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Abstract

Under the current Internet infrastructure, quality of service (QoS) in the delivery of continuous media (CM) is
still relatively poor and inconsistent. In this paper we consider providing QoS through the exploitation of multiple
paths existing in the network. Previous work has illustrated the advantages of this approach. Here we extend this
work by considering a more expressive model for characterizing the network path losses. In particular, we propose
a variation on the Gilbert model wherein the loss characteristics of a path depend on an application’s transmission
bandwidth. Using this model, we show the benefits of multi-path streaming over best single-path streaming, under
optimal load distribution among the multiple paths. We use extensive simulation and measurements from a system
prototype to quantify the performance benefits of our techniques.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Under the current Internet infrastructure, quality of service (QoS) in delivery of continuous media (CM)
is still relatively poor and inconsistent. Degradation in quality of CM applications, involving delivery
of video and audio, is partly due to variations in delays and losses experienced by packets sent through
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wide-area networks. Although many such applications can tolerate some degree of missing information,
significant losses degrade an application’s QoS. One approach to providing QoS for CM applications over
the Internet is to use the IntServ model for signaling (e.g., RSVP) and resource reservation in all routers
along the streaming path. However, this approach suffers from scalability and deployment problems. In
contrast, in this work we consider a more deployable approach to providing QoS guarantees through
the exploitation ofmultiple paths existing in the network between a set of senders and a receiver, i.e.,
the CM data is fragmented into packets and the different packets take alternate routes to the receiver.1

Previous work (discussed below) illustrated advantages of this approach in pushing the complexity of
QoS provision to the network edge and hence improving the scalability and deployment characteristics
while at the same time providing a certain QoS level.

As stated in[9] a number of issues need to be considered in designing a multi-path streaming system,
but we limit the scope of this paper by focusing on (a) delivery ofpre-stored video, e.g., as in video-on-
demand applications (in contrast to delivery of “live” data2 as in video-conferencing applications), (b)
application-level schemes (which are deployable today over the current Internet), (c) accomplishment of
multiple paths to the same receiver bydistributing servers across wide-area networks and streaming data
from multiple senders simultaneously, and (d) network related streaming issuesonly (rather than, e.g.,
considering server-related problems such as server load balancing), i.e., for the purposes of this paper we
assume that the data is fully replicated at all servers and hence any server can deliver any fraction of the
CM data.

In this paper, we consider a system where serveri sends fractionαi of the data expected by the receiver,
where 0≤ αi ≤ 1 and

∑
i αi = 1. The receiver assembles the data from multiple senders and plays it in

the appropriate order. Note that the multi-path approach we consider here injects thesame total amount
of data as the single path approach, when no error erasure codes are used. For example, if an application’s
bandwidth requirement is 1.5 Mbps, then either approach will inject traffic into the network at the total
rate of 1.5 Mbps—the difference is that a single path approach injects traffic at that rate from a single
server over a single path and a multi-path approach does it from multiple servers over multiple paths,
where each path carries a fraction of that traffic. When error erasure codes are used, the total amount
of data that the multi-path approach will inject into the network may be less than or equal to that of the
single path approach and yet achieve the same or higher viewing quality, as illustrated in the remainder
of the paper.

Multi-path streaming and exploitation of path diversity has attracted much attention recently, and[3]
provides a broad overview of the general area. Due to lack of space, here we give only a brief survey of
existing work on this topic focusing on those works which consider loss characteristics, or can be deployed
over best-effort networks, or do not rely on specific coding techniques, as these are considerations in our
work as well.

The work in[15] proposes the use of multi-servers for streaming on the Internet; this is later extended
to include the use of erasure codes (EC)[14]. The focus is on designing a receiver-driven transport
protocol which includes a rate allocation algorithm and a packet partitioning algorithm. The case of a
last mile bottleneck is examined in[13]. In these proposals, a (what we call below) conventional Gilbert

1 Such paths do not have to be completely disjoint; it is sufficient for them to have disjoint points of congestion, which can be
detected, e.g., as in[17].

2 For “live” data, it may be necessary to use a collection of relay hosts or proxies to “force” paths different from those provided
by the network.
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model is adopted (refer to Section2) while a more expressive model is used in our work. In addition to
focusing on the loss rate, we also propose an optimization approach using other loss characteristics, e.g.,
lag-1 autocorrelation. The use path diversity (as well erasure codes) on an overlay network as a way of
emulating multiple sources is examined in[16]. Our approach can also be implemented on an overlay
structure as well as with the aid of relay nodes, e.g., a P2P prototype implementation of our approach is
described in[2].

Other works try to achieve multi-path streaming with the assistance from the lower layers, e.g.,[8]
utilizes bandwidth on multiple paths and re-distributes workload according to congestion detected by a
receiver. But, it requires network layer knowledge and a centralized routing server. Given information
about the underlying network graph,[6] proposes multi-path routing heuristics for unicast and multicast
scenarios and a data scheduling algorithm at the server. Similarly, given network link information,
[4] discusses a heuristic for finding a set of paths that minimizes the streaming distortion for a
Multiple Description coded stream. These works assume significant knowledge (i.e., link bandwidth
and delay) and support (i.e., ability to control routing paths) from the underlying network. In contrast,
our approach only deals with end-hosts and hence allows easy deployment on the Internet. Our only
requirement is that chosen paths do not share points of congestion, which can be detected at the end-hosts
using schemes such as[17]. Also, we focus on packet loss characteristics rather than bandwidth and
delay.

This paper extends the work presented in[9] where we illustrate the potential benefits of using multi-
path streaming to improve the quality of the delivered CM as compared to single path streaming. This
is done by illustrating lower loss burst lengths and lower correlations in consecutive packet losses. In
particular, the loss characteristics on a network path are characterized by the Gilbert model (refer to
Section2)—here loss rates experienced at the receiver are independent of the sending rate on a path. We
later [1] study the load distribution problem in multi-path streaming and show that both the packet loss
rate and the loss correlations are important when choosing an optimization objective. However, these
works are performed under the assumption that the application’s sending rate does not affect the loss rate
on a path. In contrast, in this work, we illustrate the utility of considering an application’s sending rate
and the resulting effects on the loss characteristics of the streaming application. Specifically, we consider
a more general loss model than in[9] which takes into consideration effects of the data streaming rate on
the loss characteristics of a path. We refer to this model as thefunctional Gilbert model (FGM); we refer
to the original Gilbert model used in[9] as a conventional Gilbert model, which is a special case of the
FGM. The motivation for considering the FGM is that it is potentially a more realistic representation of
a network path’s loss characteristics (as motivated further in Section2).

In this paper, we use the FGM to address the following main questions: (a) what is an optimal splitting
of traffic among the multiple paths, and (b) what resulting benefits can be expected. We also consider
what gains can be expected when we employ erasure codes to further improve QoS. In considering these
questions, throughout the paper (as in[9]) we use the following performance metrics: mean loss rate,
lag-1 autocorrelation of consecutive losses, and burst length distribution of lost packets. (The importance
of the latter two metrics in the resulting visual quality of CM is, e.g., described in[10].) We show
that the conventional Gilbert model may not be sufficient to represent the loss characteristics of long
duration streaming applications. We also present a methodology for optimizing load distribution (i.e.,
traffic splitting) among paths in the context of multi-path streaming. Our results illustrate the benefits of
multi-path streaming over single-path streaming, under optimal splitting of traffic among the multiple
paths.
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2. Background and introduction of the functional Gilbert model

Previous works, e.g.,[5], use a stationary continuous time Gilbert model (GM) to characterize potential
correlations between consecutive packet losses on a network path. For a GM, the packet loss process along
pathk is described by a two state continuous time Markov chain{Xk(t)} whereXk(t) ∈ {0, 1}. If a packet is
transmitted at timet when the state of pathk isXk(t) = 0, then the transmitted packet is received correctly
by the receiver; the transmitted packet is considered lost ifXk(t) = 1. Let µ0(k) be the transition rate
from state 0 to 1 andµ1(k) be the transition rate from state 1 to 0. The stationary distribution of this GM
is π(k) = [π0(k), π1(k)] whereπ0(k) = µ1(k)/(µ0(k) + µ1(k)) andπ1(k) = µ0(k)/(µ0(k) + µ1(k)). Let
p

(k)
i,j (τ) be the probability that pathk is in statej at timet + τ, given that it was in statei at timet, i.e.,

p
(k)
i,j (τ) = P(Xk(t + τ) = j|Xk(t) = i). Then,p(k)

i,j (τ) can be computed for allτ > 0 from previous work
(refer, e.g., to[9]).

Using a GM to characterize the loss process of a path,[9] studies and compares the performance of
streaming pre-stored CM data under single path and multi-path settings. In particular, the performance
metrics considered are as follows. Firstly,loss rate,Pn, is the fraction of lost packets as seen by the receiver
when one usesn ≥ 1 paths for CM streaming. Secondly,lag-1 autocorrelation function, R[XtXt+δ],
measures the degree of dependency of consecutive packet losses as seen by the receiver, whereXt is a
random variable indicating whether the packet sent at timet is lost or received properly (depending on
the state of the GM) and 1/δ is the bandwidth requirement (in units of packets/second) of the streaming
application.3 Thirdly, burst length of lost packets is the probability mass function of consecutively lost
packets as seen by the receiver. Note that if the lost packets burst length is large, it can (a) significantly
affect the viewing quality of the CM object and (b) reduce the effectiveness of an error correction scheme,
if some form of an erasure code is deployed. Moreover,[9] illustrates that improvements in these metrics
can be obtained by employing a multi-path streaming technique. However, these results were shown under
the Gilbert model defined above and referred to as a “conventional Gilbert model” in the remainder of
the paper. One major limitation of using a conventional Gilbert model is that the loss process of a path is
independent of the bandwidth requirements of the streaming application.

To illustrate the potential dependence of the loss rate on an application’s bandwidth requirements,
we carried out the following Internet experiment. We transmitted 1400 byte UDP packets from Hong
Kong to the West Coast of the USA, using a number of rates from 120 pkts/s (around 1.34 Mbps) to
1200 pkts/s (around 12.8 Mbps), with a step size of 120 pkts/s interval. For each sending rate, the streaming
experiment is carried out for 6 min, while measuring the corresponding achieved loss rate at the receiver.
The experiment is carried out during daytime in Hong Kong, which corresponds to nighttime on the West
Coast of the USA.Fig. 1 illustrates the achieved loss rate for each experimental setting, which is the
fraction of lost packets as measured at the receiver.4 Fig. 1supports our hypothesis that the conventional
Gilbert model may not be sufficient for characterizing the loss process of a path. Since this evidence
suggests that an application’s sending rate can significantly affect the achieved loss rate, we propose to
use afunctional Gilbert model (FGM) as a general approach to characterizing the bursty loss nature of a
path as well as its dependency on an application’s bandwidth requirements.

3 A high positive value ofR[XtXt+δ] implies that a lost packet is very likely to be followed by another lost packet. A high
negative value ofR[XtXt+δ] implies that a lost packet is likely to be followed by a successful packet arrival. If the statistics of
the consecutive packet losses are not correlated, thenR[XtXt+δ] = 0.

4 Similar experiments using NS2[11] gave qualitatively similar results.
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Fig. 1. Loss rate vs. sending rate.

Fig. 2. Functional Gilbert model.

Let λ denote an application’s average sending rate, in units of packets/second. For a stationary contin-
uous time FGM, the packet loss process along pathk is described by a two state continuous time Markov
chain{Xk(t)} whereXk(t) ∈ {0, 1}. Fig. 2 depicts the state transition diagram of this model. Similarly
to the conventional Gilbert model’s definition, if a packet is transmitted at timet when the state of path
k is Xk(t) = 0, then no packet loss occurs; the transmitted packet is considered lost ifXk(t) = 1. The
transition rate5 from state 0 to 1 takes afunctional form of Fk(λ). The transition rate from state 1 to 0
also takes afunctional form of Bk(λ). In this paper, we assume thatFk(λ) andBk(λ) are continuous and
furthermore thatFk(λ) is anon-decreasing function ofλ andBk(λ) is anon-increasing function ofλ. We
note that intuitively these assumptions make sense, and hence, in practice, they should not be restrictive.
When multiple paths have the same functions in the FGMs (i.e.,Fi(λ) = Fj(λ) andBi(λ) = Bj(λ), for
all i, j ≤ M whereM is the number of paths in the system), we say that they arehomogeneous paths;
otherwise they areheterogeneous paths. When one uses an FGM to characterize the loss process of a
path, we have the following result.

Theorem 1. Let there be M ≥ 1 homogeneous paths available for CM streaming. Define α =
[α1, α2, . . . , αM ] as the vector which determines how the traffic is split among these M paths, where

5 In what follows, we drop the path designation from the notation whenever it is clear from context, e.g., when paths are
homogeneous.
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αi ≥ 0 and
∑M

i αi = 1.The achieved loss rate via the multi-path streaming approach (PM) is less than or
equal to the achieved loss rate via the single path streaming approach (P1), for all possible valid traffic
splitting vectors α.

Proof. LetPM be the achieved loss rate for the multi-path streaming approach, with all paths beinghomo-
geneous, i.e.,PM = ∑M

j=1 αjF(αjλ)/(F(αjλ) + B(αjλ)). Since paths are homogeneous, the achieved loss
rate under single path streaming isP1 = F(λ)/(F(λ) + B(λ)). Let pathk∗ be the path that has the largest
loss rate, that is,F(αk∗λ)/(F(αk∗λ) + B(αk∗λ)) ≥ F(αjλ)/(F(αjλ) + B(αjλ)) for all j ∈ {1, . . . , M}.
Then we havePM ≤ ∑M

j=1 αjF(αk∗λ)/(F(αk∗λ) + B(αk∗λ)) = F(αk∗λ)/(F(αk∗λ) + B(αk∗λ)) = P∗
M.

Note thatP∗
M − P1 ≤ 0 implies thatPM − P1 ≤ 0. SinceP∗

M − P1 = F(αk∗λ)/(F(αk∗λ) + B(αk∗λ)) −
F(λ)/(F(λ) + B(λ)), we need to show thatF(αk∗λ)(F(λ) + B(λ)) − F(λ)(F(αk∗λ) + B(αk∗λ)) ≤ 0, to
prove thatP∗

M − P1 ≤ 0 and hencePM − P1 ≤ 0. Expanding the terms gives

F(αk∗λ)F(λ) + F(αk∗λ)B(λ) − F(λ)F(αk∗λ) − F(λ)B(αk∗λ)

= F(αk∗λ)B(λ) − F(λ)B(αk∗λ) ≤ F(αk∗λ)B(αk∗λ) − F(λ)B(αk∗λ)

= B(αk∗λ)[F(αk∗λ) − F(λ)] ≤ 0. �

Remark. This theorem implies that under the homogeneous path assumption,any valid traffic splitting
in a multi-path streaming approach will do no worse than single path streaming in terms of the packet
loss rate metric. An interesting question to ask is what is theright metric to optimize in determining the
traffic split among theM paths. We consider this and the resulting performance effects below.

3. Optimal traffic splitting

In this section, we present a framework for determining appropriate traffic splitting between the multiple
paths used for CM streaming. We use the achieved loss rate and lag-1 autocorrelation (as described in
Section2) as our objective functions. Although, we consider a single performance metric at a time in
this optimization process,6 in Section4 we illustrate the effects of this optimization process on the other
performance metrics.

3.1. Optimization based on achieved loss rate

We first consider the minimization of the loss rate,PM , achieved at the receiver as our objective. For
pathj, letFj(b) denote the functional transition rate from state 0 to 1 when the streaming traffic on pathj is
b pkts/s. Similarly,Bj(b) denotes the functional transition rate from state 1 to 0 when the streaming traffic
on pathj is b pkts/s. Let us first consider a simple case wherein there are two paths available for CM
streaming. We defineFj(αjλ) = Fj(αjλ)/(Fj(αjλ) + Bj(αjλ)), for j = 1, 2 and express the achieved
loss rate asP2 = α1F1(α1λ) + (1 − α1)F2((1 − α1)λ). We can then state the following theorem for a
2-paths homogeneous system.

6 If multiple (equivalent) optimum solutions exist, secondary performance metrics can be used to “break the tie”, e.g., as
described in Section3.2.
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Theorem 2. Under a 2-paths system, if the two paths are homogeneous, and Fj(αjλ) is a convex non-
decreasing function (j = 1, 2), then the traffic splitting vector αeven= [ 1

2,
1
2] is optimal, i.e., it achieves

the lowest loss rate.

Proof. Assume there exists anα′ = [α1, α2], which results in the lowest loss rate andα1 �= α2. Letα1 < 1
2

andα2 > 1
2. As paths are homogeneous, the achieved loss rate isP2(α′) = α1F (α1λ) + α2F (α2λ). Given

thatF (αjλ) is a non-decreasing function, as well asα1 < 1
2 andα2 > 1

2, we haveP2(α′) ≥ 1/2F (α1λ) +
1/2F (α2λ). Due to the property of convex functions andα1 + α2 = 1, P2(α′) ≥ F ( 1

2(α1λ + α2λ)) =
F ( 1

2λ). It is easy to show thatF ( 1
2λ) = P2(αeven), which is the achieved loss rate corresponding toαeven.

Thus, we haveP2(α′) ≥ P2(αeven). This implies that in a 2-pathshomogeneous streaming system where
F (αjλ) is a convex non-decreasing function, the traffic splitting vectorα = [ 1

2,
1
2] is optimal, i.e., it

achieves the lowest loss rate.�
To illustrate the performance gains due to multi-path streaming, we consider afamily of functional

transition rates. In particular, we consider the FGM for pathj, for j = 1, . . . , M, to have the form of

Fj(b) = βjb
θj + Sj, Bj(b) = κj

bχj
+ ϕj (1)

whereβj, κj, χj ≥ 0, andθj, Sj, ϕj > 0.7 In other words,Fj is a non-decreasing function whileBj is an
non-increasing function of the traffic bandwidthb. These forms can represent a large family of Gilbert
models. For example, for a conventional Gilbert model, a constant transition rate from state 0 to 1 can
be represented by settingSj > 0, βj = 0, andθj = 0, and a constant transition rate from state 1 to 0 can
be represented by settingκj = 0 andϕj > 0. A linearly increasing function ofFj(b) can be represented
by settingβj > 0 andθj = 1. A functionBj(b) which decreases as an inverse of the packet rate can be
represented by settingκj > 0 andχj = 1.

Consider now an application with an average bandwidth requirement of 120 pkts/s (e.g., a representative
1.28 Mbps MPEG 1 video stream with 1400 byte packets). We first consider a system with homogeneous
paths having the following simple functions for the FGM:F(b) = 0.2333× b andB(b) = 24750/b, as an
illustration. One motivation for choosing simple forms for illustration is that they will be easier to extract
from measurements in a real system.Fig. 3 depicts the loss rates for a system under two homogeneous
paths as a function ofα1 (the correspondingα2 is 1− α1). Fig. 4illustrates the contour map of loss rates
for three homogeneous paths (with the same parameters as the 2-paths system) at various values ofα.
Under this homogeneous paths example, the loss rate using single path streaming is 11.953%. Under the
2-paths streaming approach, the achieved loss rate is reduced to 3.283%, withα∗ = [0.5, 0.5], and the
corresponding lag-1 autocorrelation is 0. The 3-paths system reduces the loss rate further to 1.486%, with
α∗ = [1/3, 1/3, 1/3].

Now let us consider an example with the same bandwidth requirement of 120 pkts/s but under a
heterogeneous paths setting. We first consider a system with two heterogeneous paths whereinF1(b) =
0.4 × b,B1(b) = 21000/b,F2(b) = 0.0667× b, andB2(b) = 28500/b, as an illustration. Note that given
the same packet rate on a path, path 2 has better loss characteristics than path 1.Fig. 5depicts the loss rate
as a function ofα1 (with α2 = 1 − α1). Fig. 6depicts the contour map of loss rates at various values ofα

when path 3 is added withF3(b) = 0.2333× b andB3(b) = 24750/b (i.e., path 3 has loss characteristics

7 We also tried other forms, e.g.,Fj(b) = βj(b/σj)θj + Sj, Bj(b) = κje
−χjb + ϕj. The results are similar to those presented in

this paper.
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Fig. 3. Loss rate with two homogeneous paths.

in between paths 1 and 2). Under thebest single path streaming approach (i.e., path 2 in this case),
one can achieve a loss rate of 3.259%. Using 2-paths streaming, we reduce the loss rate to 1.814%, with
α∗ = [0.260, 0.740], and the corresponding lag-1 autocorrelation is 0.012. We reduce the loss rate further
via 3-paths streaming to 0.976%, withα∗ = [0.190, 0.541, 0.269]. This example illustrates that the traffic
splitting flexibility of the multi-path approach provides us an opportunity to reduce the mean loss rate
of a streaming application to a point which would not be possible with a singlebest-path type approach.
Note that the additional path which was not present in the 2-paths example isnot the best of the three, yet

Fig. 4. Contour map of loss rate with three homogeneous paths.
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Fig. 5. Loss rate with two heterogeneous paths.

it allows us to reduce the loss rate further. The above given examples illustrate the benefits of multi-path
streaming when optimizing the achieved loss rate. We explore this in more detail in Section4.

3.2. Optimization based on lag-1 autocorrelation

As explained in Section2, metrics other than the loss rate can have a significant effect on the viewing
quality of CM, e.g., the lag-1 autocorrelation. Hence, we now consider the problem of finding an ap-
propriate traffic splitting when one wants to optimize the achieved lag-1 autocorrelation function,RM ,

Fig. 6. Contour map of loss rate with three heterogeneous paths.
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rather than the loss rate,PM . As stated earlier, the lag-1 autocorrelation function,R[XtXt+δ], measures
the degree of dependency of consecutive packet losses as seen by the receiver, whereXt is a random
variable indicating whether the packet sent at timet is lost or received properly (depending on the state
of the FGM). It can be derived as

R[XtXt+δ] = E[(Xt − X̄)(Xt+δ − X̄)]

E[(Xt − X̄)2]
= E[XtXt+δ] − X̄2

E[X2
t ] − X̄2 = E[XtXt+δ] − X̄2

X̄− X̄2

= 1 − X̄− E[XtXt+δ]

X̄− X̄2 ≈ 1 − Pr[burst]

X̄(1 − X̄)
(2)

where Pr[burst] is the probability of there being an error burst of any length.8 For instance, assuming
equally spaced inter-arrival times on a path, we have the following forM = 2:

Pr[burst]=




[α2 − α1]π0(2)p(2)
0,1(δ2) + α1π0(1)π1(2) + α1π0(2)π1(1) α1 < α2

1
2π0(1)π1(2) + 1

2π0(2)π1(1) α1 = α2 = 1
2

[α1 − α2]π0(1)p(1)
0,1(δ1) + α2π0(1)π1(2) + α2π0(2)π1(1) α1 > α2

and

R[XtXt+δ] =




1 − [α2 − α1]π0(2)p(2)
0,1(δ2) + α1π0(1)π1(2) + α1π0(2)π1(1)

[α1π0(1) + α2π0(2)][α1π1(1) + α2π1(2)]
α1 < α2

1 − π0(1)π1(2) + π0(2)π1(1)
1
2[π1(1) + π1(2)][π0(1) + π0(2)]

α1 = α2 = 1

2

1 − [α1 − α2]π0(1)p(1)
0,1(δ1) + α2π0(1)π1(2) + α2π0(2)π1(1)

[α1π0(1) + α2π0(2)][α1π1(1) + α2π1(2)]
α1 > α2

(3)

whereδk denotes the time interval between two consecutively transmitted packets on pathk (i.e.,δk = 1
αkλ

).

Note thatπ0(k), π1(k) andp
(k)
i,j are obtained from the FGM. (A detailed derivation is given in[7]; we omit

it here due to lack of space.)
We now define an optimal traffic split as a split which minimizes the absolute value of the lag-1

autocorrelation function. The intuition here is that we aim to reduce correlations between packet losses,
as explained in Section2. Therefore, to find an optimal traffic split,α∗ = [α∗

1, 1 − α∗
1], we equate the

numerator in Eq.(3) to 0. This equation can be solved using standard numerical methods for finding
roots. If more than one solution forα1 satisfies this equation, then we can use a secondary objective. For
instance, we can check the corresponding loss rates and choose the one with the lowest loss rate. Note
that, when the two paths are homogeneous (i.e.,F1( ) = F2( ) in this case), then equal splitting of traffic
along these two paths (i.e,α1 = α2 = 1/2) is a critical point in this optimization problem. This claim can
be easily verified as follows:

1 − π0(1)π1(2) + π0(2)π1(1)
1
2[π1(1) + π1(2)][π0(1) + π0(2)]

= −[π1(1) − π1(2)]2

[π0(1) + π0(2)][π1(1) + π1(2)]

8 Essentially, Pr[burst] is the probability of encountering the beginning of a burst (i.e., a no loss followed by a loss) when
inspecting a stream at a random point.
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Fig. 7. Lag-1 autocorrelation with two homogeneous paths.

which equals to 0 whenπ1(1) = π1(2), i.e., whenF1(α1λ) = F2(α2λ). As paths are homogeneous, this
equation is satisfied whenα1 = α2 = 1/2.

To illustrate the optimization based on lag-1 autocorrelation, we again consider paths characterized
by the FGM with functional forms given in Eq.1 and an application with a bandwidth requirement of
120 pkts/s. We first consider a system with homogeneous paths having the following simple functions for
the FGM:F(b) = 0.2333× b andB(b) = 24750/b, as an illustration.Fig. 7 depicts the corresponding
lag-1 autocorrelation as a function ofα1 (the correspondingα2 is 1− α1). In this example, the optimized
lag-1 autocorrelation is 0, withα∗ = [0.5, 0.5] and a corresponding loss rate of 3.283%.

Now let us consider an example with the same bandwidth requirement of 120 pkts/s but under a
heterogeneous paths setting. Specifically, we consider a system with two heterogeneous paths wherein
F1(b) = 0.4 × b, B1(b) = 21000/b, F2(b) = 0.0667× b, andB2(b) = 28500/b. Fig. 8 illustrates the
lag-1 autocorrelation as a function ofα1 (with α2 = 1 − α1). In this example, we can determine twoα1’s
(one being smaller than 0.5 and the other being larger than 0.5) which both achieve lag-1 autocorrelation
of zero. By comparing the corresponding loss rates, we chooseα∗ = [0.347, 0.653], corresponding to the
loss rate of 2.035%. (The second optimal lag-1 autocorrelation point corresponds toα∗ = [0.690, 0.310]
and a loss rate of 8.06%.) We further explore the potential of optimizing traffic splitting based on lag-1
autocorrelation in Section4.

Remark. One can, of course, consider other performance metrics as optimization objectives, e.g., the
mean error burst length. One could also consider combinations of metrics, e.g., mean loss rate× mean
burst length which tries to encompass the importance of loss rate and correlations. Due to space limitations,
further discussion of these objective functions and their derivation[7] are omitted. These are also explored
in [1] but in the context of the conventional GM. We do note that, when erasure codes are added, one
might want to minimize the conditional mean information lost rate (MILR), which is the loss rate of the
media data after the lost packet reconstruction process. However, an analytical derivation of this metric is
complex. In Section4, we obtain an optimum MILR from simulations and compare it with results based
on other optimization objectives.
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Fig. 8. Lag-1 autocorrelation with two heterogeneous paths.

4. Simulation experiments

In this section, we consider two types of experiments: type A, where servers send only data packets to
the receiver, and type B, where an erasure code is used to reconstruct lost packets as much as possible.
For all experiments, each data packet has a size of 1400 bytes with a packet group size ofk = 1000. For
each path, packet losses are emulated according to the FGM. The results presented below are obtained
through simulation using CSIM[12] with optimal load distributions (α∗) obtained using the analytical
formulations presented in Section3.9 Each simulation is analogous to a 24 h CM stream.

4.1. Type A experiments: streaming without an erasure code

We consider a system with two heterogeneous paths whereinF1(b) = 0.4 × b, B1(b) = 21000/b,
F2(b) = 0.0667× b, andB2(b) = 28500/b. Tables 1 and 2illustrate various performance metrics, such
as the optimal splitting vectorα∗, the achieved loss rate, the achieved lag-1 autocorrelation as well as the
system’s performance when we stream the data using thebest single path and a round-robin approach
(i.e., evenly spreading the workload without performing optimization).

We also consider improvements in the various performance measures when a third path is added,
whereinF3(b) = 0.2333× b andB3(b) = 24750/b. Note that this additional path does not posses the best
packet loss characteristics; therefore, it simply provides greater path diversity for the data transmission
process.Table 3illustrates the corresponding performance metrics10 andFigs. 9 and 10illustrate the
corresponding conditional lost packet burst length probability mass functions, conditioned on there being

9 α∗ only gives the relative traffic loading ratios among theM paths; in a real system,α∗ still needs to be mapped to a packet
sending pattern. Due to lack of space, we omit the specifics of this “quantization” process as described in[7].
10 Corresponding best path results are given inTables 1 and 2.
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Table 1
2-Paths optimization based on loss rate

Rate (pkts/s) α∗
1 α∗

2 Loss rate atα∗(%) Lag-1 atα∗ Best SP loss rate (%) RR loss rate (%)

60 0.260 0.740 0.462 0.000017 0.831 0.949
120 0.260 0.740 1.808 0.011906 3.258 3.632
360 0.260 0.740 14.261 0.300698 23.273 22.603

Table 2
2-Paths optimization based on lag-1 autocorrelation

Rate (pkts/s) α∗
1 α∗

2 Loss Rate atα∗(%) Lag-1 atα∗(%) Best SP lag-1 RR lag-1

60 0.093 0.907 0.627 0.000128 0.000469 −0.006212
120 0.347 0.653 2.039 −0.000272 0.129062 −0.022340
360 0.550 0.415 26.094 −0.093527 0.750808 −0.137788

Table 3
3-Paths optimization based on loss rate

Rate (pkts/s) α∗ Loss rate atα∗(%) Lag-1 atα∗ RR loss rate (%) RR lag-1

60 [0.188, 0.542, 0.270] 0.247 0.000104 0.416 −0.000350
120 [0.190, 0.541, 0.269] 0.975 0.000172 1.604 −0.003258
360 [0.190, 0.541, 0.269] 8.156 0.092063 12.237 −0.025815

a loss,11 for application sending rates of 120 and 360 pkts/s, respectively.12 This is illustrated for 2- and
3-paths streaming and under different traffic splitting methods, e.g., “Loss 2p” refers to using 2-paths
with load distribution computed using the loss rate based optimization method, “RR 3p” refers to using
3-paths with the round-robin approach, “Best SP” refers to using the best single path, etc.

In both experiments we observe that loss rate-based optimization can significantly reduce the packet
loss rate, but it has a higher lag-1 autocorrelation than the lag-1 autocorrelation-based optimization
method. Also, the lost packet burst length probability mass function under the lag-1 autocorrelation-
based optimization method as well as under the round-robin approach is more skewed toward single
packet losses—this should improve the visual quality of CM. When we move from a 2-paths system to
a 3-paths system, in most cases, we observe that there is an improvement in terms of loss rate, lag-1
autocorrelation, and lost packet burst length probability mass function, when one uses the loss rate-
based optimization method. Overall, we observe that both optimization methods result in better system
performance (under several metrics) than best-path streaming or the round-robin approach.

4.2. Type B experiments: streaming with an erasure code

We consider the effects of an erasure code on the various performance measures. Since numerous
erasure coding schemes exist we first give a brief explanation of the erasure code used here. We divide a

11 We present the probability mass function rather than the probability distribution function, as we believe it depicts the results
of the experiments better.
12 When the sending rate is 60 pkts/s, almost all lost packet bursts are of length one under any of the mentioned traffic splitting
methods; thus the corresponding figure is omitted.
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Fig. 9. Lost packet burst length probability mass functions (120 pkts/s).

video file into groups of data packets such that each group consists ofk data packets. Given each group
of k data packets, we generaten > k packets. We refer to thesen packets as an erasure code (EC) group.
The encoding scheme is such that, if the number of lost packets within an EC group is less than or equal
to (n − k), then we can reconstruct the originalk data packets within that EC group. In the following
experiment, we consider an EC with parametersk = 64 andn = 72, i.e., the bandwidth requirements of
the streaming application are increased by 12.5%. Note that this overhead is the same for single path and
multi-path streaming. Optimal load distributions are obtained using the analysis in Section3 but with an
increased packet sending rate (due to the overhead).

Similarly to type A experiments, we first consider two heterogeneous paths whereinF1(b) = 0.4 × b,
B1(b) = 21000/b, F2(b) = 0.0667× b, andB2(b) = 28500/b. Tables 4 and 5illustrate various perfor-

Fig. 10. Lost packet burst length probability mass functions (360 pkts/s).
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Table 4
2-Paths optimization based on loss rate (with erasure code)

Rate
(pkts/s)

α∗
1 α∗

2 Information loss
rate atα∗(%)

Lag-1 rate atα∗ Best SP information
loss rate (%)

RR information
loss rate

60 0.260 0.740 0 N.A. 0 0
120 0.260 0.740 0.001 0.146542 0.177 0.057
360 0.260 0.740 15.055 0.378475 26.754 26.128

Table 5
2-Paths optimization based on lag-1 (with erasure code)

Rate (pkts/s) α∗
1 α∗

2 Information loss
rate atα∗(%)

Lag-1 rate atα∗ Best SP lag-1 RR lag-1

60 0.158 0.842 0 N.A. N.A. N.A.
120 0.362 0.638 0.002 0.144608 0.400462 0.074382
360 0.416 0.584 20.567 0.051666 0.778310 −0.071064

Fig. 11. Information packet loss burst length probability mass functions (120 pkts/s).

mance metrics, such as the optimal splitting vectorα∗, the achieved information loss rate, the achieved
lag-1 autocorrelation, as well as the system’s performance when we stream the data under thebest single
path or using the round-robin approach. Information loss refers to packet loss after the reconstruction
process.

Again, we consider the improvements in various performance measures when we employ an erasure
code and an additional path whereinF3(b) = 0.2333× b andB3(b) = 24750/b. Table 6illustrates the
relevant performance metrics,13 andFigs. 11 and 12illustrate the corresponding conditional lost packet
burst length probability mass function, conditioned on there being a loss, for application sending rates
of 120 and 360 pkts/s, respectively.14 This is illustrated for 2- and 3-paths streaming and under different

13 Corresponding best path results can be found inTables 4 and 5.
14 The 60 pkts/s case is omitted as all the missing data is reconstructed.
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Fig. 12. Information packet loss burst length probability mass functions (360 pkts/s).

traffic splitting methods, e.g., “Loss 2p” refers to using 2-paths with load distribution computed using
the loss rate based optimization method, “RR 3p” refers to using 3-paths with the round-robin approach,
etc.

From above experiments, we observe that when one adopts an erasure code, in most cases, it can reduce
the information loss rate but not the lag-1 autocorrelation. However, when the packet sending rate is high,
employing an erasure code may have an adverse effect of increasing the loss rate (i.e., degrading the
loss characteristics of paths, e.g., 2-paths streaming with 360 pkts/s and traffic splitting optimized based
on loss rate). When an additional path is available, the workload (including the overhead) can be spread
among more paths; this results in better information loss rate. We can also observe that our optimization
methods result in significantly better system performance (under several metrics) than best path streaming
or the round-robin approach. Moreover, we observe that optimization based on the loss rate may produce
a lower information loss rate than the other optimization methods.

As mentioned in Section3, one might want to minimize the mean information lost rate (MILR), which is
the loss rate of the media data after the lost packet reconstruction process. Here we obtain an optimal load
distribution based on the MILR metric by an essentially brute force search on the simulation results as an
analytical derivation of this metric is quite complex. We do this only to illustrate the utility of the loss rate
based optimization; we, of course, do not suggest the use of this brute force technique in real systems. For
simplicity of presentation, we consider a 2-paths system. Path 1 corresponds toF1(b) = 0.2333× b and

Table 6
3-Paths optimization based on loss rate (with erasure code)

Rate (pkts/s) α∗ Information loss
rate atα∗(%)

Lag-1 atα∗ RR information
loss rate (%)

RR lag-1

60 [0.191, 0.540, 0.269] 0 N.A. 0 N.A.
120 [0.190, 0.541, 0.269] 0 N.A. 0 N.A.
360 [0.190, 0.541, 0.269] 5.301 0.217488 12.256 0.012303
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Fig. 13. Optimal load when minimizing MILR (120 pkts/s).

B1(b) = 24750/b. We vary the quality of path 2 and search for the optimal load distribution in simulation
by testing all possibleα1 and picking the one with minimum resulting information loss rate. Letq denote
the quality of path 2 ranging from 0 to 100 (0 meaning the best quality). The functions for the path 2
FGM are defined as:F2(b) = (0.0667+ q/300)× b, B2(b) = (28500− q × 75)/b. Whenq = 0, these
functions become:F2(b) = 0.0667× b, B2(b) = 28500/b and are equal to the best path we used in the
above experiments. Whenq = 100, these functions become:F2(b) = 0.4 × b,B2(b) = 21000/b and are
equal to the worst path we used in the above experiments. Note that path 1 here has the same FGM

Fig. 14. Optimal load when minimizing MILR (360 pkts/s).
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functions as the third path we used in the above 3-paths system. It has loss characteristics in-between
the best path and the worst path.Figs. 13 and 14show an optimal MILR-based load on path 1 when we
vary the quality of path 2 for application sending rates of 120 and 360 pkts/s, respectively. The results of
optimal load on path 1 when one optimizes the loss rate are also shown; they indicate that optimization
based on loss rate produces a load distribution close to an MILR-based optimum. This suggests that
(under erasure code use), packet loss rate based optimization (with an appropriately adjusted sending
rate) is a reasonable approximation to minimizing MILR.

5. Prototype experiments

We implemented a multi-path streaming prototype[2], used here to study the performance metrics
given in Section2 as well as the resulting visual quality. Although the packet losses are still emulated
using the FGM, the MPEG streams and their processing are real; hence we are able to illustrate the
resulting visual quality in addition to the performance metrics. We stream a 150 s MPEG1 file requiring
a 174.5 Kbps playback rate (≈170 pkts/s with a packet size of 1024 bytes); withk = 64 andn = 72, the
packet sending rate is increased to≈192 pkts/s. Two heterogeneous paths are used, with packet losses
occurring according to their respective FGMs. FGM parameters for path 1 (with better loss character-
istics), are:F1(b) = 0.0667× b,B1(b) = 28500/b, and FGM parameters for path 2 (with worse loss
characteristics), are:F2(b) = 0.4 × b,B2(b) = 21000/b, whereb = 192 pkts/s. Using the loss rate based
optimization approach in Section3 we obtainα∗ = [0.741, 0.259]. Four cases with different traffic split-
ting vectors are studied: (Case 1) single path withbetter loss characteristics (using path 1), (Case 2)
single path withworse loss characteristics (using path 2), (Case 3) dual path usingeven traffic splitting,
and (Case 4) dual path usingoptimal traffic splitting vectorα∗. Packet loss statistics are measured at the
receiver throughout the streaming process. Video frames are transcoded to JPEG files to allow visual
quality inspection.Table 7gives the corresponding average statistics measured. Each column inFig. 15
depicts a sequence of frames extracted from a particular test case; frames in the same row originate
from the same original video frame prior to transmission. From these results, we make the following
observations:

(1) Information loss rate significantly affects visual quality: When we relate the information loss rate
in Table 7with the frame sequences’ quality indication inFig. 15, we find that higher information
loss rate corresponds to poorer video quality. When the information loss rate is extremely high, for
example 35.642% in Case 2, all the frames in the video sequence are damaged. When the loss rate
is improved to 1.688% as in Case 1, some damaged frames can be found in some video segments. If

Table 7
Prototype experiments: average loss statistics

Test case Loss rate before EC (%) Lag-1 before EC Average burst
length before EC

Information loss
rate (%)

1 6.569 0.393 1.762 1.688
2 35.630 0.363 2.439 35.642
3 6.955 −0.040 1.034 1.000
4 3.403 0.174 1.253 0.090
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Fig. 15. Prototype experiments: visual quality of video frames.

some important data is lost (e.g., an I frame in the MPEG1 standard), scene mixing may also occur,
as shown in the captured video output of Case 1. When the information loss rate is further improved
to 1% in Case 3, video distortion happens less frequently and most of the distortion is in the form of
“blocking effects”. When the loss rate is very low, e.g. 0.09% in Case 4, distortion is very rare and
mostly unnoticeable to the human eye.

(2) Introducing EC may cause adverse effects: Improper adding of EC may not improve the resulting
information loss rate, e.g., in Case 2, the loss rate before the EC operation is less than the information
loss rate. Adding an EC increases the loading along a congested path which may degrade the resulting
loss characteristics.

(3) Use of EC is more effective under multi-path streaming: By reducing the lag-1 auto-correlation and
shortening the error burst length, the multi-path technique enhances the error correction capability
of an EC. For example, the loss rate before an EC for Case 1 (single best path) is 6.569% and the
loss rate before an EC for for Case 3 (dual path with even split) is 6.955%. Using the best single
path in Case 1 can give a lower loss ratebefore the EC process. However,after the error correction
process, information loss rate is 1.688% for Case 1 and 1% for Case 3, i.e., the reconstruction process
recovers more packet losses in the dual path case as compared to the single path case. The visual
quality, which is strongly related to the information loss rate, is also better in Case 3 than in Case 1.
It shows that simply using the best single path for video streaming maynot be a good approach.

(4) A path with worse loss characteristics can be used to improve the overall performance: Although
path 2 is a worse path than path 1, it can still be used to share a fraction of the workload to improve
the overall quality of the received video, i.e., the two multi-path test cases give better performance
than the two single path test cases.

(5) Using an optimal traffic splitting vector can result in better performance: The lowest loss rate achieved
in Case 4 indicates that simply splitting the traffic evenly between paths may not result in the best
use of multiple paths.
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6. Conclusions

We considered the problem of providing QoS in streaming pre-stored CM using an application-layer
multi-path streaming approach. An advantage of this approach, as compared to approaches that require
support of lower layers and resource reservation schemes, is that the complexity of QoS provision can
be pushed to the network edge. Hence, we can improve the scalability and deployability of a streaming
application and at the same time provide a certain QoS level. Our past work evaluated the potential
benefits of multi-path streaming using a conventional Gilbert model. Evidence presented here indicates
that this model may not be sufficient, and hence we proposed a functional Gilbert model (FGM) which
is more expressive in capturing the dependency between an application’s sending rate and the loss
characteristics of a path. We showed that under the FGM and with homogeneous paths, any valid traffic
splitting has a packet loss rate no worse than a single path streaming approach. We then focused on
optimal traffic splitting approaches. We presented results based on two optimization objectives, with
and without the use of erasure codes. Moreover, no matter whether an erasure code is added or not,
we observed that both optimization methods result in significantly better system performance (under
several metrics) than single best path streaming or the simple round-robin approach. Finally, we have
also implemented a prototype multi-path streaming system which we used to illustrate the significant
merits of the the multi-path streaming approach in improving the visual quality of CM delivery.
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