks).

Given the payments set by the platform, each agent observes the

arms on the platform and chooses one specific arm to pull (including

not pulling any arm). Note that the arm-pulling decision of one

agent depends not only on the payments on these arms, but also on

other agents’ arm-pulling decisions. For instance, if the payment on
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one arm is high, many agents may select this high-payment arm. So

choosing this arm may not a good choice for an agent. In this paper,

we also consider agents with heterogeneous properties, such as the

qualification of pulling arms. That is, certain arms are restricted to

some important agents/persons (VIPs) of the platform. Only VIPs

can access all arms, while non-VIPs can only access a subset of

arms. This heterogeneity of agents makes the agents’ arm-pulling

decisions more realistic but challenging.

We focus on the risk-aware MAMAB system where each arm has

its maximal utility (or capacity). This is practical for a wide range

of applications, e.g., at a time step, a computing device can process

a finite number of tasks, or a channel can only transmit a finite

number of signals. We model this by setting the maximal utility of

each arm be bounded by its maximal capacity. More specifically, on

the platform Foap, the effective number of uploaded photos bounds

the total utility for each task, as the utility does not increase infin-

itely with the number of collected photos. This effective number of

uploaded photos is regarded as the capacity of each task, which is

also unknown to the platform.

In the risk-aware MAMAB system, the platform can be of two

different types when facing selected arms of same time step: 1) in-

dependent risks, and 2) correlated risks. The first type occurs when

multiple agents pulling multiple arms will not generate significant

correlated risks, e.g., multiple workers choose the same sensing

tasks in a crowdsensing application. For this type, we first consider

the case when the platform knows exactly the generated utility

on each arm. Then the platform aims to optimize the aggregate

of agents’ generated cumulative MV of utility. Then we study the

case when the platform cannot differentiate the arms’ utilities, but

only knows the aggregate of the utility, and the platform aims to

optimize the cumulative MV of the utility summation. For the sec-

ond type, considering the correlated risks when multiple agents

pull multiple arms at the same time step, the platform optimizes

the cumulative mean-covariance (MCV) of the utility. This scenario

occurs with non-negligible correlated risks, i.e., different drugs in

treatment, or different signal transmissions in the same channel.

Considering the agents’ arm-pulling decisions and the arms’

maximal capacities, the platform needs to optimize the payment

setting and motivate agents to pull the corresponding arms. If

the platform sets the payment on one arm too high, many agents

may choose to pull that arm, which might negatively affect the

total revenue of the platform. Therefore, the platform needs to

judiciously design a payment policy to maximize the risk-aware

revenue, considering the different risk-aware MAMAB scenarios.

1.2 Contributions
The key contributions are as follows:

• Risk-aware Multi-agent multi-armed bandits: To the best of our
knowledge, this is the first work that considers risk-aware multi-

agent multi-armed bandits, which includes arms with unknown

capacities and game-theoretical agents with heterogeneous eligi-

ble arm sets. Our work bears important practical implications for

the platform’s optimal payment designs and opens up an exciting

direction in practice.

• Heterogeneous agents’ arm-pulling decisions under Nash equilib-
rium: Agents are heterogeneous in their qualification/capability

of pulling arms, i.e., agent will have different eligible arm sets. In

the presence of the coupling of agents’ arm-pulling decisions, we

show how to calculate their decisions under Nash equilibrium.

• Payment algorithmwith sub-linear regret under risk-awareMAMAB
with independent risks: Consider independent risks when multi-

ple agents pull multiple arms at the same time step. We design

an optimal payment algorithm to maximize the platform’s risk-

aware revenue (or minimize the regret), under both cases where

the platform 1) can differentiate the utility on each arm, and 2)

only observes the aggregate of the utility. We prove that both

algorithms achieve the O(log𝑇 ) regret.
• Payment algorithmwith sub-linear regret under risk-awareMAMAB
with correlated risks: We design an optimal payment algorithm

to maximize the platform’s risk-aware revenue (or minimize the

regret), considering correlated risks when multiple agents pull

multiple arms in the same time step. We prove that the algorithm

achieves the O(
√
𝑇 log𝑇 ) regret.

2 RELATEDWORK
Our work focus on risk-aware MAMAB system. Here we group the

related works from two perspectives: (1) MAMAB systems with

game-theoretical agents; (2) risk-aware bandits.

The concept of MAMAB was first proposed by Liu and Zhao [6]

and Gai et al. [7]. There are some MAMAB studies taking game-

theoretical agents into consideration. For example, Boursier and

Perchet [8] considered selfish agents who aim to maximize their

individual payoffs. Tossou et al. [9] focused on a two-agent MAB

problem and presented the bargaining solution of the game. Tay-

wade et al. [10] investigated the modeling of Cournot games in

MAMAB setting. Liu et al. [11, 12] and Sankararaman et al. [13]
focused on matching markets, where both arms and agents have

matching preferences when choosing each other. These papers only

focused on expected reward maximization, but did not consider

risk-aware MAMAB system.

Sani et al. [3] first introduced and formulated the MV risk-aware

bandits problem. Vakili & Zhao [2, 14] and Liu et al. [4] studied
this problem and completed the regret analysis. Zhu & Tan [15]

assessed the possibility of Thompson sampling methods to solve

this problem. In addition to MV, the conditional value at risk (CVaR)

is also a useful measure to quantify the risk [16–18]. But these

works did not consider the multi-agent setting or the correlated

risks. Du et al. [19] allowed a learner to choose different arms

at each time step and considered the arm correlation. Our work

focuses on the more general setting under unknown arm capacities,

and game-theoretical agents with different eligible arm sets.

3 SYSTEM MODEL
In this section, we provide an overview of the risk-aware MAMAB

system. The system includes a platform associated with a set K =

{1, . . . , 𝐾} of𝐾 arms, and a setN = {1, · · · , 𝑁 } of𝑁 agents.We also

consider a finite time horizon T = {1, . . . ,𝑇 }. We first introduce

the heterogeneous arms and agents on the platform in Sections 3.1

and 3.2, respectively. Then we present the platforms’ risk-aware

revenue maximization problem in Section 3.3.

3.1 Arms on the platform
There are a total of 𝐾 arms on the platform waiting for 𝑁 agents

to select and pull. Each arm 𝑘 ∈ K is associated with attributes
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(𝑚𝑘 , 𝑋𝑘 ), where𝑚𝑘 denotes the maximal capacity on arm-selecting

agents that this arm can support, while 𝑋𝑘 is the “per-agent” sto-

chastic utility on this arm which follows a Gaussian distribution.

Denote the utility mean of each arm 𝑘 as 𝜇𝑘 ≜ E[𝑋𝑘 ]. Utility mean

𝜇𝑘 and capacity𝑚𝑘 are unknown to both agents and the platform.

These 𝐾 arms are associated with a positive semi-definite covari-

ance matrix Σ, where Σ𝑘,𝑘 ≤ 1 for any 𝑘 ∈ K without loss of

generality.

Note that many prior papers ignore that agents are unwilling

to pull the arms, as pulling arms usually incurs a certain cost (e.g.,

operational or battery cost). In this case, let us define the cost 𝑐𝑘

associated with each arm 𝑘 ∈ K , which can model the cost of

pulling this arm. Correspondingly, the platform will decide the

payment 𝑟𝑘𝑡 ∈ R on each arm 𝑘 at time slot 𝑡 , so to motivate agents

in pulling each arm 𝑘 .

3.2 Agents’ arm-pulling decisions
In the multi-agent system, we consider heterogeneous agents such

that only the VIP agents can access all arms, while non-VIP agents

can only access subset of arms. Let us define the VIP arm set K𝐻

that only agents in VIP setN𝐻
can select from. And the number of

VIPs is 𝑁𝐻 = |N𝐻 |. The non-VIP arm set K\K𝐻
can be accessed

by all the agents (i.e., both VIPs and non-VIPs) in set N .

Here we define the arm selection decision for each agent. Each

VIP agent 𝑛 ∈ N𝐻
chooses an arm strategy 𝑠𝑛,𝑡 ∈ S𝑛,𝑡 ≜ K ⋃{0}

at time 𝑡 . Here 𝑠𝑛,𝑡 = 0 means not pulling any arm, and 𝑠𝑛,𝑡 =

𝑘 ∈ K means pulling arm 𝑘 . Each non-VIP agent 𝑛′ ∈ N\N𝐻
can

only access non-VIP arms, and chooses the action 𝑠𝑛′,𝑡 ∈ S𝑛′,𝑡 ≜
K\K𝐻 ⋃{0} at time 𝑡 . Let 𝒔−𝑛,𝑡 = (𝑠1,𝑡 , · · · , 𝑠𝑛−1,𝑡 , 𝑠𝑛+1,𝑡 , · · · , 𝑠𝑁,𝑡 )
be the strategy profile of all other agents except agent 𝑛 at time slot

𝑡 . Note that an agent can only pull one arm at each time slot.
1
Based

on whether agent 𝑛 chooses arm 𝑘 at time slot 𝑡 , i.e., 1{𝑎𝑛,𝑡 = 𝑘},
where 1{·} is the indicator function. The number of agents pulling

arm 𝑘 at time 𝑡 is

𝑛𝑘𝑡 ≜
∑︁
𝑛∈N

1{𝑎𝑛,𝑡 = 𝑘}. (1)

When multiple agents select the same arm to pull, the platform

will equally divide the payment among all the agents pulling this

arm. Recall that the payment on arm 𝑘 is 𝑟𝑘𝑡 . Given the strategy

profile 𝒔−𝑛,𝑡 and payment profile 𝒓𝑡 ≜ (𝑟𝑘𝑡 ,∀𝑘 ∈ K), the payoff of

agents 𝑛 pulling arm 𝑘 at time slot 𝑡 is:

𝜋𝑛,𝑡 (𝑠𝑛,𝑡 , 𝒔−𝑛,𝑡 , 𝒓𝑡 ) =

𝑟𝑘𝑡
𝑛𝑘𝑡

− 𝑐𝑘 , if 𝑠𝑛,𝑡 = 𝑘,

0, if 𝑠𝑛,𝑡 = 0.
(2)

Choosing arm 𝑘 yields a payoff from the difference between the

allocated payment

𝑟𝑘𝑡
𝑛𝑘𝑡

and the cost 𝑐𝑘 ; while not choosing any arm

brings zero payoff. To maximize his payoff, an agent will decide

his arm-pulling strategy, by both assessing the payments and an-

ticipating other agents’ strategies. Note that the payoff on arm 𝑘

depends on the payment, cost, and number of agents pulling arm 𝑘 .

It is irrelevant to the capacity𝑚𝑘 on arm 𝑘 .

1
In this model, each agent can only pull one arm at each time slot. Nonetheless, we

can extend this model to the setting that one agent can pull multiple arms at each time

slot. This setting is equivalent to our model but with multiple agents. More specifically,

an agent pulling arms 1, 2 and 3, is equivalent to the setting that 3 agents pull arms 1,

2, and 3 separately.

3.3 Platform’s risk-aware problem
Now we focus on the platform’s problem formulation, considering

the agents’ arm-pulling decisions, arms’ maximal capacities, and

the risk-aware MAB settings.

Let us first consider the utility on each arm. Given the capacity

𝑚𝑘 and pulling number 𝑛𝑘𝑡 on arm 𝑘 , the effective number on arm

𝑘 at time 𝑡 is

𝑛
𝑘,𝑒 𝑓 𝑓
𝑡 ≜ min{𝑚𝑘 , 𝑛𝑘𝑡 }, (3)

where the effective number is bounded by the maximal capacity

𝑚𝑘 . Then the platform obtains utility from arm 𝑘 as

𝑈 𝑘𝑡 ≜ 𝑛
𝑘,𝑒 𝑓 𝑓
𝑡 𝑋𝑘𝑡 . (4)

This is motivated by many practical scenarios, i.e., an edge com-

puting node can only serve a finite number of tasks. Recall the

payment 𝑟𝑘𝑡 on arm 𝑘 , then the revenue on arm 𝑘 is

𝑉𝑘𝑡 ≜ 𝑈 𝑘𝑡 − 𝑟𝑘𝑡 . (5)

In risk-aware MABs with a single agent pulling one arm at each

time step, an agent prefers to pull the arms with higher mean and

lower uncertainty. To measure the risk, the mean-variance (MV)

of an arm 𝑘 captures a linear combination of the mean and the

variance of the utility, which is defined as [4]

𝜂𝑘 = 𝜌𝜇𝑘 − Σ𝑘,𝑘 , (6)

where 𝜌 ≥ 0 is a risk-tolerance factor. When 𝜌 → ∞, the risk-

aware problem degenerates to a risk-neutral one; When 𝜌 = 0, the

problem aims to find the arm with the lowest risk.

Next, we consdier the following cases to discuss the risk-aware

MAMAB systems respectively.

3.3.1 Independent risks: Cumulative revenue with MV of 𝑁 agents.
Here we consider the scenario where 𝑁 agents pull multiple arms

at the same time, and the risks of pulling multiple arms are indepen-

dent. The platform can differentiate the generated utility on each

arm. Then the platform calculates the cumulative revenue with MV

generated from each agent, and aims to maximize the summation

from all the agents. Following the payment policy 𝒓𝑡 at time 𝑡 , the

revenue on arm 𝑘 is 𝑉𝑘𝑡 (𝒓𝑡 ), and the number of pulling arm 𝑘 is

𝑛𝑘𝑡 (𝒓𝑡 ). Each agent equally generates the revenue

𝑉 𝑘
𝑡 (𝒓𝑡 )
𝑛𝑘𝑡 (𝒓𝑡 )

on his

selected arm 𝑘 at each time slot 𝑡 .2 And we define the revenue with

MV at time 𝑡 for agent 𝑛 as 𝑉𝑛,𝑡 (𝒓𝑡 ) ≜
∑
𝑘∈K 1{𝑎𝑛,𝑡 = 𝑘} ·

𝑉 𝑘
𝑡 (𝒓𝑡 )
𝑛𝑘𝑡 (𝒓𝑡 )

.

Therefore, agent 𝑛’s cumulative generated revenue with MV under

policy 𝒓𝑡 can be expressed as

𝜂𝑛,𝒓 (𝑇 ) = E

𝑇∑︁
𝑡=1

©«𝜌𝑉𝑛,𝑡 (𝒓𝑡 )−
(
𝑉𝑛,𝑡 (𝒓𝑡 ) −

1

𝑇

𝑇∑︁
𝑡=1

𝑉𝑛,𝑡 (𝒓𝑡 )
)2ª®¬

 . (7)

The platform aims to maximize the cumulative revenue with MV

of all the agents under policy 𝒓𝑡 :

𝜂𝑚𝑢𝑙𝑡𝑖𝒓 (𝑇 ) =
∑︁
𝑛∈N

𝜂𝑛,𝒓 (𝑇 ). (8)

We also define a regret metric to quantify the performance of an

algorithm when comparing with the optimal policy 𝒓∗. Correspond-
ingly, the optimal number vector is 𝒏∗ (𝒓∗).

𝑅𝑒𝑔𝑚𝑢𝑙𝑡𝑖𝒓 (𝑇 ) ≜ 𝜂𝑚𝑢𝑙𝑡𝑖𝒓∗ (𝑇 ) − 𝜂𝑚𝑢𝑙𝑡𝑖𝒓 (𝑇 ) . (9)

2
Without loss of generality, we consider the case that agents pulling the same arm

equally generate the revenue on that arm, as agents are symmetric in pulling arms.
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3.3.2 Independent risks: Cumulative revenue summation with MV.
Here we consider the scenario where 𝑁 agents collaboratively pull

the arms, and the platform focuses on the revenue summation

at each time slot. In this scenario, the platform can only observe

the summation, but cannot differentiate the revenue of each arm.

The platform aims to maximize the revenue summation with MV.

Recall the revenue on arm 𝑘 at time 𝑡 as 𝑉𝑘𝑡 (𝒓𝑡 ) following the

policy 𝒓𝑡 , hence the platform observes the revenue summation

𝑉 𝑠𝑢𝑚𝑡 (𝒓𝑡 ) ≜
∑
𝑘∈K 𝑉

𝑘
𝑡 (𝒓𝑡 ) of all the arms. After pulling arms for𝑇

rounds, the cumulative revenue with MV under policy 𝒓𝑡 is

𝜂𝑠𝑢𝑚𝒓 (𝑇 ) = E

𝑇∑︁
𝑡=1

©«𝜌𝑉 𝑠𝑢𝑚𝑡 (𝒓𝑡 ) −
(
𝑉 𝑠𝑢𝑚𝑡 (𝒓𝑡 ) −

1

𝑇

𝑇∑︁
𝑡=1

𝑉 𝑠𝑢𝑚𝑡 (𝒓𝑡 )
)2ª®¬

 .
(10)

The platform aims to design a payment policy to maximize the

cumulative revenue with MV. Here we define the optimal policy 𝒓∗

as the benchmark. We also define a regret metric to quantify the

performance of an algorithm when comparing with the optimal

policy 𝒓∗,
𝑅𝑒𝑔𝑠𝑢𝑚𝒓 (𝑇 ) ≜ 𝜂𝑠𝑢𝑚𝒓∗ (𝑇 ) − 𝜂𝑠𝑢𝑚𝒓 (𝑇 ). (11)

3.3.3 Correlated risks: Cumulative revenue with MCV. Now we

consider the case when 𝑁 agents collaboratively pull arms and

these arms can impact with each other via the covariance. Note

that the platform can differentiate the utility generated on each

arm. Define the mean vector 𝝁 = (𝜇𝑘 ,∀𝑘 ∈ K) and the maximal

capacity vector m = (𝑚𝑘 ,∀𝑘 ∈ K). The number vector under such

policy 𝒓𝑡 at time 𝑡 is: n𝑡 (𝒓𝑡 ) = (𝑛𝑘𝑡 (𝒓𝑡 ),∀𝑘 ∈ K). Then we define

the effective number vector at time 𝑡 as n𝑒 𝑓 𝑓𝑡 (𝒓𝑡 ) = min{m, n𝑡 (𝒓𝑡 )}.
Recall the covariance matrix Σ. For any policy 𝒓𝑡 , the instantaneous
risk-aware revenue at time 𝑡 with mean-covariance is [19]

𝑓𝐶𝑉 (𝒓𝑡 ) =
[
n𝑒 𝑓 𝑓𝑡 (𝒓𝑡 )

]⊤
(𝝁 − 𝒓𝑡 ) − 𝜌

[
n𝑒 𝑓 𝑓𝑡 (𝒓𝑡 )

]⊤
Σ

[
n𝑒 𝑓 𝑓𝑡 (𝒓𝑡 )

]
.

(12)

The regret metric to quantify the performance of an algorithm

when comparing with the optimal policy 𝒓∗ is,

𝑅𝑒𝑔𝐶𝑉𝒓 (𝑇 ) ≜
𝑇∑︁
𝑡=1

E[𝑓𝐶𝑉 (𝒓∗) − 𝑓𝐶𝑉 (𝒓𝑡 )] . (13)

Note that throughout this work, we consider the case with het-

erogeneous agents and arms with unknown maximal capacities. We

first discuss the agents’ arm-pulling decisions in Section 4. Then

we discuss the platform’s problem formulation in Section 5. And

we analyze the platform’s payment policy under three scenarios in

Sections 6, 7, and 8, respectively.

4 AGENTS’ ARM-PULLING DECISIONS
In this section, we focus on agents’ arm-pulling decisions. We first

formulate the agents’ interactions as a non-cooperative game in

Section 4.1 and analyze the agents’ arm-pulling equilibrium strategy

in Section 4.2.

4.1 Agents’ arm pulling game
Agents make their arm selection decisions by participating in a

non-cooperative game [20].

Before introducing the agents’ arm-pulling decisions, we need to

first define the best response strategy of each agent. Under a given

strategy profile 𝒔−𝑛,𝑡 , there are other �̂�𝑘𝑡 = |{𝑛′ ∈ N\{𝑛} : 𝑠𝑛′,𝑡 =

𝑘}| agents (except agent 𝑛) selecting arm 𝑘 at time slot 𝑡 . Given the

payments 𝒓𝑡 and strategy profile 𝒔−𝑛,𝑡 , agent 𝑛 ∈ N calculates his

best response strategy to maximize payoff in (2). The fixed point of

all the agents’ best response choices is the Nash equilibrium (NE),

where no agent can improve his payoff by deviating from his arm

selecting choice unilaterally.

Definition 1 (Arm Pulling Nash eqilibrium). Given pay-
ments 𝒓𝑡 at time slot 𝑡 , a strategy profile 𝒔𝑁𝐸𝑡 = (𝑠𝑁𝐸𝑛,𝑡 ,∀𝑛 ∈ N) is an
NE of game Ω𝑡 if

𝜋𝑛,𝑡 (𝑠𝑁𝐸𝑛,𝑡 , 𝒔𝑁𝐸−𝑛,𝑡 , 𝒓𝑡 ) ≥ 𝜋𝑛,𝑡 (𝑠𝑛,𝑡 , 𝒔𝑁𝐸−𝑛,𝑡 , 𝒓𝑡 ),
∀𝑠𝑛,𝑡 ∈ S𝑛,𝑡 ,∀𝑛 ∈ N .

(14)

Given the agents’ arm selection profile 𝒔𝑁𝐸𝑡 at time slot 𝑡 , the

number of agents selecting arm 𝑘 under NE is

𝑛
𝑘,𝑁𝐸
𝑡 = |{𝑛 ∈ N : 𝑠𝑁𝐸𝑛,𝑡 = 𝑘}|. (15)

4.2 Nash Equilibrium
In this section, we analyze the agents’ arm pulling decisions under

NE. The following Proposition characterizes the relationship be-

tween the platform’s payments and the agents’ NE arm selection

decisions. Note that we first group the low-payment arm set as

K𝑙𝑜𝑤
𝑡 ≜ {𝑘 ∈ K : 𝑟𝑘𝑡 < 𝑐𝑘 }, where the payment is lower than the

cost of pulling this arm 𝑘 .

Proposition 1. Given any payment profile 𝒓𝑡 , the number of
agents selecting arm 𝑘 under NE is 𝑛𝑘,𝑁𝐸𝑡 if and only if:

i) for any arm 𝑘 ∈ K𝑙𝑜𝑤
𝑡 , we have 𝑛𝑘,𝑁𝐸𝑡 = 0; and

ii) for any arm 𝑘 ∈ K\K𝑙𝑜𝑤
𝑡 , we have 𝑛𝑘,𝑁𝐸𝑡 such that∑︁

𝑘∈K
𝑛
𝑘,𝑁𝐸
𝑡 ≤ 𝑁,

∑︁
𝑘∈K𝐻

𝑛
𝑘,𝑁𝐸
𝑡 ≤ 𝑁𝐻 , (16)

𝑟𝑘𝑡

𝑛
𝑘,𝑁𝐸
𝑡

− 𝑐𝑘 = 𝜆𝑘𝑡 , where 𝜆
𝑘
𝑡 ≥ 0,∀𝑘 ∈ K\K𝑙𝑜𝑤

𝑡 , (17)

max

𝑘∈K\(K𝑙𝑜𝑤
𝑡

⋃ K𝐻 )

𝑟𝑘𝑡

𝑛
𝑘,𝑁𝐸
𝑡 + 1

− 𝑐𝑘 < min

𝑘∈K\(K𝑙𝑜𝑤
𝑡

⋃ K𝐻 )
𝜆𝑘𝑡 , (18)

max

𝑘∈K\K𝑙𝑜𝑤
𝑡

𝑟𝑘𝑡

𝑛
𝑘,𝑁𝐸
𝑡 + 1

− 𝑐𝑘 < min

𝑘∈K𝐻 \K𝑙𝑜𝑤
𝑡

𝜆𝑘𝑡 . (19)

Remark: All the proofs are given in [21]. Proposition 1(i) shows

that no agents will pull arm 𝑘 if the payment on that arm is too

low. Constraint (16) denotes that each agent can pull at most one

arm. The number of agents pulling VIP arms cannot exceed the

number of VIPs. For a high-payment arm 𝑘 in Proposition 1(ii),

constraint (17) shows that agents will have a non-negative payoff

𝜆𝑘𝑡 if they select arm 𝑘 . Constraints (18) and (19) show that changing

to another arm can never increase the agent payoff, compared with

the payoff 𝜆𝑘𝑡 of choosing arm𝑘 . Note that non-VIPs can only choose

arms in setK\K𝐻
(constraint (18)), while VIPs can choose any arm

in set K (constraint (19)).

Proposition 1 characterizes the relationship between the plat-

form’s payment profile and the agents’ arm-pulling decisions under

NE. In this case, we are able to formulate the platform’s risk-aware

revenue maximization problem as follows.
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5 PLATFORM’S PROBLEM FORMULATION
Considering the agents’ arm selection decisions at NE (where no

agent has incentive to deviate), the platform aims to compute the

optimal payments 𝒓𝑡 to maximize the risk-aware revenue. For exam-

ple, the platform will minimize the regret of the cumulative revenue

with MV:

minimize 𝑅𝑒𝑔𝑚𝑢𝑙𝑡𝑖𝒓 (𝑇 ) (20a)

subject to 𝑛𝑘𝑡 = 0,∀𝑘 ∈ K𝑙𝑜𝑤
𝑡 ,∀𝑡 ∈ T , (20b)

(16) − (19),∀𝑡 ∈ T , (20c)

variables: 𝑟𝑘𝑡 ≥ 0, 𝑛𝑘𝑡 ≥ 0, 𝑛𝑘𝑡 ∈ N, 𝜆𝑘𝑡 ≥ 0,∀𝑘 ∈ K,∀𝑡 ∈ T . (20d)

For different objectives 𝑅𝑒𝑔𝑠𝑢𝑚𝒓 (𝑇 ) and 𝑅𝑒𝑔𝐶𝑉𝒓 (𝑇 ), we can di-

rectly substitute the objective function in (20a). It should be noted

that once the payment profile 𝒓𝑡 is fixed, the numbers of agents

𝒏𝑡 = (𝑛𝑘𝑡 ,∀𝑘 ∈ K) pulling arms are also determined under NE

based on Proposition 1. Although problem (20) is a mixed integer
programming problem [22] and the variables 𝒓𝑡 and 𝒏𝑡 are tightly
coupling, we will show how to exploit the special structure of the

payment and number of agents pulling arms to simplify the problem

formulation.

Proposition 2. The payment 𝑟𝑘𝑡 and the number of agents 𝑛𝑘𝑡 for
any arm 𝑘 at any time 𝑡 is optimal for Problem (20) only if

𝑟𝑘𝑡 = 𝑐𝑘𝑛𝑘𝑡 ,∀𝑘 ∈ K, (21)

0 ≤ 𝑛𝑘𝑡 ≤ 𝑚𝑘 , 𝑛𝑘𝑡 ∈ N,∀𝑘 ∈ K, (22)∑︁
𝑘∈K

𝑛𝑘𝑡 ≤ 𝑁,
∑︁
𝑘∈K𝐻

𝑛𝑘𝑡 ≤ 𝑁𝐻 . (23)

Remark: Proposition 2 shows the necessary condition of the opti-

mal payments. It means that the platform needs to set the payment

to compensate the agents’ cost of pulling arms without any addi-

tional payoff.

Then the platform’s optimal payment problem is equivalent to

finding the optimal number of agents 𝑛𝑘𝑡 pulling each arm 𝑘 at any

time 𝑡 . Thus, we can substitute 𝑟𝑘𝑡 = 𝑐𝑘𝑛𝑘𝑡 for any arm 𝑘 at time 𝑡

and reformulate Problem (20) as:

minimize 𝑅𝑒𝑔𝑚𝑢𝑙𝑡𝑖𝒓 (𝑇 ) (24a)

subject to

∑︁
𝑘∈K

𝑛𝑘𝑡 ≤ 𝑁,
∑︁
𝑘∈K𝐻

𝑛𝑘𝑡 ≤ 𝑁𝐻 ,∀𝑡 ∈ T , (24b)

variables: 0 ≤ 𝑛𝑘𝑡 ≤ 𝑚𝑘 ,∀𝑘 ∈ K,∀𝑡 ∈ T . (24c)

To calculate the optimal offline solution of the system under

independent risks, we need to calculate the “per-agent” revenue

with MV 𝜂𝑘 = 𝜌 (𝜇𝑘 − 𝑐𝑘 ) − Σ𝑘,𝑘 for each arm 𝑘 . Without loss of

generality, let us assume that the arms have a descending order

such that: 𝜂1 ≥ 𝜂2 ≥ . . . ≥ 𝜂𝐾 > 0.
3
For the system under corre-

lated risks, we need to consider the whole effect of the payment

profile 𝒓 , while the optimal payments also satisfy the constraints

in Proposition 2.

3
Note that we assume 𝜂𝑘 > 0 for any arm 𝑘 . Otherwise, it is trivial to consider arm 𝑘 ,

as recruiting any agent will not generate enough revenue on that arm.

6 INDEPENDENT RISKS: CUMULATIVE
REVENUEWITH MV OF 𝑁 AGENTS

In this section, we focus on the risk-aware MAMAB system with

independent risks. The platform can differentiate the generated

utility on each arm. Then the platform calculates the cumulative

revenue with MV generated from each agent, and aims to maxi-

mize the aggregation from all the agents. To achieve this, we first

introduce the UCB values and approximated optimal solutions in

Sections 6.1 and 6.2. Then we propose an algorithm in Section 6.3,

and prove the regret upper bound in Section 6.4.

6.1 Notations and calculations
6.1.1 Define UCB value 𝐵𝑘𝑡 of each arm 𝑘 at time 𝑡 . Before intro-
ducing the payment algorithm, let us first define some notations.

As the maximal capacity on each arm is unknown, let us define

𝑚𝑘
𝑙
(𝑡) and 𝑚𝑘𝑢 (𝑡) as the updated lower and upper bounds of the

capacity on each arm 𝑘 ∈ K at time 𝑡 , where the bounds satisfy

1 ≤ 𝑚𝑘
𝑙
(𝑡) ≤ 𝑚𝑘 ≤ 𝑚𝑘𝑢 (𝑡) ≤ 𝑁𝐻 .4 Recall that 𝑈 𝑘𝑡 is the gener-

ated utility by pulling arm 𝑘 (from 𝑛𝑘𝑡 agents) at time 𝑡 . Given the

updated bounds and the number of agents pulling arm 𝑘 , there

are two determined cases: 1) Consider the indicating function

1{𝑛𝑘𝑡 ≤ 𝑚𝑘
𝑙
(𝑡)} = 1: The number of agents on arm 𝑘 does not

exceed the maximal capacity; and 2) Consider the indicating func-

tion 1{𝑛𝑘𝑡 ≥ 𝑚𝑘𝑢 (𝑡)} = 1: The number of agents on arm 𝑘 reaches

the maximal capacity. Then we define the per-agent empirical mean

𝜇𝑘𝑡 and the empirical variance 𝑠𝑘𝑡 of arm 𝑘 at time 𝑡 as

𝜇𝑘𝑡 =
1

𝜏𝑘𝑡

𝑡∑︁
𝑡 ′=1

1{1 ≤ 𝑛𝑘𝑡 ′ ≤ 𝑚
𝑘
𝑙
(𝑡 ′)} ·

𝑈 𝑘
𝑡 ′

𝑛𝑘
𝑡 ′
, (25)

𝑠𝑘𝑡 =
1

𝜏𝑘𝑡 − 1

𝑡∑︁
𝑡 ′=1

1{1 ≤ 𝑛𝑘𝑡 ′ ≤ 𝑚
𝑘
𝑙
(𝑡 ′)} ·

(
𝑈 𝑘
𝑡 ′

𝑛𝑘
𝑡 ′

− 𝜇𝑘𝑡

)
2

, (26)

where 𝜏𝑘𝑡 ≜
∑
𝑡 ′≤𝑡 1{1 ≤ 𝑛𝑘

𝑡 ′ ≤ 𝑚𝑘
𝑙
(𝑡 ′)} is the number of times

until time 𝑡 , when arm 𝑘 is pulled and the number of agents does

not exceed the capacity (i.e., 1{1 ≤ 𝑛𝑘
𝑡 ′ ≤ 𝑚

𝑘
𝑙
(𝑡 ′)} = 1).

Then we define the UCB value of each arm 𝑘 at time 𝑡 as

𝐵𝑘𝑡 = 𝜌

(
𝜇𝑘𝑡 − 𝑐𝑘 +

√︄
log 𝑡

𝜏𝑘𝑡

)
−

(𝜏𝑘𝑡 − 1)𝑠𝑘𝑡
𝜒

1−𝛼,𝜏𝑘𝑡 −1

, (27)

where 𝜒
1−𝛼,𝜏𝑘𝑡 −1

is the upper 𝛼 percent of the chi-square distribu-

tion with (𝜏𝑘𝑡 − 1) degrees of freedom. In (27), the first term is the

UCB value of the mean from Hoeffding inequality, and the second

term is from the characteristics of the chi-square distribution.

6.1.2 Evaluate the maximal capacity. For each chosen arm, the plat-

form needs to determine the maximal capacity. Then the platform

sets enough payment on that arm to motivate enough agents to

together pull that arm, and update the lower and upper bounds

of the maximal capacity. To achieve this, we need to define the

empirical mean 𝜈𝑘𝑡 of arm 𝑘 under maximal capacity at time 𝑡 as

𝜈𝑘𝑡 =
1

𝜄𝑘𝑡

𝑡∑︁
𝑡 ′=1

1{𝑛𝑘𝑡 ′ ≥ 𝑚
𝑘
𝑢 (𝑡 ′)} ·𝑈 𝑘𝑡 ′, (28)

4
Without loss of generality, we assume that each arm can at most accommodate all

the VIP agents to together pull this arm.

65



MobiHoc ’24, October 14–17, 2024, Athens, Greece Qi Shao, Jiancheng Ye, and John C.S. Lui

where 𝜄𝑘𝑡 ≜
∑
𝑡 ′≤𝑡 1{𝑛𝑘

𝑡 ′ ≥ 𝑚
𝑘
𝑢 (𝑡 ′)} is the number of times until time

𝑡 when the number of agents pulling arm 𝑘 reaches the maximal

capacity (i.e., 1{𝑛𝑘
𝑡 ′ ≥ 𝑚

𝑘
𝑢 (𝑡 ′)} = 1).

Then we are able to calculate the lower and upper bounds of the

maximal capacity𝑚𝑘 at time 𝑡 as:

𝑚𝑘
𝑙
(𝑡) = max

{
𝑚𝑘
𝑙
(𝑡 − 1),

⌈
𝜈𝑘𝑡

𝜇𝑘𝑡 + 𝜙 (𝜏𝑘𝑡 , 𝛿) + 𝜙 (𝜄𝑘𝑡 , 𝛿)

⌉}
, (29)

𝑚𝑘𝑢 (𝑡) = min

{
𝑚𝑘𝑢 (𝑡 − 1),

⌈
𝜈𝑘𝑡

𝜇𝑘𝑡 − 𝜙 (𝜏𝑘𝑡 , 𝛿) − 𝜙 (𝜄𝑘𝑡 , 𝛿)

⌉}
, (30)

where 𝜙 (𝑥, 𝛿) ≜
√︃
(1 + 1

𝑥 )
log(2

√
𝑥+1/𝛿)

2𝑥 .

6.2 Approximated optimal solution �̃�∗

In traditional risk-neutral MAB system, to always pull the arm

with the highest mean is the optimal offline solution. In risk-aware

systems, however, to always pull the arm with the highest MV is

not optimal. For example, consider one agent and two arms with

Gaussian distribution with parameters 𝜇1 = 10, 𝜇2 = 11, Σ1,1 = 1,

and Σ2,2 = 2.1. Let us further assume 𝜌 = 1, 𝑇 = 2, and identical

cost of pulling arms 𝑐1 = 𝑐2 = 1. Calculating the MV, it is easy to

show that 𝜂1 = 8 and 𝜂2 = 7.9.

• The platform chooses the single-arm payment policy �̃�∗ = (1, 0)
that motivates the agent to always play arm 1, which yields a

cumulative revenue with MV 𝜂�̃�∗ = 8.

• Then we consider a policy 𝒓1 = (1, 0) and 𝒓2 = 1{𝑋 1

1
< 10.5} ·

(1, 0) + 1{𝑋 1

1
≥ 10.5} · (0, 1). That is, at time 1 the platform sets

payment on arm 1. If the generated utility at time 1 is lower than

10.5, then the platform still sets payment on arm 1 at time 2;

otherwise, the platform changes to set payment on arm 2. This

yields a cumulative revenue with MV 𝜂𝒓 > 8.3.

The above example shows that always motivating the agent to

pull the arm with the highest MV is not optimal. Nonetheless, we

regard this payment policy selecting the highest MV arm as an

approximated optimal solution �̃�∗, which is a good proxy of the

optimal solution 𝒓∗.
The above example shows the approximated optimal solution

under a single-agent scenario, now we focus on our model with

multiple agents. Recall that the maximal capacity on each arm is

unknown. And some agents (i.e., non-VIPs) can only access a subset

of arms (i.e., non-VIP arms), while other agents (i.e., VIPs) can access

all the arms (i.e., both VIP and non-VIP arms).

Here we define the approximated optimal solution under the

general risk-aware multi-agent setting with heterogeneous agents

and unknown arm capacities. Let us first discuss the approximated

optimal number of agents pulling arms.

• Non-VIP agents: Let us first sort the non-VIP arms by 𝜂𝑘 , and we

define the lowest favored arm index asΦ𝑛𝑜𝑛 such that
∑Φ𝑛𝑜𝑛

𝑘=1
𝑚𝑘 ≥

𝑁 −𝑁𝐻 and

∑Φ𝑛𝑜𝑛−1

𝑘=1
𝑚𝑘 < 𝑁 −𝑁𝐻 . Then for the non-VIP agents,

the optimal number of agents’ pulling arms would be exactly𝑚1

agents choosing arm 1,𝑚2
agents choosing arm 2, and so on, un-

til𝑚Φ𝑛𝑜𝑛−1
agents choosing arm Φ𝑛𝑜𝑛 − 1, and 𝑁 −∑Φ𝑛𝑜𝑛−1

𝑘=1
𝑚𝑘

agents choosing arm Φ𝑛𝑜𝑛 .

• VIP agents: Note that there may exist capacity on the non-VIPs’

least favored arm Φ𝑛𝑜𝑛 , since the number of agents does not

exceed the maximal capacity. Then the platform will motivate

VIP agents to pull high MV arms that still have capacity to ac-

commodate agents. In this case, the platform sort these arms by

𝜂𝑘 . The idea is similar to the non-VIP agents, where VIP agents

are first assigned to the arms with the highest MV, then assigned

to the arms with the second highest MV, until no agent is left.

Given the approximated optimal number of agents pulling arms

�̃�∗ = (�̃�𝑘 ,∀𝑘 ∈ K), the approximated optimal payment policy is

straightforward that �̃�∗ = (𝑐𝑘 �̃�𝑘 ,∀𝑘 ∈ K) from Proposition 2. Here

we define the approximated optimal arm set as
˜K∗ ≜ {𝑘 ∈ K : �̃�𝑘 >

0} that agents pull arms in set
˜K∗

and do not pull arms in setK\ ˜K∗
.

Then we define the highest chosen arm index as Φℎ𝑖𝑔ℎ ≜ max

𝑘∈ ˜K∗
𝑘 .

6.3 Algorithm design
Nowwe are able to propose Algorithm 1 tomaximize the cumulative

revenue with MV of 𝑁 agents’ decisions under independent risks.

The general idea is as follows.

• Initialization: The initial payment on each arm at any time is zero.

The upper and lower bounds of the maximal capacity on each

arm are initialized as 𝑁𝐻 and 1, respectively (line 1).

• UCB value calculation: To begin with, the platform assigns pay-

ments on each arm one by one, and one VIP agent pulls the arm

without deviation (lines 2 and 3). Then the platform calculates

the UCB value 𝐵𝑘𝑡 for each arm 𝑘 ∈ K at time 𝑡 (lines 4-6).

• Non-VIP agents and arms: Similar to the approximated optimal

setting, the platform first focuses on the non-VIP agents and arms.

Based on the UCB value and the lower bound of the capacity, the

platform chooses the highest Φ̂𝑛𝑜𝑛 arms and forms the set E𝑛𝑜𝑛
(line 8). This setting guarantees that the number of pulling each

arm does not exceed the maximal capacity. For the least favored

arm Φ̂𝑛𝑜𝑛 , the number of non-VIPs pulling this arm is 𝑛Φ̂
𝑛𝑜𝑛

𝑡 and

the platform sets the corresponding payment (line 9). For the

other chosen non-VIP arms, the number is𝑚𝑘
𝑙
and the platform

assigns corresponding payments (lines 10 and 11).

• VIP agents and arms: Here we define the arm capacity �̂�𝑘 for

VIP agents (line 7). Note that there still exists capacity on the

non-VIPs’ least favored arm Φ̂𝑛𝑜𝑛 , since the number does not

exceed the lower bound. Hence at most �̂�Φ̂𝑛𝑜𝑛
VIPs can pull this

arm (line 13). Then VIPs pull arms from the whole set K , except

those arms already reaching the lower bound (i.e, E𝑛𝑜𝑛\Φ̂𝑛𝑜𝑛).
The platform forms the set E𝑉 𝐼𝑃 for VIP agents to choose from

(line 14) and further add payments to these chosen arms (lines

15-17). Note that the payment setting follows from Proposition 2

and satisfies the VIP and capacity constraints in (22) and (23).

• Agents assignment and generated utilities: Once the payment pro-

file is fixed, the number of agents pulling each arm is determined

from Proposition 1. As the platform cares about each agent’s cu-

mulative MV, the platform should encourage each agent to stick

to the same arm. For example, the platform needs two agents to

pull arms 1 and 2 at every time slot, then he assigns agent 1 (or

2, respectively) to pull arm 1 (or 2, respectively) all the time. For

non-VIP assignment (line 12), the platform assigns the non-VIP

agents one by one (according to their index) to the non-VIP arms

66



Risk-Aware Multi-Agent Multi-Armed Bandits MobiHoc ’24, October 14–17, 2024, Athens, Greece

Algorithm 1: Independent risks: Cumulative revenue with

MV of 𝑁 agents’ decisions

Input: Total number of agents 𝑁 ; total number of VIPs 𝑁𝐻 ;

arm set K ; VIP arm set K𝐻
;

1 Initialization: Set 𝑟𝑘𝑡 = 0 for any 𝑘 ∈ K and 𝑡 ∈ T ;𝑚𝑘
𝑙
= 1

and𝑚𝑘𝑢 = 𝑁𝐻 for any 𝑘 ∈ K ;

2 for 𝑡 = 1 : 𝐾 do
3 The platform sets payment 𝑐𝑘 on arm 𝑘 = 𝑡 and one VIP

agent pulls arm 𝑘 ;

Output: Generated utility 𝑈 𝑘𝑡 on arm 𝑘 ;

4 while 𝑡 ≤ 𝑇 do
5 foreach 𝑘 ∈ K do
6 Calculate 𝐵𝑘𝑡 in (27) ;

7 Set �̂�𝑘 =𝑚𝑘
𝑙
, ∀𝑘 ∈ K ;

8 Based on 𝐵𝑘𝑡 , the platform chooses the highest Φ̂𝑛𝑜𝑛

arms from set K\K𝐻
such that

∑Φ̂𝑛𝑜𝑛

𝑘=1
𝑚𝑘
𝑙
≥ 𝑁 − 𝑁𝐻

and

∑Φ̂𝑛𝑜𝑛−1

𝑘=1
𝑚𝑘
𝑙
< 𝑁 − 𝑁𝐻 , and forms set E𝑛𝑜𝑛 ;

9 The platform sets 𝑛𝑘𝑡 = 𝑁 − 𝑁𝐻 − ∑Φ̂𝑛𝑜𝑛−1

𝑘=1
𝑚𝑘
𝑙
and

assigns payment 𝑐𝑘𝑛𝑘𝑡 on arm 𝑘 = Φ̂𝑛𝑜𝑛 ;

10 foreach 𝑘 ∈ E𝑛𝑜𝑛\Φ̂𝑛𝑜𝑛 do
11 The platform sets 𝑛𝑘𝑡 =𝑚𝑘

𝑙
and assigns payment

𝑐𝑘𝑛𝑘𝑡 on arm 𝑘 ;

12 ▷ Non-VIP agents assignment ;

13 For arm Φ̂𝑛𝑜𝑛 , set �̂�Φ̂𝑛𝑜𝑛
=𝑚Φ̂𝑛𝑜𝑛

𝑙
− 𝑛Φ̂𝑛𝑜𝑛

𝑡 ;

14 The platform chooses the highest Φ̂𝑉 𝐼𝑃 arms from set

K\E𝑛𝑜𝑛 ⋃
Φ̂𝑛𝑜𝑛 such that

∑Φ̂𝑉 𝐼𝑃

𝑘=1
�̂�𝑘 ≥ 𝑁𝐻 and∑Φ̂𝑉 𝐼𝑃−1

𝑘=1
�̂�𝑘 < 𝑁𝐻 , and forms set E𝑉 𝐼𝑃 ;

15 The platform sets 𝑛𝑘𝑡 = 𝑁𝐻 − ∑Φ̂𝑉 𝐼𝑃−1

𝑘=1
�̂�𝑘 and assigns

payment 𝑐𝑘𝑛𝑘𝑡 on arm 𝑘 = Φ̂𝑉 𝐼𝑃 ;

16 foreach 𝑘 ∈ E𝑉 𝐼𝑃\Φ̂𝑉 𝐼𝑃 do
17 The platform sets 𝑛𝑘𝑡 =𝑚𝑘

𝑙
and assigns payment

𝑐𝑘𝑛𝑘𝑡 on arm 𝑘 ;

18 ▷ VIP agents assignment ;

Output: Generated utility 𝑈 𝑘𝑡 for any arm 𝑘 ∈ K ;

19 𝑡 = 𝑡 + 1 ;

20 Define the eligible arm set E ≜ E𝑛𝑜𝑛 ⋃ E𝑉 𝐼𝑃 ;

21 foreach 𝑘 ∈ E do
22 if 𝑚𝑘

𝑙
≠𝑚𝑘𝑢 then

23 The platform sets 𝑛𝑘𝑡 =𝑚𝑘𝑢 and assigns payment

𝑐𝑘𝑛𝑘𝑡 on arm 𝑘 ;

Output: Generated utility 𝑈 𝑘𝑡 on arm 𝑘 ;

24 Update𝑚𝑘
𝑙
and𝑚𝑘𝑢 in (29) and (30) ;

25 𝑡 = 𝑡 + 1 ;

sorted by the 𝐵𝑘𝑡 value, until the number on arm 𝑘 reaches the

lower bound �̂�𝑘 and all the agents are assigned. The assignment

of VIPs is similar (line 18). Given the agents’ arm-pulling deci-

sions under this assignment, the platform can observe the utility

𝑈 𝑘𝑡 on each arm 𝑘 . This completes the agent assignment and

utility generation process at time 𝑡 (line 19).

• Maximal capacity update: For all the chosen arms (lines 20 and

21), if the maximal capacity on one arm is unknown (line 22),

then the platform will set a corresponding payment and assign

agents to that arm (line 23), to learn the maximal capacity (line

24). The learning process of each arm consumes a time slot (line

25). Note that the confidence interval width of the capacity is

smaller than 1 (i.e.,𝑚𝑘𝑢 −𝑚𝑘𝑙 < 1) with a determined capacity𝑚𝑘 ,

when the learning proceeds more than log𝑇 times.

Note that the homogeneous agent setting is a special case of

our model when all agents are VIPs, i.e., 𝑁𝐻 = 𝑁 and K𝐻 = K in

Algorithms 1, 2 and 3. Then, the non-VIP assignment process, e.g.,

lines 8-13 of Algorithm 1, can be ignored as the non-VIP arm set

is empty, and there is no need to consider the payment setting or

the agent assignment on non-VIP arms. The known capacity case

is a special case of our model when the upper and lower bounds of

the capacity are the same, i.e.,𝑚𝑘
𝑙
= 𝑚𝑘𝑢 = 𝑚𝑘 in Algorithms 1, 2,

and 3. Then the arm capacity learning process, e.g., lines 21-25 of

Algorithm 1, can be ignored as the capacity on each arm is known

to the platform.

6.4 Regret upper bound
In the following Theorem, we state a sub-linear regret upper bound

for Algorithm 1.

Theorem 1. Given any fixed 𝑁 , 𝑁𝐻 , 𝐾 , 𝑇 , 𝝁, 𝒄 , 𝒎, and 𝚺, the
regret of Algorithm 3 is upper bounded by

𝑅𝑒𝑔𝑚𝑢𝑙𝑡𝑖𝒓 ≤
∑︁
𝑘∈K

49𝜔𝑘 (𝑚𝑘 )2
log𝑇

(𝜇𝑘 )2

+
(
𝑁

∑︁
𝑘>1

Γ2

𝑘,1

Δ𝑘,1
+ 𝑁 + 1

)
+ 2

∑︁
𝑘∈K\ ˜K∗

𝑚𝑘 (Δ𝑘,1 + Γ2

𝑘,1
)
((

4𝜌2

(Δ𝑘,Φℎ𝑖𝑔ℎ )2
+𝐶𝑁

)
log𝑇 + 2𝑁 + 1

)
,

(31)

where 𝜔𝑘 ≜ 2𝑓𝐶𝑉 (𝒓∗) + 2𝑐𝑘𝑁𝐻 , Δ𝑘,𝑥 = 𝜂𝑥 − 𝜂𝑘 , and Γ𝑘,𝑥 = (𝜇𝑥 −
𝑐𝑥 ) − (𝜇𝑘 − 𝑐𝑘 ).
Remark: Algorithm 1 solves the risk-aware MAMAB model with

heterogeneous agents and unknown capacities. Despite the hetero-

geneous agents, we still consider the regret of pulling sub-optimal

arms by considering the VIP and non-VIP agent assignment. The

first term in (31) is the regret when the platform learns the maxi-

mal capacity on all arms, which follows the log𝑇 order given the

capacity learning process. This can be eliminated under the known

capacity case. The second term represents the learning regret of

the approximated optimal solution. This fixed term shows that the

high-MV arm selection is a good proxy. The third term calculates

the regret when the platform assigns payments to sub-optimal arms.

These sub-optimal arms can be pulled at most log𝑇 times.

7 INDEPENDENT RISKS: CUMULATIVE
REVENUE SUMMATIONWITH MV

Now we consider the case when the platform can only observe the

utility summation and aims to maximize the cumulative revenue

summation with MV. Note that the optimal payment profile and
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Algorithm 2: Independent risks: Cumulative revenue sum-

mation with MV

Input: Total number of agents 𝑁 ; total number of VIPs 𝑁𝐻 ;

arm set K ; VIP arm set K𝐻
;

1 Initialization: Set 𝑟𝑘𝑡 = 0 for any 𝑘 ∈ K and 𝑡 ∈ T ;𝑚𝑘
𝑙
= 1

and𝑚𝑘𝑢 = 𝑁𝐻 for any 𝑘 ∈ K ; 𝑡 = 1 ;

2 while 𝑡 ≤ 𝑇 do
3 foreach �̂� ∈ ˆN(𝒎𝑙 ) do
4 The platform calculate 𝐵�̂�𝑡 ;

5 Chooses the vector �̂� with the highest UCB value 𝐵�̂�𝑡 ;

6 foreach 𝑘 ∈ K do
7 The platform sets payment 𝑐𝑘 �̂�𝑘 on arm 𝑘 and

assigns �̂�𝑘 agents to pull arm 𝑘 ;

Output: Generated utility 𝑈 �̂�
𝑡 under vector �̂� ;

8 𝑡 = 𝑡 + 1 ;

9 foreach 𝑘 ∈ K and �̂�𝑘 > 0 do
10 if 𝑚𝑘

𝑙
≠𝑚𝑘𝑢 then

11 The platform sets payment 𝑐𝑘𝑚𝑘𝑢 on arm 𝑘 ;

Output: Generated utility 𝑈 𝑘𝑡 on arm 𝑘 ;

12 𝑡 = 𝑡 + 1 ;

13 The platform sets payment 𝑐𝑘𝑚𝑘
𝑙
on arm 𝑘 ;

Output: Generated utility 𝑈 𝑘𝑡 on arm 𝑘 ;

14 𝑡 = 𝑡 + 1 ;

15 Update𝑚𝑘
𝑙
and𝑚𝑘𝑢 in (29) and (30) ;

the approximated optimal profile are the same as the profiles when

the platform can differentiate the generated utility on each arm.

7.1 Notations and calculations
As the utility on each arm follows an independent Gaussian dis-

tribution, the summation of the utility still follows the Gaussian

distribution. In this case, the platform can simply regard the summa-

tions of the utility (with different arms selected) as new Gaussian

distributions. Let us define the vector �̂� = (�̂�𝑘 ,∀𝑘 ∈ K) which
includes �̂�𝑘 agents on each arm 𝑘 . This vector �̂� can be regarded

as a potential arm for the platform. Then we define the vector set,

which contains all the vector �̂� such that the number on each arm

does not exceed the maximal capacity and the number of agents

satisfies the VIP number and total number constraints:

ˆN(𝒎𝑙 ) =
{
�̂� : 0 ≤ �̂�𝑘 ≤ 𝑚𝑘

𝑙
for any 𝑘 ∈ K,∑︁

𝑘∈K
�̂�𝑘 ≤ 𝑁,

∑︁
𝑘∈K𝐻

�̂�𝑘 ≤ 𝑁𝐻
 ,

(32)

where 𝒎𝑙 = (𝑚𝑘
𝑙
,∀𝑘 ∈ K).

Given the vector �̂�, let us define the empirical mean 𝜇�̂�𝑡 and the

empirical variance 𝑠 �̂�𝑡 of vector �̂� at time 𝑡 as

𝜇�̂�𝑡 =
1

𝜏 �̂�𝑡

𝑡∑︁
𝑡 ′=1

1{�̂�} ·𝑈 �̂�
𝑡 ′ , 𝑠

�̂�
𝑡 =

1

𝜏 �̂�𝑡 − 1

𝑡∑︁
𝑡 ′=1

1{�̂�} ·
(
𝑈 �̂�
𝑡 − 𝜇�̂�𝑡

)
2

, (33)

where 1{�̂�} denotes whether the number of agents pulling arms

follow the vector �̂�. And 𝜏 �̂�𝑡 ≜
∑
𝑡 ′≤𝑡 1{�̂�} calculates the number of

times until time 𝑡 , when the number of agents pulling arms follow

the vector �̂�. Then we define the UCB value of vector �̂� at time 𝑡

as
5

𝐵�̂�𝑡 = 𝜌

(
𝜇�̂�𝑡 −

∑︁
𝑘∈K

𝑐𝑘 �̂�𝑘 +
√︄

log 𝑡

𝜏 �̂�𝑡

)
−

(𝜏 �̂�𝑡 − 1)𝑠 �̂�𝑡
𝜒

1−𝛼,𝜏 �̂�𝑡 −1

, (34)

where 𝜒
1−𝛼,𝜏 �̂�𝑡 −1

is the upper 𝛼 percent of the chi-square distribu-

tion with (𝜏 �̂�𝑡 − 1) degrees of freedom.

7.2 Algorithm design
Nowwe are able to propose Algorithm 2 tomaximize the cumulative

revenue summation with MV under independent risks. The general

idea is as follows.

• Choose the vector with the highest UCB: For each possible vector

�̂� ∈ ˆN(𝒎𝑙 ), the platform calculates its UCB value and chooses

the one with the highest UCB value (lines 3-5). Given the chosen

vector, the platform sets the corresponding payment and assigns

the agents to pull these arms. Note that in this section, the plat-

form only cares about the summation, so the platform can ignore

the agent index. It is because two agents (with any agent index)

pulling two selected arms generate the same summation.

• Maximal capacity update: For all the chosen arms (line 9), if the

maximal capacity on one arm is unknown (line 10), then the

platform will set a payment that attracts𝑚𝑘𝑢 (or𝑚𝑘
𝑙
, respectively)

agents (line 11 (or 13, respectively)) to learn the maximal capacity

(line 15). Note that the learning process of each arm consumes

two time slots (lines 12 and 14).

7.3 Regret upper bound
In the following Theorem, we state a sub-linear regret upper bound

for Algorithm 2.

Theorem 2. Given any fixed 𝑁 , 𝑁𝐻 , 𝐾 , 𝑇 , 𝝁, 𝒄 , 𝒎, and 𝚺, the
regret of Algorithm 2 is upper bounded by

𝑅𝑒𝑔𝑠𝑢𝑚𝒓 ≤
∑︁
𝑘∈K

49𝜔𝑘 (𝑚𝑘 )2
log𝑇

(𝜇𝑘 )2

+
∑︁

�̂�∈ ˆN(𝒎),�̂�≠𝒏∗

Γ2

�̂�,𝒏∗

Δ�̂�,𝒏∗
+ 1

+
∑︁

�̂�∈ ˆN(𝒎),�̂�≠𝒏∗

(Δ�̂�,𝒏∗ + Γ2

�̂�,𝒏∗ )
((

4𝜌2

(Δ�̂�,𝒏∗ )2
+𝐶

)
log𝑇 + 3

)
.

(35)

Remark: The regret analysis is similar to Theorem 1, while the

number of potential arms in Algorithm 2 is much higher (e.g., 𝑁𝐾

arms in Algorithm 2 compared with 𝑁 arms in Algorithm 1).

8 CORRELATED RISKS: CUMULATIVE
REVENUEWITH MCV

In this section, let us consider the case when 𝑁 agents collabora-

tively pull arms and these arms can impact with each other via the

covariance. The platform can differentiate the utility on each arm

and aims to maximize the cumulative revenue with MCV.

5
Note that if the platform has not chosen a vector �̂� until time 𝑡 , then the UCB value

equals to infinity 𝐵�̂�
𝑡 = ∞.
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8.1 Notations and calculations
In this section, the platform still observes the utility on each arm,

hence the notation of 𝜇𝑘𝑡 remains unchanged in (25), which is the

“per-agent” utility mean on arm 𝑘 at time 𝑡 . Then we define the

“per-agent” empirical covariance Σ̄
𝑖, 𝑗
𝑡 on arms 𝑖 and 𝑗 at time 𝑡 as

Σ̄
𝑖, 𝑗
𝑡 =

1

𝜏
𝑖, 𝑗
𝑡

𝑡∑︁
𝑡 ′=1

1{𝑛𝑖𝑡 ′ > 0, 𝑛
𝑗

𝑡 ′ > 0} ·
(
𝑈 𝑖
𝑡 ′

𝑛𝑖
𝑡 ′

− 𝜇𝑖𝑡

) (
𝑈
𝑗

𝑡 ′

𝑛
𝑗

𝑡 ′

− 𝜇 𝑗𝑡

)
, (36)

where 𝜏
𝑖, 𝑗
𝑡 ≜

∑
𝑡 ′≤𝑡 1{𝑛𝑖

𝑡 ′ > 0, 𝑛
𝑗

𝑡 ′ > 0} is the number of times until

time 𝑡 , when arm 𝑖 and 𝑗 are together pulled.

Before calculating the UCB value of the vector �̂�, let us define
the confidence regions. First, we define the confidence region of

the covariance as

𝑔
𝑖, 𝑗
𝑡 ≜ 16 max

{
3 ln 𝑡

𝜏
𝑖, 𝑗

𝑡−1

,

√︄
3 ln 𝑡

𝜏
𝑖, 𝑗

𝑡−1

}
+

√√
48 ln

2 𝑡

𝜏
𝑖, 𝑗

𝑡−1
𝜏𝑖
𝑡−1

+

√√
36 ln

2 𝑡

𝜏
𝑖, 𝑗

𝑡−1
𝜏
𝑗

𝑡−1

, (37)

which is the (𝑖, 𝑗)-th index on the confidence region matrix 𝒈𝑡 at
time 𝑡 . And we define the confidence region of the empirical mean

of the number vector �̂� as

𝐸�̂�𝑡 =

√√√
2𝛽 (𝛿𝑡 )

(
�̂�⊤𝐷−1

𝑡−1

(
𝜆ΛΣ̄𝑡𝐷𝑡−1 +

𝑡∑︁
𝑡 ′=1

Σ̄
�̂�𝑡′
𝑡 ′

)
𝐷−1

𝑡−1
�̂�

)
, (38)

where 𝜆 > 0 is the regularization parameter, 𝛽 (𝛿𝑡 ) = ln(1/𝛿𝑡 ) +
𝐾 ln(ln 𝑡) + 𝐾/2 ln(1 + 𝑒/𝜆) and 𝛿𝑡 = 1/(𝑡 ln

2 𝑡). 𝐷𝑡 is the diagonal
matrix such that 𝐷

𝑖,𝑖
𝑡 = 𝜏𝑖𝑡 . Λ𝐴 is a diagonal matrix with the same

diagonal with matrix 𝐴. Then we can calculate the UCB value of

the number vector �̂� as

𝐵𝐶𝑉 �̂�
𝑡 = �̂�⊤ (𝝁𝑡 − 𝒄) + 𝐸�̂�𝑡 − 𝜌 �̂�⊤

(
Σ̄𝑡 − 𝒈𝑡

)
�̂�, (39)

where 𝒄 = (𝑐𝑘 ,∀𝑘 ∈ K) is the cost vector on all the arms. Note that

the vector �̂� and the set
ˆN(𝒎𝑙 ) are the same in Algorithm 2.

8.2 Algorithm design
Nowwe are able to propose Algorithm 3 tomaximize the cumulative

revenue with MCV under correlated risks. The idea is as follows.

• Initialization: At each time slot (of the first 𝐾2
slots), the plat-

form sets the payments on one pair of arms and observes the

corresponding utility (lines 3-6).

• Choose the vector with the highest UCB: For each possible vector

�̂� ∈ ˆN(𝒎𝑙 ), the platform calculates its UCB value and chooses

the one with the highest UCB value (lines 8-10). Given the cho-

sen vector, the platform sets the corresponding payment and

assigns the agents to pull these arms. Note that in this section,

the platform can also ignore the agent index.

• Maximal capacity update: The process of learning the maximal

capacity (lines 14-18) is similar to that in Algorithm 1.

8.3 Regret upper bound
In the following Theorem, we state a sub-linear regret upper bound

for Algorithm 3.

Theorem 3. Given any fixed 𝑁 , 𝑁𝐻 , 𝐾 , 𝑇 , 𝝁, 𝒄 , 𝒎, and 𝚺, the
regret of Algorithm 3 is upper bounded by

𝑅𝑒𝑔𝐶𝑉𝒓 ≤ O
(√︃
𝐿(𝜆) (𝐾2 + ||Σ| |+)𝐾𝑇 ln

2𝑇 + 𝜌𝐾
√
𝑇 ln𝑇

)
, (40)

Algorithm 3: MAMAB with mean-covariance

Input: Total number of agents 𝑁 ; total number of VIPs 𝑁𝐻 ;

arm set K ; VIP arm set K𝐻
;

1 Initialization: Set 𝑟𝑘𝑡 = 0 for any 𝑘 ∈ K and 𝑡 ∈ T ;𝑚𝑘
𝑙
= 1

and𝑚𝑘𝑢 = 𝑁𝐻 for any 𝑘 ∈ K ;

2 for 𝑡 = 1 : 𝐾2 do
3 if ⌈ 𝑡

𝐾
⌉ == (𝑡 mod 𝐾) + 1 then

4 The platform sets payment 𝑐𝑘 and assigns one agent

to pull arm 𝑘 = ⌈ 𝑡
𝐾
⌉ ;

5 else
6 The platform sets payments 𝑐𝑘 and 𝑐𝑘

′
and assigns

two agents to pull arm 𝑘 = (𝑡 mod 𝐾) + 1 and arm

𝑘 ′ = ⌈ 𝑡
𝐾
⌉, respectively ;

Output: Generated utility 𝑈 𝑘𝑡 on each pulled arm

𝑘 ∈
{
⌈ 𝑡
𝐾
⌉, (𝑡 mod 𝐾) + 1

}
;

7 while 𝑡 ≤ 𝑇 do
8 foreach �̂� ∈ ˆN(𝒎𝑙 ) do
9 The platform calculate 𝐵𝐶𝑉 �̂�

𝑡 ;

10 Chooses the vector �̂� with the highest value 𝐵𝐶𝑉 �̂�
𝑡 ;

11 foreach 𝑘 ∈ K do
12 The platform sets payment 𝑐𝑘 �̂�𝑘 on arm 𝑘 and

assigns �̂�𝑘 agents to pull arm 𝑘 ;

Output: Generated utility 𝑈 𝑘𝑡 for each arm 𝑘 ∈ K ;

13 𝑡 = 𝑡 + 1 ;

14 foreach 𝑘 ∈ K and �̂�𝑘 > 0 do
15 Lines 22-25 in Algorithm 1 ;

Table 1: Independent arms

Arm index 1 2 3 4 5 6

Per-agent mean 0.95 0.85 0.75 0.65 0.55 0.45

Per-agent variance 0.15 0.2 0.16 0.15 0.05 0.12

Per-agent cost 0.27 0.36 0.18 0.3 0.25 0.28

Maximal capacity 2 2 1 3 3 2

where𝐿(𝜆) = (𝜆+1) (ln(1+𝜆−1)+1) and | |Σ| |+ =
∑
𝑖, 𝑗 ∈K max{Σ𝑖, 𝑗 , 0}.

Remark: The regret is higher than that under the independent

risks, as learning the correlated risks also consumes time.

9 PERFORMANCE EVALUATIONS
In this section, we first model the crowdsourcing platform Foap that

includes six independent tasks (or arms). The “per-agent” random

utility follows the Gaussian distribution. The utility mean, variance,

cost, and maximal capacity on each arm are shown in Table 1. We

set 𝜌 = 1 and focus on 3 VIPs and 3 non-VIPs (6 agents in total),

where non-VIPs can only access arm set {1, 4, 5}.
In Fig. 1(a)-(c), we focus on the case when the platform can

differentiate the utility on each arm (i.e., Algorithm 1).

In Fig. 1(a), we show that the platform should set payments on

arms 1, 2, 3, and 5 under Algorithm 1, hence the cumulative payment
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Figure 1: Regret vs. Time.

increases with time. Arms 4 and 6 do not generate enough revenue

(difference between the utility, variance and payment), hence the

platform will eventually not set any payment on these two arms,

and the cumulative payment will no longer increase.

Then we compare Algorithm 1 with UCB algorithm without

considering the risks (w/o-risks), 𝜖-greedy and uniform payment

algorithms. For 𝜖-greedy algorithm (where we choose 𝜖 = 0.2), the

platform has 1 − 𝜖 probability to assign payment on the highest

revenue arms, and has 𝜖 probability to assign payment on other

arms. For uniform payment algorithm, the platform has the same

budget as our algorithm in each time slot, but distribute the payment

on each arm uniformly.

We compare the payments on arm 4 in Fig. 1(b) and revenues in

Fig. 1(c). Based on our algorithm, the platform eventually assigns

zero payment on arm 4, while assigning payment to attract agents

to pull arm 4 under w/o-risks, 𝜖-greedy and uniform payment al-

gorithms. To summarize, our algorithm guides the platform to set

payments only on the arms with high risk-aware revenue, so as to

attract agents to pull these arms, while w/o-risks algorithm focuses

on the arms with high expected revenue, and 𝜖-greedy and uniform

payment algorithms cannot differentiate the optimal arms. In Fig.

1(c), the cumulative revenue of our algorithm approaches to that

under the optimal setting, while w/o-risks, 𝜖-greedy and uniform

payment algorithms result in revenue losses.

Finally, we present the regret under Algorithms 1-3 in Fig. 1(d).

For the correlated risk case, we consider an edge computing system

with six correlated nodes (or arms). The covariance matrix 𝚺 has the

𝑖, 𝑗-th entry equal to 0.005× 𝑖 × 𝑗 where 𝑖 ≠ 𝑗 . The other parameters

are the same as in Table 1. We compare the two crowdsourcing

scenarios with independent risks when the platform can or cannot

differentiate the utility on each arm (i.e., Algorithm 1 or 2), and

the edge computing scenario with correlated risks (i.e., Algorithm

3). We show that the three algorithms all achieve the sub-linear

regret. The correlated risk scenario leads to a higher regret than the

independent risk case, as learning the correlated risk also consumes

time. The scenario when the platform cannot differentiate the utility

results in the highest regret, as the number of potential arms is

much higher than the other cases.

10 CONCLUSIONS
In this paper, we proposed a risk-awaremulti-agentMAB (MAMAB)

model, considering both the independent and correlated risk when

multiple agents make arm-pulling decisions. We showed how to

calculate the arm-pulling strategy of agents with potentially differ-

ent eligible arm sets under a Nash equilibrium point. We designed

the platform’s optimal payment algorithms for its risk-aware rev-

enue maximization (a regret minimization) under both independent

and correlated risks. We proved that our algorithms achieve the

sub-linear regret under independent risks when the platform can

or cannot differentiate the utility on each arm. We also proved that

our algorithm achieves the sub-linear regret under correlated risks.
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