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Abstract—Peer-to-peer (P2P) systems consist of selfish peers
which would like to receive services from others but would not
like to contribute their own resources by default. To conquer this
problem, proper incentive schemes are needed so as to stimulate
the peers’ contributions. This issue is particularly important for
P2P Video-on-Demand (VoD) services. Content providers of P2P-
VoD services want to incentivize peers to cache video data so
that the peers can transfer data to one another and alleviate
the workload of the content server. In this paper, we design a
practical mechanism under which the peers are rewarded based
on the popularity of the video they cache. We characterize the
impact of this incentive scheme on peers’ caching behaviors. In
particular, we formulate an optimization framework to decide
the optimal reward price for each video so as to keep enough
replicas and minimize the content provider’s operational cost. Via
extensive simulations, we validate the effectiveness and efficiency
of our incentive scheme.

I. Introduction
The adoption of Peer-to-Peer (P2P) technologies into Video-

on-Demand (VoD) systems has been greatly successful in the

recent years. There are number of large-scale and commercial

P2P-VoD systems like PPLive and PPStream. In such systems,

peers cache video data in their local storage and deliver

the data to one another when they have available upload

bandwidth. By utilizing the distributed resources of the peers,

the content provider can greatly reduce its operational cost

due to the reduction of upload requirement at the content

servers. However, peers in a P2P-VoD system are selfish in

nature and would not be willing to contribute their resources

by default. Hence, designing an effective incentive scheme is

critical. Unlike traditional P2P applications in which plenty

of incentive schemes have been proposed, very limited work

has been focusing on the P2P-VoD applications. In P2P-VoDs,

traditional built-in incentives like tit-for-tat are not applicable

due to lack of mutual upload between peers. Because P2P-VoD

system is large scale and stochastic in nature, one can hardly

predict, or even describe the peers’ requests and resources at

a particular time. Unlike the P2P file sharing system where

peers are able to download a file from a single replica,

P2P-VoDs need to keep enough replicas so as to guarantee

the download rate to satisfy peers’ viewing requirements.

Moreover, peers in P2P-VoDs are heterogeneous and may

have various responses to particular incentive schemes. All the

above make the design of an effective incentive mechanism for

P2P-VoDs very challenging.

Each peer needs to be incentivized to contribute (1) their

local storage space to cache video data, and (2) their upload

bandwidth for uploading data to other peers. Both of the above

are equally important because a peer cannot contribute if it

fails to contribute either of them. Our previous work [22]

has been focusing on incentivizing the upload bandwidth of

peers. In this paper, we focus on the incentive scheme that

stimulates peers to cache the needed video data. We propose a

reward-based incentive scheme for caching, where the content

provider decides the reward price of each video and peers

decide what videos to cache in a distributed manner. In par-

ticular, we apply a mean field model to characterize the steady-

state of the caches in a large scale P2P-VoD system. Based on

this, we formulate a pricing problem using an optimization

framework and solve the optimal prices that minimize the

content provider’s operational cost. Although most P2P-VoDs

are free for ordinary service, our pricing scheme is practical

as the reward can be in forms of credits or service fee rebate

for premium services (e.g. high definition channels) for which

commercial systems do charge users. Our contributions are:

• We develop a stochastic model to characterize the peers’

caching behaviors, and use the mean field technique to

characterize the system state in a limiting steady state.

• We formulate an optimal pricing problem of the content

provider and derive the optimal reward prices for each

video. Our scheme incentivizes the peers to cache enough

replicas of various videos in the system and minimizes

the content provider’s operational cost.

• We validate the effectiveness of our incentive scheme by

extensive simulations.

We organize the paper as follows. In Section II, we develop

a mathematical model to characterize the system’s cache state,

and present an optimization framework for the pricing scheme.

In Section III, we analyze the pricing schemes in a practical

asymptotic case where we give closed-form solutions for the

optimal pricing schemes. We perform extensive simulations to

evaluate our pricing schemes in Section IV. Section V states

related work and conclusions.

II. Model
A. Preliminaries

We consider a P2P-VoD system which consists of peers

and videos. In a realistic P2P-VoD system, the number of

videos can be large; however, the incentive decision is often

made only upon the popularity of the videos. We categorize

the videos into M classes, each containing videos of similar

popularity. We denote Vi as a typical video of class i.
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In order to design an effective incentive mechanism for

caching, we first characterize the system’s state in caching

each video. A straight-forward way is using a stochastic model

where the system’s state is determined by all peers’ cache

states. However, describing such a system can be computa-

tionally expensive, in particular, when the number of peers is

large, the state space of the system becomes huge and thus

intractable. To overcome this difficulty, we model the peers in

the system using a mean field approach, where we are more

interested in the fractions of peers in certain states in steady

state, rather than the exact number of peers in the system. We

explain the applicability of this technique to our problem in

our technical report [23].

We denote p0 as the probability that a peer refreshes its local

storage with an empty cache space after finishing watching

a video. This could happen for various reasons: this peer

may restart or update the software, or its cached data are not

popular any longer. A peer can also choose the next video to

watch. Denote pj as the probability that it chooses a video of

class j (or Vj), which can be considered as the popularity of

Vj . All these transiting probabilities satisfy
⌃M

j=0 pj = 1.

In our reward-based scheme, the content provider provides

an external reward of vj (dollars for example) for each video

of Vj cached. We call vj the price of Vj and define the price

vector as v = (v1, v2, . . . , vM ). Our core design problem

is to decide the optimal prices for videos from the content

provider’s point of view. For any fixed price vector, without

loss of generality, we index the videos in a non-increasing

order of prices, i.e., v1 ⌅ · · · ⌅ vM . Later on, we will explore

its relationship with the order of popularity of the videos.

Each peer decides whether or not to cache the video it

watches according to the price of the video. To characterize

the peers’ sensitivity on prices, we classify all peers into M+1
categories. Peers of type 0 are not willing to cache any video,

whereas peers of type m are only willing to cache the m
highest-priced videos. This implies that peers of type 0 care

more about their local storage costs so that they do not want

to cache even the highest-priced video, while peers of type M
are the most insensitive to their storage costs and are willing

to cache any video. In what follows, we first characterize

the caching behaviors of the peers of various types, and then

explore the impact of the pricing scheme on the distribution

of the number of video replicas in the whole system.

B. Peers’ caching behaviors
We consider a typical peer of type m that has C units of

storage, i.e., it can cache up to C videos in its local storage.

We define the peer’s state at any time as the videos that

it has cached in its local storage. Each storage unit can be

empty or holding any video of any class. Notice that a peer

might cache multiple videos from the same class that have

similar popularity. In real systems, we are only interested in

the content that a peer caches, but not the physical caching

sequences or the specific storage units. For example, if a peer

caches two videos, one of V1 and another of V2, its state

should be independent of which video is cached first and which

storage units it uses to cache both videos. Formally, we use

an m+1 dimensional vector s = (s0, s1, . . . , sm) to represent

the cache state of a peer of type m. s0 denotes the number

of empty units. For any j > 0, sj denotes the number of

videos of Vj that this peer caches. For example, if a type 3
peer has six storage units and caches one video of V1 and two

videos of V3, then this peer still has three available caching

units and its cache state is (3, 1, 0, 2). The state space of a

type m peer is Sm = {s :
⌃m

j=0 sj = C, sj ⌅ 0}. We let

s = (s0, . . . , sm) =
⌃m

j=0 sjej , where ej is a vector with the

jth element being 1 and all other elements being 0. We define

t(s) = argmaxi{i : si > 0} as the largest class index of the

videos cached in state s. We define a deletion operation d(s)
on state s as

d(s) =
⇤

e0 if s0 > 0,

et(s) otherwise.
(1)

The deletion operation maps a cache state to the video that will

be replaced, if necessary. If the peer has available storage, then

the operation maps to the empty slots e0; otherwise, it maps

to the largest class index (also the lowest price) in s.

Based on the above notation, we illustrate the cache state

transition diagram in Fig. 1. Given a current state s, three

pj,j�m

Pm

p0

Fig. 1: Transition diagram

types of transitions can happen to a peer. First, with probability

p0, the peer refreshes its local storage and transits to state

Ce0, where all its C units of storage become empty. Second,

with probability Pm =
⌃M

j=m+1 pj , which is the aggregate

probability that the peer watches any video from the set {Vj :
j > m}, the cache state remains the same, since the peer

watches some video that it is not going to cache. Third, with

probability pj for j ⇤ m, the peer watches some video of

Vj and wants to cache it. Depending on whether the current

cache space is full, the deletion operation might be needed to

replace the least priced video in the cache.

Fig. 2: An example of cache state transitions

Fig. 2 illustrates the complete cache state transition diagram

for a peer of type 2 with capacity C = 2.

C. Cache state distribution of peers of type m

In this subsection, we use the mean field model to approxi-

mate the fraction of peers in each state. We denote qm(s) as the
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fraction of type m peers that are in state s in a steady state1.

The existence and uniqueness of such a stationary distribution

is guaranteed since the Markov chain is time-homogenuous,

irreducible, and that all states are positive recurrent [11].

We use the global balance equations [11] to derive the

steady state distribution of peers in each cache state. The

global balance equation requires that rate at which peers arrive

at a state equals the rate the peers depart from this state.

We distinguish three scenarios where a peer’s local storage

is empty, partially occupied and full, respectively, and derive

qm(s) separately for the three cases. For the state s = Ce0

that represents the empty storage, we have

qm(Ce0)
m�

j=1

pj = (1� qm(Ce0))p0. (2)

The left hand side describes the rate at which the peers depart

from state Ce0, which equals the fraction of peers in state

qm(Ce0), multiplied by the probability that they watch and

cache some video, i.e.,
⌃m

j=1 pj . The right hand side describes

the rate at which peers arrive into state Ce0, which equals the

fraction of peers not in state Ce0, multiplied by the refreshing

probability p0. From Eq. 2, we can solve qm(Ce0) as

qm(Ce0) =
p0⌃m

j=0 pj
=

p0

1� Pm
. (3)

Similarly, for any state s with s0 > 0 that represents a partially

occupied cache, we have the following balance equation:

qm(s)
m�

j=0

pj =
�

j⌅J(s)

qm(s + e0 � ej)pj , (4)

where J(s) = {j : j > 0, sj > 0}, i.e., the set of class indices

for which at least one video is cached at state s. Notice that

the right hand side describes that the possible transitions to

s happen from any cache state s + e0 � ej that has one less

video of Vj than s, with probability pj that the peer starts to

cache a video of Vj . Starting from using the result of Eq. 3

served as the right hand side of Eq. 4, we can progressively

and recursively solve the above balance equation and obtain

qm(s) =
|s|!p0

⌥m
j=1 p

sj

j

(1� Pm)|s|+1
⌥m

j=1 sj !
,  s, s0 > 0, (5)

where |s| =
⌃m

j=1 sj denotes the total number of replicas

cached by this peer.

Lastly, for a state s with s0 = 0 that represents a full storage,

the corresponding global balance equation is

qm(s)
t(s)�1�

j=0

pj =
�

k⌅K(s)\{j}

�

j⌅J(s)

qm(s + ek � ej)pj , (6)

where K(s) = {k : k = 0 or t(s) ⇤ k ⇤ m}. To calculate the

above qm(s), we sort the states {s : s0 = 0} in an increasing

1In reality, the video popularity is also time varying, but its changing rate is
typically much slower than that of the caching states. Hence, in most cases, we
can approximate the system’s state by calculating the steady state distribution
using the current video popularity. We also note it worth an in-depth discussion
for the boosting interest at a new publishing instance.

order on the sequence (s1s2 · · · sm). For the example in Fig. 2,

the states are sorted as (0, 0, 2), (0, 1, 1), (0, 2, 0). Then we can

solve Eq. (6) for the states according to the sorted order so

that the right hand side quantities will already be available.

Denote N as the total number of peers in the system and

Nm as the number of peers of type m. Based on the cache

state distribution {qm(s) : s � Sm}, denote rm(j) as the per

peer average number of videos of Vj cached by type m peers:

rm(j) =
�

⇧s⌅Sm

sjqm(s). (7)

D. Cache state of the system
Based on the cache state distribution {qm(s) : s � Sm}, we

now derive the cache state of the entire P2P-VoD system. The

system state depends on the number of peers of each type,

which, in real systems, is further determined by the prices

of the videos. For example, if vM is large, then more peers

would be of type M ; if v1 is small, then more peers would

be of type 0. The distribution of peer types also depends on

how sensitive the peers are toward prices.

We start with a simplified linear sensitivity model, which

is generalized in our technical report [23], to characterize

the impact of prices on the distribution of peer types. This

linear model assumes that the fraction of peers willing to

cache any video is proportional to the price of that video.

In particular, define V as the lowest price under which all

peers are willing to cache the video. By proposing price vj , a

fraction min{vj/V, 1} of the peers are willing to cache Vj .

Naturally, the content provider can set up any non-negative

price for videos; however, setting a price higher than V cannot

be more beneficial than setting the price at V . Hence, we focus

on the design space of vj � [0, V ], j. Under our linear model,

by defining v0 = V and vM+1 = 0, we can express the number

of peers of type m in the system as

Nm =
vm � vm+1

V
N. (8)

In particular, N0 = (1�v1/V )N denotes the number of peers

unwilling to cache any video, and NM = vMN/V denotes

those willing to cache all videos. Hence, the number of videos

of Vj in the system is

Rj(v) =
M�

m=0

Nrm(j) =
N

V

M�

m=0

(vm � vm+1)rm(j)

=
N

V

M�

m=1

[rm(j)� rm�1(j)] vm. (9)

For the ease of notation, we express Rj(v) as

Rj(v) =
M�

m=1

lmjvm. (10)

where lmj = N
V (rm(j)� rm�1(j)).

We would like to mention that the above stationary cache

state derived from the mean field limit is a result of optimal

caching decisions made by individual peers. In fact, the
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viewing preference of a type m peer is independent of the

video prices, whereas its best caching decision is always to

cache the top m highest-priced videos. Eq. (10) also shows

that, under the linear model, the number of videos of any class

Vj is a linear combination of all the prices. Hence, given a set

of prices, we can characterize the number of video replicas of

each class Vj in the system. Our design space is to strategically

set the prices so as to achieve certain objectives for the system.

E. Design objectives of the pricing scheme
The content provider proposes the incentive scheme in order

to reduce its operational cost. We formally define two kinds

of pricing strategies that aim at different objectives.

Conservative pricing problem (CPP): A major part of the

content provider’s operational cost is the upload cost for

delivering data to the peers that cannot be satisfied by other

peers’ contribution, due to the lack of video replicas in the

system. Therefore, the content provider would like to set the

prices such that the number of cached replicas can satisfy all

peers’ demand. In this paper, we assume that we know the

desired number of replicas in this system, which has been

addressed by the previous work [21]. We denote R̂j as the

desired number of replicas for Vj . The conservative pricing

problem tries to find a price vector v = (v1, . . . , vM ) that

satisfies the following constraints:

R̂j = Rj(v) and 0 ⇤ vj ⇤ V,  j = 1, . . . ,M. (11)

In other words, the content provider wants to find the prices

for the videos such that the supplied number of video replicas

would be the exact desired amount. The content provider is

conservative since it ensures no upload consumption at the

content server (provided that the peers’ uplink bandwidth is

enough), despite that the prices for some videos might be high.

Strategic pricing problem (SPP): The operational cost comes

not only from the upload cost of the servers, but also from the

reward payable to all the peers that cache videos. Therefore,

the content provider might not want to guarantee the desired

amount of cached videos in peers’ storage. In reality, it is

sometimes the best interest for the content provider to set

lower prices so as to reduce the reward cost and balance

the overall utility. Formally, we denote C(v) as the content

provider’s operational cost, which consists of an upload cost

Cu(v) as well as the reward cost Cp(v) it pays to all peers.

If Rj < R̂j , the replicas of Vj are not enough in the

system, then the server incurs an upload cost of Cu that

is proportional to the deficit number of replicas, defined by

Cu(v) = cu
⌃M

j=1

�
R̂j �Rj(v)

⇥+
,where cu is the unit cost,

and (x)+ = max(0, x). The cost of reward Cp is the total

rewards that the content provider pays to all peers, defined

by Cp(v) =
⌃M

j=1 vjRj(v).Thus, the operational cost of the

content provider C(v) is

C(v) = Cu(v) + Cp(v)

= cu

M�

j=1

⌅
R̂j �

M�

m=1

lmjvm

⇧+

+
M�

j=1

M�

m=1

vj lmjvm.(12)

The strategic pricing strategy requires the content provider

to find v which minimizes its operational cost, i.e.,

min
v

C(v)

subject to 0 ⇤ vj ⇤ V,  j = 1, . . . ,M. (13)

To close this section, we relate the two pricing problems

as follows. When cu is very large and there is a deficit of

replicas, then the upload cost is significantly larger than the

reward cost, i.e., Cu(v) ⇧ Cp(v), v. In this case, the content

provider would try to keep the replicas enough for each video.

If CPP has a solution, then the solution to SPP converges to

the solution to CPP when cu ⌃ ⌥.

III. Asymptotic Analysis
In this section, we analyze a practical asymptotic case of the

P2P-VoD systems where either the local storages are refreshed

quite frequently, i.e., a large value for p0, or they have large

capacities, i.e., a large value for C. Most of the asymptotic

results are derived under the limiting condition: (1� p0)C ⌃
0. Physically, the above condition means that the probability

a peer keeps watching C videos without refreshing its local

storage approaches zero. We explain the practicality of this

condition in our technical report [23].

A. Cache state of peers
We characterize the asymptotic number of Vj cached by a

peer of type m, i.e., rm(j), by the following theorem.

Theorem 1: The average number of Vj cached by a peer of

type m approaches pj/p0 when (1� p0)C approaches 0, i.e.,

rm(j) ⌃ pj/p0 when (1� p0)C ⌃ 0,  j ⇤ m.

Due to page limit, we omit all the proofs. Interested readers

may refer to our technical report [23] for details.

This theorem provides a neat form for rm(j) and greatly

simplifies the analysis for the asymptotic case. More impor-

tantly, it also points out the fact that under a limiting case,

the average number of videos cached by a single peer is

proportional to the popularity of the videos. We will validate

the above result by simulations in later sections.

In the following, we call a system as an asymptotic system
when rm(j) = pj/p0, 1 ⇤ j ⇤ m ⇤ M . We are interested in

solving both the conservative and strategic pricing problems

in an asymptotic system.

B. Conservative and strategic pricing problem
We first discuss the conservative pricing problem (CPP)

which ensures enough replicas of all videos in the system. In

the following, we will derive the order and value of prices for

a given set of video popularity. It was pointed out in [21] that

one needs to be “greedy” in replicating unpopular videos in a

P2P-VoD system. Formally, we have the following assumption:

Assumption 1: For any two videos Vi and Vj with pi < pj ,

the desired number of replicas of these two videos, R̂i and

R̂j , satisfy the following condition: pi/pj < R̂i/R̂j < 1.

An underline physical reasoning of this assumption is that,

a larger group of peers watching one particular video can
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cooperate more effectively than a smaller group. Hence, the

desired number of replicas increases sub-linearly with respect

to the video popularity. We have the following lemma:

Lemma 1: Under Assumption 1, if CPP in an asymptotic

system has a solution v, then for any two videos Vi and Vj

with popularity pi < pj , we have vi > vj .

The above lemma indicates the important fact that in CPP,

the order of prices is the reverse order of video popularities.

This implies that we need to set higher prices for less popular

videos so that more peers would like to cache them so as

to meet the greedy cache requirement [21]. We assumed

previously that V1, . . . , VM are arranged in a non-increasing
order of prices, and based on the above result, the popularity

of the videos would be in a non-decreasing order, i.e., V1 is

the most unpopular video and is priced the highest, whereas

VM is the most popular one and is priced the lowest.

Now we show how to decide the value of each video.

Theorem 2: Under Assumption 1, a necessary and sufficient

condition that CPP in an asymptotic system has a solution is

p0R̂1 ⇤ p1N . If this condition is satisfied, then the solution

is vj = p0R̂j

pjN V, j.

Next we show the solution to the strategic pricing problem.

Theorem 3: There always exists a solution to SPP. Under

Assumption 1, the solution to SPP for an asymptotic system

is vj = min
 

1
2cu, p0R̂j

pjN V, V
⌦

,  1 ⇤ j ⇤ M .

Theorem 2 and 3 point out the condition under which CPP

and SPP have solutions. Furthermore, we can get closed-form

solutions for these pricing problems in an asymptotic system.

In the real systems which satisfy (1�p0)C ⌃ 0, we can apply

Theorem 2 and 3 in the incentive mechanism design, by setting

the video prices using the above asymptotic solutions. By

doing this, we can approach to the system design objectives,

i.e., keeping enough replicas and minimizing the operational

cost. It is also worth noting that the solutions to both pricing

problems indicate the “reverse order” phenomenon, i.e., for

any pi ⇤ pj , we have vi ⌅ vj , which is an important guideline

for designing the pricing schemes in practice.

IV. Performance Evaluation
In this section, we use simulation-based experiments to

evaluate the performance of our pricing schemes. In particular,

we have the following settings:

• The system contains N = 10, 000 peers and M = 100
kinds of videos. Each peer can cache up to C = 6 videos.

• A peer has a probability p0 = 0.5 to refresh it storage.

• Popularity pj follows a Zipf distribution with � = 0.7.

• R̂j follows a Zipf distribution with � = 0.3 and the

maximum value R̂100 = 100.

• The minimal price to ensure all peers willing to cache a

particular video is 1, i.e., V = 1.

We apply the pricing mechanism derived for the asymptotic

system, and evaluate the effectiveness of conservative and

strategic pricing schemes. We first validate our result in

Theorem 1. In Fig 3, we plot the average number of replicas

of Vj (i.e., rM (j)) cached by a single peer of type M = 100.
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Fig. 5: Strategic pricing scheme

In comparison, we also plot the value pj/p0 for each video

Vj . From the figure, we can verify rM (j) is very near to

pj/p0 under the simulation settings. Note that there is a bit gap

between rM (j) and pj/p0 for the few most popular videos.

This is due to effect of replacement: when the peers reach their

storage capacity and perform replacement, the videos with

larger indices (or low prices) are more easily to be replaced.

Replacement is not considered in the asymptotic case and

hence leads to this difference.

We next apply the conservative pricing scheme, i.e., vj =
pjR̂j

p0N V . In Fig. 4(a), we plot the video popularities vs. the

prices proposed for each video. It shows that the order of

prices is the reverse order of popularity. We also compare the

number of replicas desired (i.e., R̂j) versus cached (i.e., Rj) in

the system using the conservative pricing scheme. In Fig. 4(b),

we plot (Rj�R̂j)/R̂j , i.e., the relative difference between Rj

and R̂j . A positive value represents the percentage of replicas

cached more than desired, while a negative value indicates the

deficit. The figure shows that using the conservative pricing

scheme, the number of replicas for each video is very close to

the value desired, in particular, for the many unpopular videos

which has a long tail effect. We also note that the popular

videos lack a few percentage of replicas due to the similar

reasons stated above. A natural way to fill up this gap is to

propose a bit higher prices for the popular videos. We apply

a heuristic amendment by setting v⇤j = pjR̂jV
(p0+pj)N

, and the

corresponding result is shown in Fig. 4(c). We can see that

using the heuristic amendment, the number of replicas cached

by peers is a bit more than desired for the popular videos.

Lastly, we apply the strategic pricing scheme, i.e., vj =
min{ cu

2 , poR̂j

pjN V, V }. The unit upload cost cu can have a major

impact on the prices. In Fig. 5(a), we apply three typical values

of cu: cu = 0.2, 1 and 2, and plot the prices which solve

the strategic pricing problem. When cu is small, i.e., the unit

upload cost of the content server is small, the prices are upper

bounded by cu
2 ; whereas when cu is large, the solution to

the strategic pricing problem is the same as the conservative

pricing problem. In Fig. 5(b), we vary cu � [0.2, 2.0], and

compare the content provider’s operational cost using the

strategic pricing scheme vs. that without using any incentive

scheme. The figure shows that when the upload cost is high,

the strategic pricing scheme earns a high cost reduction, which

validates the effectiveness of our incentive scheme.
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Fig. 3: Verification of Theorem 1
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Fig. 4: Conservative pricing scheme

V. Related Work and Conclusion
There have been number of research works on incentive

issues for P2P systems, e.g., general framework [24], [16],

service differentiation models [13], [9], reputation systems [8],

[10], multilateral exchange systems [1] and Shapley value

approach [14]. While the earlier works [7], [4], [6] are mainly

for file sharing systems, recently some research works have

been focusing on P2P streaming/VoD systems, e.g., mod-

ified tit-for-tat protocol [15], [17], punishment based [12]

and reward based [22] mechanisms were proposed. These

works incentivized the peers to upload and serve other peers,

however, in a large scale distributed system, it is very hard

for the peers to be smart enough to know what are the proper

data that they should cache. The authors in [21], [25], [20]

discussed the replication strategies in P2P-VoD systems but

did not address the incentive issues.

Our work differs from all the existing results in that we

propose a reward-based incentive mechanism for caching. A

most interesting finding is that, the order of video prices should

be the reverse order of video popularity. More precisely, we

can get closed-form solutions to conservative/strategic pricing

problems, and validate their effectiveness via simulations.

There are some issues for our future work. First, there

might be a boosting increase of interest at a video’s publishing

instance. The steady state analysis may not apply to this

specific scenario since the video popularity may have changed

before reaching the steady state. It is interesting to discuss how

to adjust the pricing scheme dynamically with the change of

popularity. Second, a strategic peer may choose to download

and cache a video only for the sake of earning reward, even

if it is not interested in watching the video at all. It is worth

for a discussion on the impact of such a strategic behavior,

and whether it is beneficial from the system operator’s point

of view. Lastly, cheating-prevention mechanism is critical in

implementing our incentive scheme, which we did not address

in our paper. Existing literatures [5], [19], [18] have developed

many enforcement methodologies to guarantee that the peers

truthfully upload to others, and we can potentially use the

similar ideas to ensure that the peers truthfully cache the

correct data in the system under our incentive scheme.
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