
Available online at www.sciencedirect.com

Procedia Computer Science 00 (2016) 000–000
www.elsevier.com/locate/procedia

The 13th International Conference on Mobile Systems and Pervasive Computing
(MobiSPC-2016)

Taming Energy Cost of Disk Encryption Software on Data-Intensive
Mobile Devices

Yang Hua, John C.S. Luib,∗, Wenjun Huc, Xiaobo Maa, Jianfeng Lia, Xiao Lianga

aXi’an Jiaotong University, No.28, Xianning West Road, Xi’an, Shannxi, 710049, China
bThe Chinese University of Hong Kong, Shatin, NT, Hong Kong, China

cPalo Alto Networks Inc., Singapore

Abstract

Disk encryption is frequently used to secure confidential data on mobile devices. However, the high energy cost of disk encryption
poses a heavy burden on those devices with limited battery capacity especially when a large amount of data needs to be protected
by disk encryption. To address the challenge, we develop a new kernel-level disk encryption software, Populus. Almost 98% of
Populus’s encryption/decryption computation is not related with the input plaintext/ciphertext, so we accomplish the computation
in advance during initialization when a consistent power supply is available. We conduct cryptanalysis on Populus and finally
conclude that state-of-the-art cryptanalysis techniques fail to break Populus in reasonable computational complexity. We also
conduct energy consumption experiments on Populus and dm-crypt, a famous disk encryption software for Android and Linux
mobile devices. The experimental results demonstrate that Populus consumes 50%-70% less energy than dm-crypt.
c⃝ 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

Keywords: privacy protection; disk encryption; energy-efficient computing.

1. Introduction

In recent years, mobile devices, such as smartphones, smartwatches and mobile video surveillance devices1, have
become an integral part in our daily life. Meanwhile, mobile devices are usually facing profound security challenges,
especially when being physically controlled by attackers. For example, due to device loss or theft, data leakage in
mobile devices happens more frequently than before2. To deal with the aforementioned security challenge, mobile
devices can encrypt secret data and store its ciphertext locally on itself, which is also known as disk encryption3.
This method attracts extensive attention in industry and academia4. Generally speaking, there are two types of disk
encryption solutions: software and hardware solutions. This paper mainly focuses on software solutions as they
usually have advantages in compatibility and scalability.

∗ Corresponding author. Tel.: (852) 3943-8407 ; fax: (852) 2603-5024.
E-mail address: cslui@cse.cuhk.edu.hk

1877-0509 c⃝ 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Conference Program Chairs.

2 Yang Hu et al. / Procedia Computer Science 00 (2016) 000–000

However, for data-intensive applications such as mobile video surveillance1 and seismic monitor5, the whole
energy consumption of mobile devices highly rises after applying existing disk encryption software. One evidence
proposed by Li et al. states that for data-intensive applications nearly 1.1-5.9 times more energy is required on
commonly-used mobile devices when turning on their disk encryption software6. Worse, mobile devices are usually
battery-powered in order to improve portability. For example, sometimes mobile video surveillance device is equipped
on a multi-rotor unmanned aerial vehicle, so battery becomes its sole power supply7. Due to mobile devices’ limited
battery capacity, existing disk encryption software may strongly affect their normal usage.

The significant energy overhead of existing disk encryption software can be explained by the following two reasons.
First, the ciphers used in existing disk encryption software contain many CPU and RAM operations, which are usually
not energy-efficient. Second, massive data needs to be protected by disk encryption for data-intensive application,
which multiplies its energy consumption. For instance, mobile video surveillance devices need to real-timely record
and securely store a large amount of video data7. According to our experiments, nearly 1/3 of energy consumption
comes from existing disk encryption software in mobile video surveillance.

In fact, energy consumed by CPU and RAM operations tends to become more prominent than other conventional
concerns such as screen and network communication, especially when disk encryption software participates in data-
intensive tasks. About six years ago, about 45%-76% of daily energy consumption came from screen and GSM when
disk encryption software is disabled8. However, the distribution of energy consumption has been changed dramatically
in recent years due to software&hardware optimization and usage habit transformation. A recent study9 shows that
for typical usage only about 28% of energy consumption results from screen and GSM, while CPU and RAM spend
about 35% energy and become the largest energy consumption source in mobile devices when disk encryption is
disabled. In addition, both8 and9 measures energy consumption without enabling disk encryption function. So when
considering that existing disk encryption software owns many CPU and RAM operations, we believe that the energy
consumption percentage of CPU and RAM may be more higher than 35% if data-intensive mobile devices enable disk
encryption software. Li’s experiment results6 exactly verified it. Hence, to build an energy-efficient mobile system,
reducing the energy consumption in disk encryption software is a rational starting point.

To reduce energy consumption of disk encryption software, some researchers try to reduce the number of CPU
or RAM operations in disk encryption software. But it is really challenging to make disk encryption software both
energy-saving and cryptographically secure in this way. Generally speaking, the less computation disk encryption
software needs, the less energy it costs, but possibly the more insecure in cryptography. For example, some trials10

are faced with challenges in terms of cryptography11. In existing cryptographically secure disk encryption software,
the disk encryption software used in Linux and Android, also known as dm-crypt, theoretically owns less computation
than others. But our experimental results show that nearly 30%-50% of mobile device’s energy consumption comes
from dm-crypt for typical usage of data collection and transmission. So the energy consumption of state-of-the-art
disk encryption software is still unnegligible.

In this paper, we design and implement a new energy-efficient kernel-level disk encryption software, Populus. The
basic idea behind Populus is to extract the “input-free” computation from the cipher in disk encryption software and
accomplish it during initialization, where the input-free computation refers to the cipher’s operations that are not
involved with the input text (i.e., plaintext or ciphertext). For example, in AES-CBC cipher, its key expansion can be
regarded as input-free computation. The initialization’s energy consumption is not considered in this paper because
it is performed only once when a mobile device is first used and a consistent power supply is usually available.
Therefore, the more input-free computation we can extract, the more energy we can save.

However, the ciphers used in existing disk encryption software only have a little input-free computation. For
example, we found that input-free computation of AES-CBC cipher accounts for at most 1% of all its computation. To
improve the proportion of input-free computation, Populus first generates pseudo random numbers (PRNs) and global
matrices in an input-free manner. Next, it use those PRNs and global matrices to construct temporary matrices and then
conduct carefully designed matrix multiplication when encrypting user’s privacy. Each PRN can only participate in
disk encryption once so that sufficient PRNs are usually needed for data-intensive application. To protect those PRNs
and matrices, Populus encrypts them in an iterative manner. In this way, Populus can save much energy because
almost 98% of its computation is input-free and the residual real-time computation is much smaller than current disk
encryption software. In addition, Populus costs acceptable extra storage space (typically ≤ 256MB) for those PRNs
and matrices.

Yang Hu et al. / Procedia Computer Science 00 (2016) 000–000 3

To assess Populus in the respect of cryptographic security and energy efficiency, we conduct cryptanalysis on
Populus and a series of energy consumption experiments on both Populus and dm-crypt. Finally we find that Populus
can defend against state-of-the-art cryptanalysis techniques and simultaneously consume less energy than dm-crypt.
Our contribution can be generalized into the following items.

• To the best of our knowledge, this paper is the first work focusing on extracting input-free computation from
disk encryption software, which can be used to reduce its energy consumption.
• We design and implement an energy-saving kernel-level disk encryption software Populus that can both defend

against state-of-the-art cryptanalysis techniques and save 50%-70% more energy than dm-crypt.

The remainder of the paper is organized as follows. Section 2 explains why existing disk encryption software is
lack of input-free computation and how to improve its proportion in Populus. Section 3 presents our system Populus
in detail. Section 4 evaluates the cryptographic security of Populus. Section 5 presents the experimental results of
mobile devices’ energy consumption. Section 6 summarizes related work. Concluding remarks then follow.

2. Input-Free Computation

In this section, we present more details about input-free computation. We first introduce the design consideration
of existing disk encryption software and explain why they are lack of input-free computation. Then, we show the
basic idea of Populus and illustrate why it can improve the proportion of input-free computation.

Existing disk encryption software including dm-crypt is usually based on tweakable scheme12, where each disk
sector should correspond to an independent key used only for its encryption and decryption. However, in practice,
a user only provides one master key. To solve this problem, most of existing disk encryption software achieves
tweakable scheme in the following two steps: 1) produce sector-specific keys based on master key and sector ID; 2)
use sector-specific key to encrypt certain disk sector with a block cipher.

Due to the fact that attackers can get multiple (plaintext, ciphertext) pairs in the same disk sector, they can conduct
chosen-plaintext attack (CPA) by exploiting (plaintext, ciphertext) pairs sharing same sector-specific key. Hence, to
secure the whole crypto system, the block cipher in 2) must have the ability to defend against CPA. To achieve this,
one effective solution is to construct a block cipher in substitution-permutation network (SPN)13. Unfortunately,
we find that nearly all SPN-based block ciphers have a little input-free computation because their core components,
substitution box and permutation box, directly or indirectly rely on input.

To improve input-free computation, we give up aforementioned tweakable scheme and SPN when designing Popu-
lus. Instead, we construct Populus based on nonce-based scheme14. Populus’s core design can be briefly described as
follows: a) for ith encryption, produce an independent temporary key based on master key and i; b) use the temporary
key and a light-weight block cipher to accomplish ith encryption. Our design has four advantages. First, it is com-
patible to tweakable scheme. Second, it makes attackers hard to get multiple (plaintext,ciphertext) pairs sharing same
key, and thereafter basically eliminate the threat from CPA. Third, nearly all procedures in a) are input-free. Forth,
SPN becomes unnecessary in b), which gives us more freedom to design a light-weight block cipher owning much
input-free computation. As a trade-off, our scheme needs extra storage space for input-free computation. Fortunately,
the storage space can be reduced to an acceptable level by carefully designing the temporary key production method
in a) and the block cipher in b). In Section 3, we complement details regarding the design and implementation of
Populus.

3. Populus: An Energy-Saving Disk Encryption Software System

Populus consists of two parts: system initialization and real-time encryption/decryption. We perform system ini-
tialization once when a mobile device is first used and we assume that a consistent power supply is available and
the energy consumption is not a concern during system initialization. Populus initially accomplishes all input-free
computation and stores its result on disk, which is used for processing real-time encryption and decryption requests
later. Populus works at a 512-byte disk sector level, and it allows users to manually configure private disk sectors,
which store users’ confidential information. For each private disk sector, Populus initially assigns it a temporary key,

4 Yang Hu et al. / Procedia Computer Science 00 (2016) 000–000

which is used for encrypting/decrypting the confidential data on it. Each temporary key can only be used for one
encryption. If a sector has ’consumed’ its temporary key due to encryption, Populus will recycle its current temporary
key and allocate a new temporary key for its next encryption. We design Populus for 64-bit systems because 64-bit
processors are popular for mobile devices. Throughout the paper, the default value of a number’s size is 64 bits unless
stated otherwise. Next, we introduce each part of Populus in detail.

3.1. System Initialization

The system initialization includes three input-free modules: PRN generator, master key generator and IFCR en-
cryption. Here, IFCR is the abbreviation of input-free computation result. PRN generator produces PRNs, which are
basic for generating master key and real-time encryption/decryption. Next, Populus encrypts IFCR and then stores it
on disk.

3.1.1. PRN Generator
To produce PRNs, we use Salsa20/12 stream cipher, which has been extensively studied and found to produce

PRNs of very high quality15. Salsa20/12 requires a 320-bit input, hence we use the SHA3 algorithm16 to map a user’s
arbitrary-length key into a 384-bit number, and extract the first 320-bit hash key as the input of Salsa20/12 stream
cipher. PRNs are mainly used for master key production and real-time encryption/decryption, which are separately
named MK-PRNs and RT-PRNs.

3.1.2. Master Key Generator
Populus generates master key using MK-PRNs. We define a square matrix A is 264 modular invertible when there

exists a matrix B such that AB = I mod 264, where I is the identity matrix. If this is the case, then the matrix B is
uniquely determined by A and is called the modular inverse of A (mod 264). For simplicity, we denote it by A−1 in this

paper. We denote master key as U = (U(1), . . . ,U(125)), where each U(i) =

u(i)
1,1 u(i)

1,2
u(i)

2,1 u(i)
2,2

, 1 ≤ i ≤ 125, is a 2 × 2 matrix

and U(i) is modular invertible, which is critical for the real-time encryption and decryption discussed later.
We randomly select matrices U(1), . . . ,U(125) from the set of modular involutory matrices based on the Acharya’s

method17. Here a modular involutory matrix is defined as a matrix whose modular invertible matrix is itself. Since
there exists 7.66×1038 modular involutory matrices18, the number of all possible U is (7.66×1038)125 ≈ 3.38×104860,
which is much larger than the size of our hash key space (i.e., 2320 ≈ 2.14 × 1096). Therefore, the master key is more
difficult to brutally crack than the hash key.

3.1.3. IFCR Encryption and Decryption
To protect IFCR (i.e., RT-PRNs and master key), Populus encrypts them and then stores them on disk. During

real-time encryption/decryption, Populus decrypts master key and RT-PRNs from disk. Later, we will introduce more
detail in Section 3.3.

3.2. Real-Time Encryption and Decryption

Populus performs disk encryption/decryption when the file system writes/reads data on disk in real time. We
introduce each of its modules as follows.

3.2.1. Transparent Encryption and Decryption
Our transparent encryption and decryption is based on matrix multiplication in modular linear algebra19. In cryp-

tography, matrix multiplication has achieved Shannon’s diffusion and it dissipates statistical structure of the plaintext
into long-range statistics of the ciphertext to thwart cryptanalysis based on statistical analysis13. However, matrix
multiplication is usually computationally intensive. For example, a general matrix multiplication between a 64 × 64
matrix and a 64 × 1 matrix requires 64 × 64 + 64 × 63 + 128 = 8256 operations.

Yang Hu et al. / Procedia Computer Science 00 (2016) 000–000 5

To reduce its computation, Populus only constructs 125 64 × 64 sparse matrices H(i) =

I62−|63−i| 0 0
0 M(i) 0
0 0 I|63−i|

 where

i ∈ {1, . . . , 125}, Ii is the i-dimensional identity matrix, and M(i) is a 2 × 2 modular invertible matrix. Then Populus
computes H(125) . . .H(1)P as encryption or (H(1))−1 . . . (H(125))−1C as decryption where P is a 64 × 1 matrix as one
512-byte plaintext and C is a 64 × 1 matrix as one 512-byte ciphertext. Exploiting H(i) is a sparse matrix, 125 64-
dimensional matrix multiplications can be simplified to 125 2-dimensional matrix multiplications. The simplified
encryption and decryption only consists of 125 × (2 × 2 + 2 × 1) + 128 = 868 operations.

3.2.2. Temporary Key Manager
Each temporary key consists of 125 × 2 × 2 × 8 = 4000 bytes, therefore storing all temporary keys requires a large

storage space. To solve this problem, Populus computes its M based on U, R2 j−1 and R2 j for jth encryption, where
R = (R1, ...,Rd) denote RT-PRNs, Ri, 1 ≤ i ≤ d, is a pseudo random number, and d is the size of R. Note that U is
shared by all temporary keys’ construction and its size is 4000 bytes, so on average, we only need about 16 bytes for
storing a temporary key. Then, for jth encryption, we compute each m(i)

p,q (p, q = {1, 2}) in M(i), as

m(i)
p,q =

[2(u(i)

p,q ⊕ R2 j−1) + [u(i)
p,q]2]264 , i = 1,

[2(u(i)
p,q ⊕ R2 j−1 ⊕ R2 j) + [u(i)

p,q]2]264 , i = 63,
[2(u(i)

p,q ⊕ R2 j) + [u(i)
p,q]2]264 , i = 125,

u(i)
p,q, otherwise.

(1)

Here, we use the notation [m]n to denote the function m mod n, i.e., [m]n = m mod n. We prove M(i) is modular
invertible in20.

Considering that RT-PRNs can only be used once, d should be as large as possible in order to securely store mass
data. But if d is too large, RT-PRNs will occupy a lot of storage space so that there may be no enough space for
user’s data. To mitigate this contradiction, Populus only stores a balanced amount of RT-PRNs that can support real-
time encryption/decryption before battery uses up and then replenishes RT-PRNs during device charging or battery
replacement.

After applying our method, only small storage space of RT-PRNs is able to satisfy most of applications in practice.
Suppose that on average mobile devices require to securely store l-byte data each day and can work t days without
enabling disk encryption. Populus needs at most d = lt/256 pseudo random numbers in RT-PRNs. For example, as
for smartphone, we let t = 4 and l = 231 so that only 256 MB are required to store d = 225 pseudo random numbers.

3.3. Iterative Encryption and Decryption on IFCR

In Section 3.1.3, we have briefly introduced the function of IFCR encryption and decryption. However, IFCR
decryption may cost much energy if we choose existing block ciphers as its encryption/decryption algorithm. For
example, if Populus uses AES-CBC to encrypt IFCR, nearly all encrypted IFCR should be decrypted for each time of
transparent encryption, which obviously costs lots of energy.

To reduce the aforementioned energy cost, we propose a dedicated encryption method called iterative encryption
for IFCR protection. The basis idea of iterative encryption comes from our observation that Populus only needs one
new master key (4000 bytes) and k new RT-PRNs (16k bytes) when encrypting k disk sectors (512 bytes for each disk
sector) whose data is never changed. Considering that master key and RT-PRNs are never changed once generated, we
iteratively encrypt them as follows: a) If IFCR only occupies k ≤ 9 disk sectors in all, Populus directly encrypts them
through a SPN-based cipher (e.g., AES-CBC); b) If IFCR occupies k > 9 disk sectors, Populus produces another new
IFCR including one new master key and ⌈(16k + 4000)/512⌉ new RT-PRNs and use them to encrypt original IFCR
through our proposed transparent encryption method; c) Encrypt new IFCR by repeating a) and b). As for iteration
decryption, just reverse the whole process of iteration encryption.

We can use master method to prove that the computation complexity of our iterative encryption/decryption is
O(log(n)). Here, n denotes the number of disk sectors occupied by IFCR. Compared with AES-CBC which needs
O(n) computation in same task, our iterative encryption/decryption saves much energy.

6 Yang Hu et al. / Procedia Computer Science 00 (2016) 000–000

4. Security Analysis

To rigorously assess Populus’s security, we use state-of-the-art cryptanalysis techniques such as linear, differential,
algebraic, slide, and Biclique attacks on Populus. Finally, we show that all of them fail to break Populus in reasonable
computational complexity. The detail of our analysis process can be found in20.

5. Energy Consumption Evaluation

In this section, we use Monsoon power monitor 21 to measure energy consumption of the whole mobile device and
estimate the energy cost by disk encryption software. We choose Google Nexus 4 smartphone with Android 5.0 OS
as our tested mobile device. To compared with Populus proposed in this paper, dm-crypt is chosen as the baseline for
the following two reasons. First, the architecture of dm-crypt is similar to other popular disk encryption software and
their computation is close. So we can use dm-crypt as a representative of existing disk encryption software. Second,
dm-crypt is compatible with Android. So it is convenient for us to conduct energy consumption experiments on our
Google Nexus 4 smartphone.

5.1. Evaluation on Typical Usages for Mobile Device

We conduct a series of experiments to measure the energy consumption of mobile device’s typical usage. Through
those experiments, we can verify whether enabling dm-crypt tremendously raises the whole device’s energy consump-
tion and whether Populus can mitigate it.

We also design three configurations for the mobile device: only enabling dm-crpyt, only enabling Populus and
disabling any disk encryption. For each configuration, we measure the mobile device’s whole energy consumption
in four typical usage: video recording, video playing, data sending throgh WIFI, data receiving through WIFI. As
for video playing and recording, video format is mp4, video resolution is 480 × 270, the choices of video length are
50min, 100min, 150min and 200min and video quality is of high definition. As for WIFI network, the choices of
transferred data size are 256MB, 512MB, 768MB,. . ., 2048MB.

Then we introduce our experiments separately. Video playing is a common function for handheld mobile device
such as smartphone and its energy consumption status is shown in Fig. 1(a). Note that when playing an encrypted
video, decryption is necessary so that part of energy consumption comes from Populus or dm-crypt if they are enabled.
As you can see, nearly 1/2 of energy is cost by dm-crypt and Populus can reduce it to nearly 1/4.

We also present relevant experimental results of video recording in Fig. 1(b), as video recording on mobile device
is widely used in personal life, industry and military (e.g., mobile video surveillance1). Obviously when recording a
secret video, disk encryption is necessary so that part of energy consumption comes from Populus or dm-crypt if they
are enabled. Our experimental results show that nearly 1/3 of energy is cost by dm-crypt and Populus can reduce it to
nearly 1/6.

As for network data transference, Fig. 1(c) demonstrates mobile device’s energy consumption when it sends data to
remote terminal through WIFI network. Here, data has been encrypted by disk encryption software in advance so that
data decryption before network transference should be considered if disk encryption software is enabled. Apparently,
there is an approximate linear relation between transferred data size and mobile device’s energy consumption. On
average, 51% of energy consumption on mobile device is cost by dm-crypt and Populus can reduce it to 20%.

Fig. 1(d) shows mobile device’s energy consumption when it receives data from remote terminal through WIFI
network. Here, we regulate that those received data will be encrypted by disk encryption software if enabled. As you
can see, it is not a pure linear relation between data size and mobile device’s energy consumption. In detail, the energy
consumption of the mobile device enabling dm-crypt is close to the mobile device enabling Populus when data size is
small and gradually changed to linear relation as data size grows larger. Due to file system buffer and disk I/O buffer,
part of received data may be lazily cached in buffer so that disk encryption may not be fully triggered. On average,
56% of energy consumption is cost by dm-crypt and Populus can reduce it to 25%.

Yang Hu et al. / Procedia Computer Science 00 (2016) 000–000 7

(a) Video Playing (b) Video Recording

(c) Data Sending (d) Data Receiving

Fig. 1: Energy consumption on playing&recording and data sending&receiving

5.2. Evaluation on Pure Disk Encryption/Decryption Operations

To compare dm-crypt with Populus, one effective way is to compute the energy consumption of pure disk en-
cryption operations in dm-crypt and Populus and then compute the improvement percentage. However, both of them
can not be directly measured by Monsoon power monitor. To solve this problem, we design a comparison model to
estimate them.

Next, we formally introduce our comparison model. The energy cost of dm-crypt is denoted by AEi and the energy
cost of Populus is denoted by PEi. Here, i denotes the file size in certain experiment. For example, when recording
a video, i denotes the video file size. Let GEi =

AEi−PEi
AEi

denote the percentage of energy that Populus saves in
comparison with dm-crypt when processing i-megabyte file, and we use GE, the average of all GEi, to compare the
energy consumption between Populus and dm-crypt. We regulate three different configurations as: Con f .1, all disk
encryption systems are disabled; Con f .2, only dm-crypt is enabled; Con f .3, only Populus is enabled.

We first measure the energy consumption ECi, j (j ∈ {1, . . . , 3}) and the time cost ETi, j (j ∈ {1, . . . , 3}) of our
mobile phone with different con f . j (j ∈ {1, . . . , 3}). In addition, we observe that the energy consumption of Android
OS is stable, so we denote S P as the energy cost of system per second, and S P can be directly computed by mea-
suring the power consumption when our mobile device is idle. Then we compute GEi based on ECi, j, j ∈ {1, . . . , 3},
ETi, j, j ∈ {1, . . . , 3}, and S P. Let FEi denote the energy consumption of the pure file and disk operations on i-byte
file excluding disk encryption/decryption and S Ei, j, j ∈ {1, . . . , 3} denote the energy consumption of Android OS for
Con f . j. Considering S Ei, j = S P · ETi, j,ECi,1 = FEi + S Ei,1, ECi,2 = FEi + S Ei,2 + AEi, ECi,3 = FEi + S Ei,3 + PEi

and GEi =
AEi−PEi

AEi
, we can finally get GEi =

(ECi,2−ECi,3)−S P(ETi,2−ETi,3)
(ECi,2−ECi,1)−S P(ETi,2−ETi,1) . Then we can compute GE with all GEi.

To prepare for this experiment, we implement a test APP using JNI technique to invoke random file reading and
writing without caching data into various buffer mechanism. We also turn off irrelevant APPs and sensors and then
run our test APP while measuring energy consumption.

8 Yang Hu et al. / Procedia Computer Science 00 (2016) 000–000

Then we use Monsoon power monitor to observe S P, ECi, j, ETi, j and compute GE based on our comparison
model. We measure and compute GE with five repeated experiments and found that GE is roughly between 50% and
70%. Therefore, we can conclude that Populus saves 50%-70% less energy than dm-crypt.

6. Related Work

Popular and secure disk encryption software includes dm-crypt (for Linux and Android), BitLocker (for Windows),
FileVault (for Mac OS X) and TrueCrypt (for Windows and Linux)22. They conduct encryption/decryption with
tweakable scheme12 and SPN-based block ciphers13. However, we found that tweakable scheme and SPN essentially
lead to the energy overhead in disk encryption software and explained it in Section 2. As an attempt to improve
efficiency, Crowley and Paul proposed Mercy, a lightweight disk encryption software10. Unfortunately, Fluhrer proved
that Mercy is insecure in cryptography11.

7. Conclusion

In this paper, we develop a kernel-level disk encryption software Populus to reduce the high energy consumption of
disk encryption, which is critical for mobile devices. We observe that at most 98% of Populus’s encryption/dycryption
computation is input-free, which can be accomplished in advance during initialization, so Populus is energy-efficient
for processing real-time encryption/decryption requests. We conduct cryptanalysis on Populus and find it is compu-
tationally secure when facing state-of-the-art cryptanalysis techniques. We also conduct energy consumption experi-
ments and our experimental results show that Populus consumes 50%-70% less energy in comparison with dm-crypt.

References

1. G. Gualdi, A. Prati, R. Cucchiara, Video streaming for mobile video surveillance, Multimedia, IEEE Transactions on 10 (6) (2008) 1142–
1154.

2. M. La Polla, F. Martinelli, D. Sgandurra, A survey on security for mobile devices, Communications Surveys & Tutorials, IEEE 15 (1) (2013)
446–471.

3. Wiki, Disk encryption theory, https://en.wikipedia.org/wiki/Disk_encryption_theory, [Online; accessed 2-January-2016]
(2016).

4. V. Svajcer, sophos mobile security threat report (2014).
5. A. M. Zambrano, I. Perez, C. Palau, M. Esteve, Distributed sensor system for earthquake early warning based on the massive use of low cost

accelerometers, Latin America Transactions, IEEE (Revista IEEE America Latina) 13 (1) (2015) 291–298.
6. J. Li, A. Badam, R. Chandra, S. Swanson, B. L. Worthington, Q. Zhang, On the energy overhead of mobile storage systems., in: FAST, 2014,

pp. 105–118.
7. C. Xiao, W. Wang, N. Yang, L. Wang, A video sensing oriented speed adjustable fast multimedia encryption scheme and embedded system,

in: Computing, Communications and IT Applications Conference (ComComAp), 2014 IEEE, IEEE, 2014, pp. 234–238.
8. A. Carroll, G. Heiser, An analysis of power consumption in a smartphone., in: USENIX annual technical conference, Vol. 14, Boston, MA,

2010.
9. F. Xia, C.-H. Hsu, X. Liu, H. Liu, F. Ding, W. Zhang, The power of smartphones, Multimedia Systems 21 (1) (2015) 87–101.

10. P. Crowley, Mercy: A fast large block cipher for disk sector encryption, in: Fast Software Encryption, Springer, 2001, pp. 49–63.
11. S. R. Fluhrer, Cryptanalysis of the mercy block cipher, in: Fast Software Encryption, Springer, 2002, pp. 28–36.
12. P. R. Shai Halevi, A tweakable enciphering mode, Springer Berlin Heidelberg (2003) 482–499.
13. C. E. Shannon, Communication theory of secrecy systems*, Bell system technical journal 28 (4) (1949) 656–715.
14. P. Rogaway, Nonce-based symmetric encryption, in: Fast Software Encryption, Springer, 2004, pp. 348–358.
15. D. J. Bernstein, The salsa20 family of stream ciphers, in: New stream cipher designs, Springer, 2008, pp. 84–97.
16. NIST, selects winner of secure hash algorithm (sha-3) competition, http://www.nist.gov/itl/csd/sha-100212.cfm, [Online; ac-

cessed 11-April-2015] (2012).
17. B. Acharya, S. K. Patra, G. Panda, Involutory, permuted and reiterative key matrix generation methods for hill cipher system, matrix 2 (2009)

1.
18. J. Overbey, W. Traves, J. Wojdylo, On the keyspace of the hill cipher, Cryptologia 29 (1) (2005) 59–72.
19. M. Eisenberg, Hill ciphers and modular linear algebra, November 3th.
20. Y. Hu, J. Lui, W. Hu, X. Ma, J. Li, X. Liang, Taming energy cost of disk encryption software on data-intensive mobile devices, arXiv preprint

arXiv:1604.07543.
21. Monsoon power monitor, http://www.msoon.com/LabEquipment/PowerMonitor/.
22. Wiki, Disk encryption software, https://en.wikipedia.org/wiki/Disk_encryption_software, [Online; accessed 17-February-

2016] (2015).

