
Multimed Tools Appl (2009) 41:305–331
DOI 10.1007/s11042-008-0230-3

Hack-proof synchronization protocol
for multi-player online games

Yeung Siu Fung · John C. S. Lui

Published online: 7 October 2008
© Springer Science + Business Media, LLC 2008

Abstract Synchronization protocols based on “dead-reckoning” are vulnerable to a
popular type of cheat called speed-hack. A speed-hack helps a cheater to gain unfair
advantages by essentially speeding up the actions of the avatar controlled by the
cheater, so that the cheater can move, explore and gather items faster than honest
players. This paper presents a novel version of a dead-reckoning protocol that is
invulnerable to speed-hacks. Existing games based on dead-reckoning can easily
be modified to use this hack-proof dead-reckoning protocol and how the protocol
works on both client-server architecture and peer-to-peer (P2P) architecture will be
demonstrated in this paper.

Keywords Cheat prevention · Multiplayer online game · Speed-hack

1 Introduction

Modern multi-player online games are popular and attractive because they provide
a sense of virtual world experience to users: players can interact with each other
on the Internet but perceive a local area network responsiveness. To make this
possible, most modern multi-player online games use similar networking architecture
that aims to hide the effects of network latency, packet loss, and high variance of
delay from players. Because real-time interactivity is a crucial feature from a player’s
point of view, any delay perceived by a player can affect his/her performance [16].
Therefore, the game client must be able to run and accept new user commands
continuously regardless of the condition of the underlying communication channel,

Y. S. Fung · J. C. S. Lui (B)
Department of Computer Science & Engineering, The Chinese University of Hong Kong,
Ma Liu Shui, China
e-mail: cslui@cse.cuhk.edu.hk

Y. S. Fung
e-mail: sfyeung@cse.cuhk.edu.hk

306 Multimed Tools Appl (2009) 41:305–331

and that it will not stop responding because of waiting for update packets from other
players. To make this possible, multi-player online games typically use protocols
based on “dead-reckoning” [5, 6, 9] which allows loose synchronization between
players.

However, dead-reckoning protocol is susceptible to some security attack or
exploitation. In particular, the type of cheat that exploits this vulnerability is called
speed-hack [3] and it has become so widely available and easily accessible because
the implementation of a speed-hack is very simple. Speed-hack cheats exist virtually
in all popular commercial multi-player online games [15]. Existing countermeasures
target on the cheats themselves, i.e. they scan for and block any known cheating
software, or observe any abnormal network traffic and ban that player from the
game. These methods cannot safeguard against all potential speed-hacks, and honest
players may be accidentally recognized as cheaters due to the false positive nature of
detection software.

Figure 1a and b are screenshots from a popular commercial massively multiplayer
online role-playing game (MMORPG) called World of Warcraft. In an MMORPG,
each player controls the action of an avatar inside a virtual world. For example, the
player can move the avatar from one place to another, gather different items by
moving the avatar towards them, use different weapons and magic spells to attack
other avatars and move the avatar to avoid being attacked. Therefore, a player with
a fast moving avatar has definite advantages over players with slower moving avatars.
Normally, an avatar can move faster only after it has obtained some particular items.
However, when using speed-hack an avatar can move arbitrarily faster. Figure 4
illustrates the effect of using speed-hack in an MMORPG. In Fig. 4c and d, player P
is using a speed-hack. We can see that P ’s avatar moves faster than that in Fig. 4a
and b.

This paper presents a novel dead-reckoning protocol that is immune from the
speed-hack cheats. We assume the cheater can modify any binary code or game data,
e.g. the OS’s clock speed, the memory data, the incoming and outgoing packets, etc.
However, we will prove that the invulnerability of our protocol does not depend
on what the cheater can do and even the cheater can modify the outgoing packets,

(a) (b)

Fig. 1 a Some avatars moving inside a virtual world, each of them is controlled by an individual
player. b Several avatars attacking each other using different weapons

Multimed Tools Appl (2009) 41:305–331 307

only very limited advantages can be gained. Since our protocol is based on the
conventional dead-reckoning protocol, existing games can easily be modified to
become resistant to speed-hack. Our protocol can be adapted to both client-server
architecture and P2P architecture in a very similar way.

The remaining parts of this paper are organized as follows. In Section 2, back-
ground informations on dead-reckoning and speed-hack are presented. In Section 3,
we present our hack-proof dead-reckoning protocol and we proof the invulnerability
of our protocol. In Section 4, we present the simulation results of our protocol.
Related works in related fields are presented in Section 5. Section 6 concludes.

2 Backgrounds

2.1 Dead-reckoning

In most multi-player online games, before the game starts, a player is able to select
among a number of avatars, each having different abilities and characteristics, such
as appearance, health point, magic point, speed, etc. When the game begins, or when
a player joins an existing game session, the avatar will be given an initial speeding
capability. This speeding capability may be different according to which avatar the
player has chosen. This speeding capability limits how fast the avatar can move in
the virtual world. The avatar can be moving or stationary at any moment during the
game, but while it is moving, its speed is fixed. Throughout this paper, we call this
speed the legal speed of the avatar. The legal speed of the avatar can be changed
when the game is in progress. It can be achieved by either gaining enough experience
points to upgrade the avatar’s abilities or by obtaining special items which will affect
the avatar’s abilities. In a client-server architecture, the change of an avatar’s legal
speed needs to be granted by the game server and the game server will broadcast
the new legal speed of that avatar to all clients. In a peer-to-peer architecture, the
change of an avatar’s legal speed needs to be verified by all peers. For example, all
peers must agree that the avatar has obtained the specific item successfully and so
they will update its legal speed accordingly. Therefore, the change of the legal speed
of an avatar works under a tight synchronization requirement.

Synchronization protocols based on dead-reckoning are commonly used in multi-
player online games because they do not require synchronization at every state
change. In a game using dead-reckoning, each client sends update packet to the
server (in client-server architecture) or to the peers (in peer-to-peer architecture)
at a constant interval called timeframe, instead of at each state change. An update
packet consists of a timestamp of the game states and a dead-reckoning vector while
a dead-reckoning vector consists of the current coordinates and moving direction
of the avatar. Using the latest received update packet, each client can predict the
movement of another player before the next packet arrives. When a new packet
arrives, correction will be made if there is any deviation induced by the prediction.
Therefore, players do not maintain strictly synchronized views at every state change.
Instead, their views will only be re-synchronized each time when the synchronization
takes place.

An important advantage of this loose synchronization is that the rate of graphics
rendering at each client side can be made independent to the rate of synchronization.

308 Multimed Tools Appl (2009) 41:305–331

In order to produce smooth display, the graphics should be rendered at a rate no less
than 30 frames per seconds (fps). However, synchronization in MMORPGs typically
takes place in a much slower rate. This is because synchronization can consume a
significant amount of processing power and network bandwidth the server since the
number of connected clients are typically in the order of thousands. The situation
is even more severe in peer-to-peer games, since IP multicast is still not yet widely
available, a peer-to-peer game client may resort to sending separate update packets
to every peer. Because of this, synchronizations in MMORPGs typically take place
at a rate less than 10 updates per second, i.e. a timeframe of 100 ms. If a client
only renders moving objects to their new coordinates each time when an update
packet arrives, i.e. it renders the graphics at a rate of 10 fps, the animation will look
choppy and jittery, which will definitely destroy the game’s playability. However,
under dead-reckoning, since prediction is carried out before any newer packet is
available, each client can render the movement of objects at the fastest rate which
only depends on the processing power of the client machine.

In order to predict an object’s movement from its previous game states, simple
linear extrapolation can be used. Using the dead-reckoning vector in the last received
packet, the client can extrapolate a linear movement from the object’s last known
coordinates which head towards the last known direction. When a new update packet
arrives, the accurate coordinates may be different from the current coordinates
predicted by the extrapolation. Algorithms such as [1] and [11] can be used to hide
the effect of any extrapolation error emerged in rendering the movements. Under
the dead-reckoning protocol with the use of extrapolation, all clients can render the
movement of all avatars at the fastest possible rate, which only depends on the
computational power of the client side. If an update packet is late on arrival or is even
lost, the graphics rendering will still not be affected and therefore smooth gameplay
can be ensured.

2.1.1 Linear extrapolation

We give an example to illustrate a simple linear extrapolation algorithm. Referring
to Fig. 2, when a client sends an update packet at time t1, it is reported that avatar P
is at (x1, y1) heading at an angle r. Before the next synchronization scheduled at time
t2 occurs, other clients render P ’s movement by linearly extrapolating the position of
P based on P ’s dead-reckoning vector sent at time t1, as follows:

x(t) = x1 + (t − t1) ∗ legal speed of P ∗ sin(r)

y(t) = y1 + (t − t1) ∗ legal speed of P ∗ cos(r)

⎫
⎬

⎭
for t ≥ t1

Dead-reckoning protocol provides a means of loose synchronization among play-
ers. It is especially necessary when a massive number of concurrent players are
interacting with each other. The larger the number of concurrent players the higher
the change of having someone’s update packet congested or lost in the network.
Without dead-reckoning, at the end of each timeframe, all game clients must be
halted and wait for update packets from all other players. This will cause significant
amount of jitter to the graphics rendering and slow down the response to the player’s
control, and therefore implies unpleasant gaming experiences. However, by using
dead-reckoning protocol, late arrived packets or lost packets can simply be ignored.

Multimed Tools Appl (2009) 41:305–331 309

time
t t

(x , y)

(x , y)

(x, y)

t t

500ms 500ms

dead-reckoning vector

r

0

0

1 2

1 1

0

Fig. 2 Extrapolation of (x, y) from the latest dead-reckoning vector

To fill in the missing packets, extrapolation is used to predict the missing game states,
therefore the game clients will never be required to halt at any circumstance.

2.2 Speed-hack

Dead-reckoning protocol is popular because of its advantage listed above, that is,
all players can have a perception of smooth gameplay even though the underlying
communication channel is in fact error-prone, congested and has high delay variance.
However, it hints the potential vulnerability to a form of very popular and highly
available cheat called speed-hack. When using a speed-hack, a cheater can speed
up all movements of his/her avatar and thus gain an unfair advantage over other
honest players.

A speed-hack essentially speeds up the timing of the cheating game client, and this
can be done quite easily, especially under the dead-reckoning protocol. This is due
to the fact that most of the game clients depend on a time source, such as software
programmable timer or system library calls, to count the time elapsed and then
applies it to the Newton’s first law of motion to project the movements of moving
objects in the virtual world. Here, we illustrate how most online games handle player
movement. According to Fig. 3, the avatar is at position p0 at time t0. The player
moves the avatar by clicking the mouse at the point d0 in the virtual world. The
game client then stores this coordinates into memory and initiates the avatar to move
towards this destination. However, before the avatar reaches the destination d0, if the
player issues another mouse click at the point d1 when the avatar is at coordinates p1

at time t1, the game client will initiate a new movement towards d1 from p1. Similarly,
at time t2, when the player issues another mouse click at d2 before the avatar reaches
d1, therefore, the avatar will change its direction at p2 and moves towards d2. At any
time t′ after the player issues a destination point di at time ti, but before the avatar

310 Multimed Tools Appl (2009) 41:305–331

Destination coordinates
clicked by the player

The final path of the
avatar

Turning points of the
avatar when the player
clicks the mouse

d0

d1

d2

p
0

p
1

2
p

Fig. 3 Movement of an avatar in typical massively multiplayer online games

reaches there from pi, the game client will update the avatar’s position as follows.
Let T j be the journey time of an avatar,

T j = journey time

=
√

(xdi − xpi)
2 + (ydi − ypi)

2

legal speed of the avatar

and the computation of the new coordinates will be:

x(t) = xpi + (xdi − xpi)
t − ti

T j

y(t) = ypi + (ydi − ypi)
t − ti

T j

In order to speed up a game client, a speed-hack alters its own time source to
count time faster, or intercepts the genuine time source and injects a malicious one
that counts time faster, i.e. it makes the value of t advances at a faster rate. All local
objects in the hacked game client will therefore move faster in the cheater’s local
view. Under dead-reckoning protocol, the game client simply reports in its update
packet about the coordinates of the cheater’s avatar computed in the cheater’s local
view. Upon receiving the cheater’s update packet, a client will move the cheater’s
avatar to that new position as reported in the update packet. Therefore, all players
will perceive that the cheater’s avatar moves at a faster speed.

Figure 4a and b illustrate the views of two interacting honest players P and Q
respectively. In the figures, P ’s avatar is moving upward while Q’s avatar stays
motionless. P sends two updates at time tn and tn+1 respectively, giving Q the
information to render the two opaque avatars corresponding to P ’s position at time
tn and tn+1 respectively. However, when rendering P ’s position between time tn and
tn+1, where no exact information about P ’s position is available, Q extrapolates it
from the position at time tn to fill in the positions between time tn and tn+1.

Figure 4c and d illustrate the views of two interacting playersP andQ respectively,
where P is using a speed-hack. In the figures, P ’s avatar is moving upward while Q’s
avatar stays motionless. The speed-hack speeds up P ’s game client so that P is able to
move at a faster speed and therefore travels farther at time tn+1 compared to that in

Multimed Tools Appl (2009) 41:305–331 311

(a) P’s own view, P is not cheating (b) Q’s view, P is not cheating

(c) P’s own view, P is cheating (d) Q’s view, P is cheating

Fig. 4 Overlapped successive frames observed by two interacting players P (left) and
Q (right) (a–d). Opaque avatars represent accurate positions given by the dead-reckoning vectors.
Transparent avatars represent positions predicted by extrapolations

Fig. 4a. When synchronization takes place at tn+1, P ’s dead-reckoning vector reports
the same position as what P perceives locally. Therefore Q updates P ’s avatar to
that farther position and therefore perceives P ’s avatar moving at a faster speed
compared to the scenario shown at Fig. 4b.

3 Hack-proof synchronization protocol

In this section, we present a dead-reckoning protocol that is invulnerable to speed-
hacks. The invulnerable protocol completely preserves the latency-hiding charac-
teristic of conventional dead-reckoning protocol. Extrapolations are still allowed to
smooth out the graphics rending under the enhanced protocol.

312 Multimed Tools Appl (2009) 41:305–331

We first describe a baseline countermeasure to act against the speed-hack.
Inspired by this baseline countermeasure, we can then propose a modified dead-
reckoning protocol which is a slightly modified version of the conventional dead-
reckoning protocol. The modified protocol is invulnerable to speed-hack; however,
it cannot handle some synchronization scenarios which are common in real games.
Therefore, we will propose another enhanced version of the invulnerable protocol
which is based on the modified protocol but is more sophisticated and is able to
handle all possible synchronization scenarios.

3.1 Countermeasure

The first countermeasure to act against speed-hack under dead-reckoning protocol
is to verify the new coordinates of the avatar during each synchronization before
accepting them so as to ensure that the avatar has only moved within a legitimate
displacement since the last synchronization.

To verify the new coordinates stated in a dead-reckoning update packet, the
server (or the peers) can use the elapsed time and the avatar’s current legal speed
to compute the maximum possible displacement of the avatar as

dmax = (ti − ti−1) ∗ legal speed

Under this simple approach, a game client can detect if a player is using speed-
hack and hence restrict the movement of an avatar within its maximum possible
displacement in each timeframe. To illustrate, we should have a look at Fig. 5. The
cheater uses a speed-hack so that the avatar’s displacement between each synchro-
nization is larger than its maximum possible displacement dmax in the cheater’s local

(x , y)i-1

Path perceived by other players
limited to d in each timeframe

Path in cheater’s local view

Direction of the path

i-1

(x , y)i i (x , y)i+1 i+1

(x , y)i+2 i+2

d>d max

dmax

max

Fig. 5 Limiting the displacement of any avatar within its maximum possible value in each timeframe

Multimed Tools Appl (2009) 41:305–331 313

view. However, when other clients receive the cheater’s update packet, they will
compute the displacement of the avatar of the last synchronization as

d =
√

(xi − xi−1)2 + (yi − yi−1)2

and conclude that

d > dmax

If d is much greater than dmax in several consecutive timeframes, then obviously
the player is using a speed-hack and the server can consider to kick that cheater out
of the game. However, sometimes a cheater may only speed up a little bit just to gain
an advantage over honest players. A conservative scheme is to accumulate the excess
displacements over an extended period of time. For example, if an avatar moves on
average 10% faster than its legal speed in a period of 10 s, then the player should be
kicked out of the game. To avoid a cheater from gaining enough advantage within
the grace period, such as successfully obtaining an important item because he/she
moves faster than other honest players, we should limit the actual displacement of
an avatar within each timeframe to its maximum value dmax, and this is illustrated
in Fig. 5.

Referring to the figure, it is seen that when the server (or the peers) verifies
that the displacement of a certain avatar is larger than its maximum possible value
dmax, the avatar’s position stated in the update packet will be ignored. Instead,
the recipient will compute a restricted position along the same path but with a
shortened displacement, by linearly extrapolating from the last synchronized position
as follows,

x′
i = xi−1 + (ti − ti−1) ∗ legal speed ∗ sin(r)

= xi−1 + (ti − ti−1) ∗ legal speed ∗ yi − yi−1
√

(xi − xi−1)2 + (yi − yi−1)2

and

y′
i = yi−1 + (ti − ti−1) ∗ legal speed ∗ cos(r)

= yi−1 + (ti − ti−1) ∗ legal speed ∗ xi − xi−1
√

(xi − xi−1)2 + (yi − yi−1)2

3.1.1 Invulnerability

The only possible way for a cheater to spoof other players is by tagging a larger
timestamp ti in the latest update packet, resulting in a larger dmax for the cheater.
However, the exaggeration in ti is limited by the traveling time of the update packet
from the sender to the server (or the peers) which is the network latency. For
example, if a game client sends out an update packet at time ti, and the network
latency between it and the server is 20 ms. The server will receive the update packet
at time ti + 20 ms and the cheating client cannot replace the timestamp with a value
larger than t + 20 ms or otherwise it will be detected and the packet may be treated
as corrupted and simply being ignored. Moreover, when the next synchronization
starts, the corresponding elapsed time will be counted from ti + 20 ms and thus the
exaggeration cannot be accumulated over time.

314 Multimed Tools Appl (2009) 41:305–331

3.1.2 Handling missing packets

An important feature of the dead-reckoning protocol is that it allows packet loss.
Therefore, the above countermeasure should also preserve this important feature.
Assume that there are some missing packets before an update packet arrives with
timestamp t j, we can generalize the maximum displacement dmax used for the
verification as

dmax = (t j − ti) ∗ legal speed,

where ti is the timestamp of the last valid dead-reckoning position received. If the
position is verified to be invalid, the recipient will compute a restricted position by
the generalized equations as follows,

x′
j = xi + (t j − ti) ∗ legal speed ∗ sin(r)

= xi + (t j − ti) ∗ legal speed ∗ y j − yi
√

(x j − xi)2 + (y j − yi)2

and

y′
j = yi + (t j − ti) ∗ legal speed ∗ cos(r)

= yi + (t j − ti) ∗ legal speed ∗ x j − xi
√

(x j − xi)2 + (y j − yi)2

3.2 Modified dead-reckoning protocol

Under the above countermeasure, all dead-reckoning vectors in update packets have
to be verified at first. If a dead-reckoning position is found to be illegal, additional
computation will then be required to adjust the position. In fact, we can modify the
protocol so that we can eliminate any client from sending illegal dead-reckoning
vectors out in the first place.

Instead of computing the maximum possible displacement and verifying the
integrity of the coordinates in each synchronization, we modify the dead-reckoning
protocol so that the position vector will not be transmitted directly. Synchronization
parameters are computed from the position vectors and a recipient can reveal the
position vector from these parameters. The computation of the synchronization
parameters and the reverse computation do not depend on the timing of any single
machine, but only depend on a global clock. We assume the cheater can modify any
binary code or game data, e.g. the OS’s clock speed, the memory data, the incoming
and outgoing packets, etc. We will show that the cheater can only gain very few
advantages under the modified protocol, and the advantages cannot be accumulated
over time.

We assume that the game server and all game clients are synchronized to a global
clock, the Network Time Protocol (NTP) [14] or similar protocols [18] can be used
to achieve this purpose. A client must firstly be synchronized to an appointed NTP
time source before joining a game session. Otherwise, the game server will reject the
connection if the client’s clock differs too much from the server’s. During the game,
the clients and the server are only required to synchronize with the NTP server at a
moderate interval, but their clocks will be incremented locally. The synchronization
is only used to ensure that each clock is always kept within an acceptable amount of

Multimed Tools Appl (2009) 41:305–331 315

deviation. Since the clock of an innocent client normally will not diverge from the
NTP server significantly within several minutes, a synchronization interval of 1 min
is typically sufficient.

Moreover, the invulnerability of our protocol does not depend on the strictly
synchronized clocks. Instead, when a client’s clock diverges too much from the NTP
server, it will generate malicious timestamps in its update packets and the server and
other clients will consider it as cheating. However, if the cheater tries to modify the
packets to pretend generating correct timestamping, only very limited advantages
can be gained under our protocol and the advantages cannot be accumulated
over later updates. Therefore, under our protocol, a synchronized clock is not a
requirement for the invulnerability but is only necessary for a client to manifest its
honesty.

Here we present the details of our modified dead-reckoning protocol. Instead of
providing the current coordinates directly in the update packet, several parameters
are provided such that the recipients can compute the corresponding avatar’s new
coordinates accordingly. Attempts to modify these parameters will not give the
cheater any advantage. The parameters are the tangent of angle r, where r is
the angular coordinates of the current dead-reckoning coordinates with respect to the
previous dead-reckoning coordinates. The parameter r is transmitted in the update
packet in the form of (Ty, Tx) where tan(r) = Ty

Tx
. Therefore, we can simply take

(Ty, Tx) as the offset from the previous dead-reckoning coordinates to the current
dead-reckoning coordinates. Figure 6 shows an example that illustrates the idea. The
avatar is at (xn, yn) at time tn. When synchronization takes place at time tn+1, and the
avatar has moved to (xn+1, yn+1). The angular coordinates of (xn+1, yn+1) with respect
to (xn, yn) is 45◦. The parameter (Ty, Tx) is given by (yn+1 − yn, xn+1 − xn) or (1, 1),
since tan(45◦) = 1

1 . Upon receiving this update packet, the server (or the peers) can

time
t t

(x , y)

(x , y)

n+1n

n+1 n+1

n n

 30
o

Ty

Tx

 45
o

Fig. 6 The parameter (Ty, Tx) and the current direction when synchronization takes place at
time tn+1

316 Multimed Tools Appl (2009) 41:305–331

compute that avatar’s new coordinates from (xn, yn), the timestamp tagged on the
packet and the avatar’s current legal speed, as follows:

cos(r) = xn+1 − xn

legal speed ∗ elapsed time

xn+1 = xn + (legal speed ∗ elapsed time) ∗ cos

(

arctan

(
Ty

Tx

))

and

sin(r) = yn+1 − yn

legal speed ∗ elapsed time

yn+1 = yn + (legal speed ∗ elapsed time) ∗ sin

(

arctan

(
Ty

Tx

))

3.2.1 Invulnerability

Suppose a cheater wants to gain an advantage by maliciously tagging a larger
timestamp on the packet, and he/she intents to produce a farther displacement
from the above computations. The exaggeration in the timestamp is limited by the
traveling time of the update packet from the sender to the server (or the peers)
which is the network latency. Since an over-large timestamp can be detected easily
as all machines are synchronized to the same global clock. Moreover, since at each
update the elapsed time is computed against the timestamp of the previous update,
the exaggerated elapsed time cannot be accumulated over time but will be bounded
within only one single-trip latency in general. We will prove it in Section 3.5.

3.2.2 Extension

If the avatar does not have any movement since the last synchronization, then
(Ty, Tx) = (0, 0) can be used to indicate such a special case. However, this simple
protocol can only express either completely motionless or completely nonstop move-
ment in the whole timeframe. Every movement must start or stop at the beginning
of a timeframe, and then keep moving or motionless until the next timeframe begins.
This may be impractical for real games because it impedes the game’s responsiveness
to player’s control. Hence, in the next section we propose an enhanced version of this
invulnerable protocol which is more sophisticated in handling various situations.

3.2.3 Handling missing packets

The new dead-reckoning protocol still allows late packet arrival. Extrapolation is
used to predict the avatar’s movement until an update packet arrives, just as it is
used in conventional dead-reckoning protocol. However, since the synchronization
parameters in each synchronization is based on the previous synchronized position,
any lost packets must be re-transmitted or otherwise the path of the avatar’s
movement cannot be reconstructed. A simple approach can be used to overcome
this problem. When there is only a single packet being dropped, i.e. a sending client
does not receive any acknowledgment until the next synchronization takes place, the
client may simply re-transmit the last parameters along with the new parameters so
that the recipient can compute the two latest dead-reckoning positions at once.

Multimed Tools Appl (2009) 41:305–331 317

tn

tn+1

packets from tn+1 to tn+4 are dropped

tn+2 tn+3

tn+4
tn+5

tn

tn+5

(xn, yn)

(xn, yn)

Fig. 7 When more than one packet is dropped, the sender includes an extra parameter tack = tn in its
update packet and computes the synchronization parameters at tn+4 based on the latest synchronized
position (xn, yn) at tn

If there is more than one packet being dropped, i.e. the sending client does not
receive any acknowledgment for several consecutive timeframes, re-transmission of
all of the parameters may induce additional loads to the network. In this situation,
the protocol have to allow packets to be dropped permanently. To realize it, the
sender includes an extra parameter tack in its update packet, which is the timestamp
of the latest acknowledged update packet. For example, in Fig. 7, the sending client
does not receive acknowledgments of the synchronizations at tn+1 to tn+3. At tn+4 the
sender computes the synchronization parameters based on the avatar’s position at
tn, so that the recipients can determine the corresponding dead-reckoning position
based on the position synchronized at tn. Therefore, all of the parameters in the
dropped packets can be ignored.

3.3 Enhanced invulnerable protocol

In this section, we enhance the above invulnerable protocol so that it becomes more
sophisticated and can tolerate malicious timestamping.

In each update packet, a game client sends the current timestamp and three
parameters F, R1 and R2 to the server (or the peers) as illustrated in Fig. 8. The solid
arrowed line represents the actual path taken by avatar P ; the two points M(x1, y1)

318 Multimed Tools Appl (2009) 41:305–331

tn tn+1
time

path of the avator travelled
M

R2

R1

avator’s position
when update take place
at time tn

avator’s position
when update take place
at time tn+1

N

O

P

Q
R

S

F =
MS

MS+SR

Fig. 8 The three synchronization parameters R1, R2 and F when synchronization take places at
time tn+1

and R(x2, y2) on the path indicate P ’s coordinates when update packets are sent at
time tn and tn+1 respectively.

To illustrate how to compute the three parameters for the update packet at time
tn+1, we construct a triangle MST as shown in Fig. 9. The line SRT is extended
from the avatar’s velocity vector. The line MT is constructed such that the angle
included with the line SRT equals to 360◦ − R2, where R2 is the current direction
of P ’s movement. Let d be the length of the path MNOPQR taken by P and the
length of the line segment SR be l, we need to find out l such that the total length of
the two line segments MS and SR equals to d.

R2 is the current angular velocity
a, b and c can be computed from (x1, y1), (x2, y2) and R2
d is the total displacement of the avator along the path MNOPQR

S

a

bc

d-l

l

M(x1, y1)

R(x2, y2)

360 - R 2
o

360 - R2
oR1

T
W

Fig. 9 Computation of the three parameters in the hack-proof dead-reckoning protocol

Multimed Tools Appl (2009) 41:305–331 319

The value of l is given by

cos(∠ST M) = ST2 + MT2 − MS2

2(ST)(MT)

cos(360◦ − R2) = (l + a)2 + (b + c)2 − (d − l)2

2(l + a)(b + c)

cos(R2) = (l + a)2 + (b + c)2 − (d − l)2

2(l + a)(b + c)

2(l + a)(b + c) cos(R2) = l2 + 2al + a2 + b 2 + 2bc + c2 − d2 + 2dl − l2

2l(b + c) cos(R2) = 2l(a + d) + (a2 + b 2 + 2bc + c2 − d2)

−2a(b + c) cos(R2)

2l(b + c) cos(R2) − 2l(a + d) = (a2 + b 2 + 2bc + c2 − d2) − 2a(b + c) cos(R2)

2l{(b + c) cos(R2) − (a + d)} = (a2 + b 2 + 2bc + c2 − d2) − 2a(b + c) cos(R2)

l = (a2 + b 2 + 2bc + c2 − d2) − 2a(b + c) cos(R2)

2{(b + c) cos(R2) − (a + d)}

Having l, we can then compute the parameter F by

F = MS
MS + SR

= d − l
d

Finally, we can compute R1 by

MS
sin(∠MT S)

= ST
sin(∠SMT)

d − l
sin(360◦ − R2)

= l + a
sin(R1)

sin(R1) = (l + a) sin(R2)

l − d

Working Example We now use an example to illustrate the computation of the
synchronization parameters and illustrate how a server (or the peers) can compute
the new coordinates and direction from the received synchronization parameters.
Referring to Fig. 10, let P was at M(15, 18) at time tn = 14900 ms. At time tn+1 =
15000 ms P was moved d = 8 units to R(20, 20) and was heading at an angle of 315◦.

320 Multimed Tools Appl (2009) 41:305–331

S

a

bc

d-l

M(15, 18) at t=14900

R(20, 20) at t=15000

45
o

45
oR1

T
W

l

R = 3152
o

N

O

d = MN + NO + OP + PR
 = 8

P

Fig. 10 Working example of the enhanced invulnerable dead-reckoning protocol where the host of
P computes its synchronization parameters

The host ofP computes that R2 = 315◦, c = x2 − x1 = 20 − 15 = 5, b = RW
tan 45◦ = y2 −

y1 = 2, a = b
cos 45◦ = √

8. Therefore, we get

l = (a2 + b 2 + 2bc + c2 − d2) − 2a(b + c) cos(R2)

2{(b + c) cos(R2) − (a + d)}

= (
√

8
2 + 22 + 2 ∗ 2 ∗ 5 + 52 − 82) − 2

√
8(2 + 5) cos(45◦)

2{(2 + 5) cos(45◦) − (
√

8 + 8)}

=
(8 + 4 + 20 + 25 − 64) − 2

√
2(7) 1√

8

2
{
(7) 1√

8
− (

√
8 + 8)

}

= 2.9768589

hence

F = d − l
d

= 8 − 2.9768589

8

= 0.6278926375

and

sin(R1) = (l + a) sin(R2)

l − d
= (2.9768589 + √

8) sin(45◦)
2.9768589 − 8

R1 = 54.8063918◦

On receiving the update packet (timestamp, F, R1, R2), the server (or the peers)
computes the elapsed time between P ’s two latest synchronizations as tn+1 − tn =
15000 − 14900 = 100 ms, and use the legal speed of P , i.e. 0.08 units/ms, to compute

Multimed Tools Appl (2009) 41:305–331 321

that d = 0.08 ∗ 100 = 8 units. To illustrate the computation of P ’s new coordinates,
we construct two triangles as shown in Fig. 11. First, the server computes the
coordinates of S by

S = (15 + MX, 18 + XS)

= (15 + cos R1 ∗ MS, 18 + sin R1 ∗ MS)

= (15 + cos R1 ∗ (d ∗ F), 18 + sin R1 ∗ (d ∗ F))

= (15 + cos 54.8063918 ∗ 8 ∗ 0.6278926375, 18 + sin 54.8063918 ∗ 8 ∗ 0.6278926375)

= (17.8950429, 22.1049571)

and then computes the coordinates of R by

R = (17.8950429 + sin(R2 − 270◦) ∗ SR,

22.1049571 − cos(R2 − 270◦) ∗ SR)

= (17.8950429 + sin(45◦) ∗ d(1 − F),

22.1049571 − cos(45◦) ∗ d(1 − F))

= (17.8950429 + sin(45◦) ∗ 8(1 − 0.6278926375),

22.1049571 − cos(45◦) ∗ 8(1 − 0.6278926375))

= (20, 20)

S

d*F = 8*0.53802

M(15, 18)

R

R = 57.08801191

R = 3152
o

d(1 - F) = 8(1 - 0.53802)45
o

X

Y

Fig. 11 Working example of the hack-proof dead-reckoning protocol where the server determines
P’s coordinates and the direction from P’s synchronization parameters

322 Multimed Tools Appl (2009) 41:305–331

which is the correct new coordinates of P at t = 14900 ms, and the new direction of
P ’s movement can be simply given by R2 = 315◦.

3.3.1 Handling missing packets

The enhanced protocol can handle missing packets in the same way as the modified
dead-reckoning protocol. Readers can refer it to Section 3.2.3.

3.4 Extensions

In this section, we use different scenarios to illustrate some additional issues and how
we can extend the protocol to handle these cases.

Scenario 1 Referring to Fig. 12, suppose player P has moved and stopped occa-
sionally, or has accelerated and decelerated occasionally, between time tn and tn+1

so that the total length of the path P taken is shorter than the maximum possible
displacement if P moves continuously with its legal speed. We re-define the value of
d for a greater generality:

d = legal speed of P ∗ elapsed time

Therefore, when the host of P computes its synchronization parameters and when
the server (or the peers) computes P ’s new coordinates from the synchronization
parameters, they will always have the same value of d and therefore the correct co-
ordinates of P can be determined even if P has stopped or decelerated occasionally
since the last synchronization.

Scenario 2 Suppose player P has not moved since the last synchronization at time
tn and remains stationary until time tn+1, i.e. the final displacement is zero, but the
direction may or may not have changed. In this scenario, the client may simply use
F = 0.5 and R1 = NULL to report the server (or the peers) to render no movement

S

M

R

R1

R 2

time
tn tn+1

avator’s motion path,
not moving at full speed

Fig. 12 Player P has stopped or decelerated occasionally between time tn and tn+1, therefore the
path MR taken by P is shorter than d = MS + SR

Multimed Tools Appl (2009) 41:305–331 323

in this synchronization. Notice that the synchronization parameter R2 is still useful in
this scenario, because P may have changed the direction, i.e. it has local motion since
time tn but without having any global motion. The value of R2 tells other players to
render P turning to the direction given by R2.

3.5 Proof of invulnerability

Theorem Let a cheater be capable of modifying the content of the update packets,
the extra displacement that an avatar P can gain over the whole game session is
bounded by

single-trip latency ∗ legal speed of P .

Proof In Fig. 11, the largest displacement that avatar P can travel between two
successive synchronizations is given by

displacement = MS + SR = d ∗ F + d(1 − F) = d

= legal speed of P ∗ elapsed time.

Therefore, the overall displacement that an avatar can travel over the whole game
session is bounded by

overall displacement

≤ displacement1 + displacement2 + ... + displacementn

= legal speed of P ∗ (elapsed time1 + elapsed time2 + ... + elapsed timen)

= legal speed of P ∗ {(t1 − t0) + (t2 − t1) + ... + (tn − tn−1)}.
Note that the legal speed of an avatar P is authorized on either the server side

(client-server architecture), or on the peers (P2P architecture), its value only changes
when it is granted by the server or agreed by all peers in particular game events.
Therefore, its value cannot be spoofed by the cheater.

The only way to spoof a larger elapsed time is to provide a larger timestamp in
an update packet. However, a large value of timestamp can be detected easily since
all machines are synchronized to the same global clock. Therefore, the exaggeration
on the elapsed time is bounded by a single-trip latency from the sender to the
recipient where

texaggerated ≤ tloyal + single-trip latency,

or else texaggerated will be larger than the system time of the recipient when receiving
this malicious packet. Moreover, this exaggeration cannot be accumulated since

elapsed timen = texaggeratedn − texaggeratedn−1

≤ (tloyaln + single-trip latency) − tloyaln−1

= tloyaln − tloyaln−1.

That is, when the timestamp in the previous update packet is already exaggerated,
the exaggerated timestamp in the current update packet will not be able to produce
an enlarged elapsed time again. By induction, the exaggerated timestamp in any later

324 Multimed Tools Appl (2009) 41:305–331

update packets cannot produce any enlarged elapsed time, too. Therefore, the illegal
overall displacement is bounded by

illegal overall displacement

≤ legal speed of P ∗ {(t1 − t0) + (t2 − t1) + ... + (tn + single-trip latency − tn−1)}
= legal speed of P ∗ (tn + single-trip latency − t0)

= legal speed of P ∗ (tn − t0) + legal speed of P ∗ single-trip latency

= legal displacement + (legal speed of P ∗ single-trip latency)

The extra displacement is legal speed of P ∗ single-trip latency and the theorem
is hence proved. �	

4 Implementation

We have implemented a prototype server and a prototype client to demonstrate
the feasibility of our proposed protocol. The prototype server only acts as a broad-
caster which forwards dead-reckoning packets to all clients. The prototype client
automatically generates random moves continuously and sends out dead-reckoning
parameters at an interval of 1 s. Both client and server are coded with Visual C++
using Windows Socket API. We tested our prototype on Windows XP platforms.

All clients are synchronized to the same NTP time server. In our implementation,
we used the public NTP server available at stdtime.gov.hk. Each client queries the
NTP server at a 30-s interval to ensure that the clocks of all clients are loosely
synchronized throughout the whole game session. However, between successive NTP
updates, a client increments its time with its local system clock.

Rounding error may occur when a sender converts a position vector to dead-
reckoning parameters and when a recipient converts back the parameters to a
position vector. Since at each synchronization, the position vector is computed based
on the previous one, the errors will accumulate over time. To overcome this, a sender
simply runs the same routine used by the recipients with the parameters it sends
out, and adjust the position of its local avatar accordingly. The position of the local
avatar is hence adjusted with an amount equals to the rounding errors emerged
from the computations which is a very small value that will not be noticeable on
the rendered graphics. Using this simple scheme, the accumulation of the rounding
errors is eliminated.

Figures 13 and 14 shows the rendered paths of two connected clients in a duration
of 10 min. The paths are generated by the clients randomly. There is no boundary
on the movements (clients can move freely to any direction at every moment),
and collision test was omitted (clients may overlap together at the same coordi-
nates). These two requirements are necessary for real games, standard boundary
and collision test for conventional dead-reckoning protocol are appropriate for our
new protocol; however, missing these details does not disprove the correctness of
our protocol.

The thicker lines are the actual paths of the 2 avatars on their local machines
respectively. The thinner lines represent the extrapolated paths of non-local avatars.
The extrapolated paths are projected from the dead-reckoning vectors computed

Multimed Tools Appl (2009) 41:305–331 325

Fig. 13 The path of the local avatar P (thicker line) and the path of the non-local avatar Q (thinner
line) rendered on P’s local machine. The circled tails represent the dead-reckoning positions com-
puted from the received synchronization parameters and the dashed lines represent the directions of
the dead-reckoning vectors

from the received synchronization parameters. The dead-reckoning vectors are
illustrated as dashed lines with circled tails. Only some of the dead-reckoning vectors
are displayed on the figures for a clear view of the paths. Figures 15 and 16 zoom
into the last 60 s of Figs. 13 and 14 respectively. We can see that the clients are still
synchronized correctly after 10 min of simulation.

Speed-hacking on a client is achieved with generic over-clocking software together
with a spoofed NTP source. However, doing so produced invalid synchronization
parameters which resulted in invalid computation on the recipients. The recipients
simply discarded all invalid updates and the cheater was regarded as disconnected.

4.1 Network overhead

In conventional dead-reckoning protocol, the exchange of location information
requires four parameters: x-coordinate, y-coordinate, angle, and the timestamp.
Typically, a game divides the whole map into smaller areas called zones. Assuming
a two-bytes integer is used for a single coordinate, a floating point number for the

326 Multimed Tools Appl (2009) 41:305–331

Fig. 14 The path of the local avatar Q (thicker line) and the path of the non-local avatar P (thinner
line) rendered on Q’s local machine. The circled tails represent the dead-reckoning positions com-
puted from the received synchronization parameters and the dashed lines represent the directions of
the dead-reckoning vectors

angle in radian, and a double precision timestamp, the total payload for the location
information is therefore

2 + 2 + 4 + 8 = 16bytes.

In our proposed protocol, the required synchronization parameters F, R1, R2 and
the timestamp requires four double precision numbers implies a total of 32 bytes.
Since 25 frame-per-second or above is enough for a fluent video display, we assume
25 synchronizations per second (in practical 5–10 is usually enough) concurrently
which implies a total overhead of

(32 − 16)25 = 400bps

which is a small value compares to the 40 Kbps average bandwidth requirement for
some commercial multiplayer online games [8]. Therefore, we expect the overhead
of our protocol will not induce significant impact on the network traffic.

Multimed Tools Appl (2009) 41:305–331 327

Fig. 15 The path of the local avatar P (thicker line) and the path of the non-local avatar Q (thinner
line) rendered on P’s local machine which zoomed into the last 60 s

5 Related works

In [4], the authors proposed the use of runtime verification to verify game codes.
This approach mainly targets on cheats that exploit implementation bugs. But this
approach is not applicable to cheats that involve modification of client code loading
into the memory at runtime. Where most speed-hacks fall into the category of
runtime cheats.

PunkBuster [7] is the first client-side cheat prevention system for commercial
online games. HLGuard [20], formerly called CSGuard, is a free server-side anti-
cheat system for a famous commercial FPS game, Half-Life, and many variations
of Half-Life. Besides PunkBuster and HLGuard, there are a few other commercial
anti-cheating software [21]. Basically, they are pattern scanners that scan for known
cheats in the client machine. The anti-cheating software must be kept up-to-date
from time to time since new cheats exist frequently. Cheating still cannot be com-
pletely prevented and these anti-cheating software themselves are also vulnerable
to hacks.

In [2], the authors describe a type of cheat called suppress-correct cheat and
propose a cheat-proof protocol that resists this type of cheat. Suppose a cheater S

328 Multimed Tools Appl (2009) 41:305–331

Fig. 16 The path of the local avatar Q (thicker line) and the path of the non-local avatar P (thinner
line) rendered on Q’s local machine which zoomed into the last 60 s

uses the suppress-correct cheat and S purposefully drops n packets while receiving
n packets from each of other players, other players will be forced to extrapolate the
movement of S for n timeframes but cannot confirm where S really is. S then can
construct the n + 1th packet based on the knowledge of the previous n timeframes
and it provides him with some advantages. To eliminate suppress-correct cheat, the
authors propose a synchronization technique called asynchronous synchronization
(AS). Using AS, each host advances in time asynchronously from the other players
but enters into the lockstep mode when interaction occurs. When entering the
lockstep mode, in every timeframe t each involved player must wait for all packets
from other players before advancing to timeframe t + 1. Because this is a stop-and-
wait protocol, extrapolation cannot be used to smooth out any delay caused by the
network latency.

In [12], the authors improve the performance of the lockstep protocol by adding
pipelines. Extrapolation is still not allowed under the pipelined lockstep protocol.
Therefore, if there is an increased network latency and packets are delayed, the game
will be stalled.

Multimed Tools Appl (2009) 41:305–331 329

In [10], the authors propose a sliding pipeline protocol that dynamically adjusts
the pipeline depth to reflect current network conditions. The authors also introduce a
send buffer to hold the commands generated while the size of the pipeline is adjusted.
The sliding pipeline protocol allows extrapolation to smooth out jitters.

Although these protocols are designed to defend against the suppress-correct
cheat, it can also prevent speed-hacks when entering into the lock-step mode because
players are forced to synchronize within a bounded amount of timeframes. However,
speed-hack can still be effective when lock-step mode is not activated. And since
these protocols do not allow packets to be dropped, any lost packet must be re-
transmitted until they are finally sent and acknowledged. Therefore, the minimum
timeframe of the game cannot be shorter than the maximum latency of the player
with the slowest connection and all clients must run the game at a speed that even
the slowest client can support. Furthermore, any sudden increase in the latency will
cause jitters to all players.

Our protocol does not incur any lock-step requirement to game clients while
the advantage of loose synchronization in conventional dead-reckoning protocol is
completely preserved. Thus, smooth gameplay can be ensured. As we have proved in
Section 3.5, a cheater can only cheat by generating malicious timestamps and it can
be detected easily and immediately. Therefore, the speed-hack invulnerability of our
protocol will be enforced throughout the whole game session so that any action of
cheating can be detected immediately.

Moreover, the AS protocol requires a game client to enter the lock-step mode
when interaction occurs which requires a major modification of the client code to
realize it. However, existing games can be modified easily to adapt our proposed
protocol. One can simply add a plugin routine to convert a dead-reckoning vector
to the synchronization parameters before sending out the update packets, and add
another plugin routine to convert back the synchronization parameters to a dead-
reckoning vector on receiving the packets.

The NEO protocol [13] is based on [2], the authors describe five forms of cheating
and claim that the NEO protocol can prevent these cheating.

In [17], the authors show that for the five forms of cheating [13] designed to
prevent, it prevents only three. They propose another Secure Event Agreement
(SEA) protocol that prevents all five forms of cheating which the performance is
at worst equal to NEO and in some cases better.

In [19], the authors show that both NEO and SEA suffer from the undo cheat.
Let PH denote an honest player and PC denote a cheater, and MH , KH and MC,
KC represent the message and its key from PH and PC respectively. The cheater PC

performs the undo cheat as follows: both players send their encrypted game moves
(MH and MC) normally in the commit phase. Then, PH sends key KH in the reveal
phase. However, PC delays KC until KH is received and MH is revealed. If PC find
that MC is poor against MH , PC will purposely drop KC and therefore undoing the
move MC. The authors then propose another anti-cheat scheme for P2P games called
RACS which relies on the existence of a trusted referee. The referee is responsible for
T1 - receiving player updates, T2 - simulating game play, T3 - validating and resolving
conflicts in the simulation, T4 - disseminating updates to clients and T5 - storing the
current game state.

The referee used in RACS works very likely to a traditional game server in
conventional client-server architecture. The security of RACS completely depends

330 Multimed Tools Appl (2009) 41:305–331

on the referee. For example, speed-hack can be prevented with validating every
state updates by the referee. Although RACS is more scalable than client-server
architecture, it suffers from the same problem that the involvement of a trusted third
party is required.

6 Conclusion

In this paper, we presented a synchronization protocol for multi-player online games
that support dead-reckoning. Meanwhile, it is invulnerable to a very common type
of cheat called speed-hack. The general idea is that the server or peer players
can use the legal speed of an avatar to compute its position from a set of update
parameters. This eliminates the need to state the avatar’s position directly in the
update packets. Even if the cheater is able to modify the data in the update packets,
the cheater cannot spoof other players to render a faster moving avatar because the
displacement an avatar can travel is now bounded by the legal speed of the player
that is authorized by the server (in client-server architecture) or among all peers
(in P2P architecture). We have used various examples to illustrate our protocol and
proved the security feature of our proposal. We have carried out simulations to
demonstrate the feasibility of our protocol.

References

1. Banavar H, Aggarwal S, Khandelwal A (2004) Accuracy in dead-reckoning based distributed
multi-player games. In: Proceedings of NetGames 2004, Portland, August 2004, pp 161–165

2. Baughman NE, Levine BN (2001) Cheat-proof playout for centralized and distributed online
games. In: Proceedings of IEEE INFOCOM. IEEE, Piscataway, pp 104–113

3. Counter Hack (2007) Types of Hacks. http://wiki.counter-hack.net/CategoryGeneralInfo
4. DeLap M et al (2004) Is runtime verification applicable to cheat detection. In: Proceedings of

NetGames 2004, Portland, August 2004, pp 134–138
5. Diot C, Gautier L (1999) A distributed architecture for multiplayer interactive applications on

the internet. In: IEEE Networks magazine, Jul–Aug 1999
6. Diot C, Gautier L, Kurose J (1999) End-to-end transmission control mechanisms for multiparty

interactive applications on the internet. In: Proceedings of IEEE INFOCOM, IEEE, Piscataway
7. Even Balance (2007) Official PunkBuster website. http://www.evenbalance.com
8. Feng WC, Feng WC, Chang F, Walpole J (2005) A traffic characterization of popular online

games. IEEE/ACM Trans Netw 13(3):488–500
9. Gautier L, Diot C (1998) Design and evaluation of mimaze, a multiplayer game on the Internet.

In: Proceedings of IEEE Multimedia (ICMCS’98). IEEE, Piscataway
10. Jamin S, Cronin E, Filstrup B (2003) Cheat-proofing dead reckoned multiplayer games (extended

abstract). In: Proc. of 2nd international conference on application and development of computer
games, Hong Kong, 6–7 January 2003

11. Lee FW, Li L, Lau R (2006) A trajectory-preserving synchronization method for collaborative vi-
sualization. IEEE Trans Vis Comput Graph 12:989–996 (special issue on IEEE Visualization’06)

12. Lenker S, Lee H, Kozlowski E, Jamin S (2002) Synchronization and cheat-proofing proto-
col for real-time multiplayer games. In: International Worshop on Entertainment Computing,
Makuhari, May 2002

13. Lo V, GauthierDickey C, Zappala D, Marr J (2004) Low latency and cheatproof event ordering
for peer-to-peer games. In: ACM NOSSDAV’04, Kinsale, June 2004

14. Mills DL (1992) Network time protocol (version 3) specification, implmentation and analysis. In:
RFC-1305, March 1992

15. MPC Forums (2007) Multi-Player Cheats. http://www.mpcforum.com
16. Pantel L, Wolf L (2002) On the impact of delay on real-time multiplayer games. In: ACM

NOSSDAV’02, Miami Beach, May 2002

http://wiki.counter-hack.net/CategoryGeneralInfo
http://www.evenbalance.com
http://www.mpcforum.com

Multimed Tools Appl (2009) 41:305–331 331

17. Schachte P, Corman AB, Douglas S, Teague V (2006) A secure event agreement (sea) protocol
for peer-to-peer games. In: Proceedings of ARES’06, Vienna, 20–22 April 2006, pp 34–41

18. Simpson ZB (2008) A stream based time synchronization technique for networked computer
games. http://www.mine-control.com/zack/timesync/timesync.html

19. Soh S, Webb S, Lau W (2007) Racs: a referee anti-cheat scheme for p2p gaming. In: Proceedings
of NOSSDAV’07, Urbana-Champaign, 4–5 June 2007, pp 34–42

20. The Z Project (2007) Official HLGuard website. http://www.thezproject.org
21. Wikipedia (2007) Category: Anti-cheat software. http://en.wikipedia.org/wiki/Category:Anti-

cheat_software

Yeung Siu Fung is a Ph.D. candidate at the Chinese University of Hong Kong. He received his
B.Eng. and M.Phil. degree in the Computer Science and Engineering Department from the Chinese
University of Hong Kong. His research are in multimedia technologies, particularly network security
and transport protocols. His personal interests include sports and Christian music.

John C. S. Lui received his Ph.D. in Computer Science from UCLA. After his graduation, he
joined the IBM Almaden Research Laboratory/San Jose Laboratory and participated in various
research and development projects on file systems and parallel I/O architectures. He later joined
the Department of Computer Science and Engineering at the Chinese University of Hong Kong.
His research interests encompass both systems and theory. His current research interests include
theoretic/applied topics in data networks, distributed multimedia systems, network security, OS
design issues, mathematical optimization and performance evaluation. John received the CUHK
Vice-Chancellor’s Exemplary Teaching Award in 2001. He is an Associate Editor of the Performance
Evaluation Journal, a member of the ACM, a senior member of the IEEE and an elected member
of the IFIP WG 7.3. His personal interests include films and general reading.

http://www.mine-control.com/zack/timesync/timesync.html
http://www.thezproject.org
http://en.wikipedia.org/wiki/Category:Anti-cheat_software
http://en.wikipedia.org/wiki/Category:Anti-cheat_software

	Hack-proof synchronization protocol for multi-player online games
	Abstract
	Introduction
	Backgrounds
	Dead-reckoning
	Linear extrapolation

	Speed-hack

	Hack-proof synchronization protocol
	Countermeasure
	Invulnerability
	Handling missing packets

	Modified dead-reckoning protocol
	Invulnerability
	Extension
	Handling missing packets

	Enhanced invulnerable protocol
	Handling missing packets

	Extensions
	Proof of invulnerability

	Implementation
	Network overhead

	Related works
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

