
NFS/M: An Open Platform Mobile File System

John C.S. Lui� Old�eld K.Y. So T.S. Tam

Department of Computer Science & Engineering

The Chinese University of Hong Kong

Hong Kong

Abstract
With the advancement of wireless network and mobile

computing, there is an increasing need to build a mobile
�le system that can perform e�ciently and correctly for
accessing online information. Previous system research on
mobile �le system is based on some experimental platforms.
In this paper, we describe the design and implementation of
a mobile �le system on an open platform, the Linux kernel,
and at the same time, our mobile �le system is compatible
to the popular NFS 2.0 protocol. In this paper, we formally
de�ne the �le semantics of our mobile �le system, which
we called the NFS/M. We also specify the conditions of ob-
ject conict as well as our conict resolution algorithms.
NFS/M supports client side caching, data prefetching, �le
system service during the disconnected mode, data reinte-
gration and conict resolution on various �le system ob-
jects. Since the NFS/M is based on an open platform, it
serves as a basic building block for developing future mobile
computing applications.

1 Introduction
Recently, the proliferation of portable computers and

wireless networking technologies provides the necessary
baseline infrastructure for performing mobile computing.
There has been a lot of attention lately on this type of
computing paradigm [2]. In mobile computing, users can
communicate with each other and retrieve online informa-
tion without the constraint of having to work at a �xed
location. To realize the bene�t of this appealing com-
puting paradigm, there are still many technical challenges
[1, 2, 3, 4, 5, 6].

One key requirement of the mobile computing is to en-
able the mobile users to access information regardless of
the location of the user and the state of the communica-
tion channel or the data server. Although the conventional
distributed �le systems, such as the NFS and AFS [8], can
provide data access in remote areas, they are not suitable
for the mobile computing applications. The reason is that
they were designed with the assumption that the commu-
nication network is fast and reliable. Under the mobile
computing environment, user can traverse from one place
to another so that the cost and the quality of the network,
like the communication bandwidth, may vary signi�cantly.
Worse yet, network connection may not even available in
some areas. Under these situations, any access to the data
server may cause the mobile computer to be in an inop-
erable state and thereby causing the mobile users the in-
capability of using their local computing resource even if
it is operational. The mobile �le system must be able to

�This research is supported in part by the UGC & CUHK
Research Grants.

cope with these situations.

1.1 Related Work
Research work on accessing data from the remote �le

server and data availability can be traced back to the pe-
riod of designing distributed �le systems. Both the theo-
retical and the architectural aspect can be found in [13, 14].
Davidson S. B. [17] provided a comprehensive discussion
on the tradeo� between data availability and correctness.
Based on the optimistic replicate control protocol [15], ex-
perimental mobile �le system like the Coda [16] and the
Ficus [11, 12] were built.

Both the Coda and the Ficus allow access of data during
the disconnection period and thereby increasing the data
availability upon server or communication network fail-
ure. The Coda focuses on long-term disconnection which
happens more often in the mobile computing environment
while the Ficus focuses on a large scale distributed sys-
tem in which rapid local access and high data availability
are its main concern. Coda supports data reintegration,
which is the process to propagate any updates during the
disconnection period and integrate the data from client-
side back to the server upon the communication channel
reestablisment. Note that in Coda, it retains certain read-
from relations [9] between �le system objects. Based on its
transactional �le system model, data reintegration is made
possible only if all the updates satisfy the one-copy view
serializability condition [9]. If the updates cannot satisfy
the condition, the whole update transaction in the client
side is rejected to avoid data inconsistency. Ficus, on the
other hand, uses reconciliation process to synchronize each
volume replica. Conicts are de�ned on a �le-by-�le ba-
sis and only individual �le update conict is considered.
If there is any conict, di�erent conict resolution algo-
rithms are applied based on the semantics of the �le so
that updates from two di�erent network partitions can be
merged to a single copy. In general, the Coda and the Fi-
cus were designed based on two di�erent �le models. Coda
was developed based on the client-server model with the
notion of stateful server, where certain system information,
like call-back promises are kept on the server side. Instead,
the Ficus was designed based on the peer to peer model
in which there is no clear distinction between the role of
di�erent machines.

Although Coda and Ficus are appropriate for mobile
computing environment, however, the most common �le
system nowadays is the NFS [7]. NFS was designed based
on the principle of stateless server. So, it is di�cult to
incorporate the Coda or the Ficus onto the NFS platform.
Our goal is to design a �le system that can work seam-
lessly with the existing NFS and appropriate for mobile
computing applications as well. Our mobile �le system,

NFS/M, uses a di�erent approach, as compare to Coda
and Ficus system, in resolving partitioned updates during
the disconnected mode.

1.2 Our contributions
The contributions of our work1 are as follow. 1) Our

system is implemented based on an open Unix platform
and is based on the industrial standard NFS 2.0 [7]. There-
fore, it can work seamlessly with any existing NFS server
without server recon�guration. 2) We have proposed and
implemented an e�cient client-side module which sup-
ports data prefetching, data replacement, �le system ser-
vices emulation during the disconnection period and data
conict detection and resolution during the reintegration
period. 3) Our system allows a high degree of concur-
rency when the network is partitioned, and the system
tries to preserve all the updated data upon the communi-
cation channel reestablishment. 4) Our system ensures the
concept of access transparency such that application pro-
gramming interface will be identical to existing NFS. 5)
Our system provides failure transparency in the sense that
when the NFS server fails or network connection is not
available, NFS/M clients can continue their work without
interruption. When everything return to normal, NFS/M
will propagate any updates during the disconnection pe-
riod and will try to merge any updates from di�erent net-
work partitions.

The organization of our paper is as follows: in sec-
tion 2.1, we describe the system architecture, phase tran-
sitions for various states of the network connectivity and
the NFS/M �le semantics. In Section 3, we formally de�ne
how data conict can be detected and resolved. In Section
5, we describe the various modules in the NFS/M and their
functionalities under di�erent phases. Conclusions and fu-
ture work are given in Section 6.

2 System Architecture, Phases and
File Semantics

In this section, we describe the architecture in which we
develop the NFS/M. We also explain the phase transition
structure of the NFS/M such that the system can keep
track of the states of the connectivity with the NFS server.
Lastly, we describe the NFS/M �le semantics.

2.1 Architecture
In our design, the NFS/M clients can share the same

NFS server with other traditional NFS clients in a clus-
ter of heterogeneous computer systems. The advantage of
our system is that it is not necessary to recon�gure the
NFS server so as to accommodate the NFS/M. Di�erent
PCs/workstations running di�erent operating systems can
still connect to the same NFS server for accessing data.
This scenario is illustrated in Figure 1.

Within a system which has the NFS/M support, there
is a NFS/M client, a daemon called middle, which is the
cache manager as well as the proxy server, a reintegrator
and a data prefetcher. The architecture is illustrated in
Figure 2.

For our software platform, we have developed the
NFS/M on a Linux 2.0.29 kernel. Since the modi�cation is
only made on the client computer which is running Linux

1Note that the NFS/M package for the
Linux 2.0.29 can be downloaded from the URL:
http://eagle.cse.cuhk.edu.hk/yprj2277.

NFS
Server

Normal NFS
Client

Normal NFS
Client

NFS/M
Client

NFS/M
Client

RPC

RPC

RPC

RPC

Base
Station

Figure 1: NFS Server with NFS/M and other tradi-
tional NFS Clients

Data
Prefetcher

Reintegrator

NFS/M File System Calls
inside the Linux Kernel

Local Disk Cache

To NFS Server

middle

Cache
Manager

Proxy
Server

NFS Server

To NFS Server

Figure 2: NFS/M Modules

with the NFS/M feature, therefore, the client computer
can access data from any conventional NFS server.

2.2 Phase of the NFS/M File System
NFS/M client maintains an internal state which we

term as phase, which is used to indicate how �le system
service are provided under di�erent conditions of network
connectivity. There are three phases, namely, the con-
nected phase, the disconnected phase and the reintegration
phase. In the connected phase, �le system service are pro-
vided by the NFS server and the local disk cache man-
ager. In the disconnected phase, the communication link
between the client and the server is not available and the
�le system service are provided by the proxy server, which
is a module of the NFS/M, to emulate the functionalities
of the remote NFS server. In the reintegration phase, the
communication link between the NFS server and the client
is re-established and �le system services can be provided
by the NFS server and the cache manager. The propaga-
tion of the client updates during the disconnected phase is
performed by the reintegrator module.

The phase of a NFS/M client can be changed either by
external events, e.g. when the network is disconnected, or
the phase can be changed internally, e.g. when the reinte-
gration process is �nished. The phase transition diagram
of the NFS/M is depicted in Figure 3.

Connected
Phase

Disconnected
phase

Reintegration
phase

RPC Time Out

Resume
connection

Finished
reintegration

RPC Time Out

Figure 3: Phase Transition in NFS/M

Upon the initial startup, the NFS/M will be in the con-
nected phase. During the connected phase, the NFS/M
can retrieve �le system objects, on behalf of the NFS/M
client, from the NFS server or from the local disk cache (if
the requested data objects are cached). The NFS/M will
access the remote NFS server by using the Sun RPC. If the

server does not respond within a certain period of time2,
the NFS/M will switch to the disconnected phase. During
the disconnected phase, the NFS/M probe the NFS server
on a regular basis3. If both the NFS server and the com-
munication channel are available, the NFS/M will switch
into the reintegration phase. During reintegration phase,
the NFS/M access the NFS server by the Sun RPC just like
in the connected phase, and at the same time, propagate
the updates made by the NFS/M client during the discon-
nected phase back to the NFS server. If the server does
not respond within a certain period of time4, the NFS/M
will switch back to the disconnected phase and the rein-
tegration process will be suspended. Upon the successful
termination of the reintegration process, the NFS/M will
switch back to the connected phase.

2.3 NFS/M File Semantics
Let us formally describe the NFS/M �le semantics so

that we can understand how data conicts can be detected
as well as under what situations these data conict can be
resolved. The following de�nitions give us a clear under-
standing so as to devise a procedure to resolve some of
these data conicts. In the NFS/M, we view a �le system
as a collection of �les and directories. Formally, we have

De�nition 1 A �le system is denoted by a set S where
S = fSf [Sdg. The set Sf denotes all the �le objects fi
in the �le system while the set Sd denotes all the directory
objects dj in the �le system.

Normally, S is stored in the NFS server. Any client has
the capability to apply any NFS �le system operations to
any �les or directories in S. In general, we translate any
standard NFS �le operations into our NFS/M �le seman-
tics which are based on the following four primitive �le
operations: 1) write(fi), 2) read(fi), 3) write(dj) and 4)
read(dj). Before we clarify this claim, let us have the fol-
lowing de�nition.

De�nition 2 If a �le object fi is immediately under the
directory object dj , then we denote this relationship by
fi � dj. Similarly, if a directory object dk resides im-
mediately under another directory object dj , we denote the
relationship by dk � dj.

An immediate implication of the above de�nition is that
some NFS �le operations (e.g., creating a new �le, delete a
�le : : : etc) may require a write operation to the directory
where the �le is immediately under. The mapping between
the original NFS �le operations to the NFS/M read/write
semantics is illustrated in Table 1. For example, the �fth
entry in the table indicates that creating a �le fi under di-
rectory dj requires a write to dj for updating the �le entry
and a write to a new �le fi for allocating an inode. Simi-
larly, the sixth entry in the table indicates that deleting a
�le fi under directory dj requires a write to the �le fi (for
example, to update the link count and if it is zero, deallo-
cate the associated inode) as well as an update operation
to dj for updating the �le entry.

If all the users can directly access the data from the
server, we said that all users are connected within one

2The default is 100ms and it is adjustable
3The default is 1000ms and it is adjustable
4The default is 100ms and again, it is adjustable in the mo-

bile client

Original NFS semantics NFS/M Read/Write semantics

getattr fi read(fi)
setattr fi write(fi)
read fi read(fi)
write fi write(fi)
create fi where fi � dj write(fi); write(dj)
remove fi where fi � dj write(fi); write(dj)
rename fi to f 0

i where fi �
dj , f 0

i � d0j

write(fi), write(dj), write(f 0

i),
write(d0j)

create dj � dk write(dj), write(dk)
remove dj where dj � dk write(dj); write(dk)
rename dk to d0

k
where

dk � dj , d
0

k
� d0j

write(dk), write(dj), write(d0
k
),

write(d0j)

Table 1: From the Original NFS semantics to the
NFS/M read-write semantics

network partition. However, if there is any communica-
tion link failure, or if some mobile users are disconnected
from the network, we said that these users are residing
in di�erent network partitions. For the mobile comput-
ing environment, it is very often that mobile users may be
disconnected from the server. In order to provide the com-
puting service and the capability of accessing the data, ob-
ject caching is used so that even during the disconnection
period, the mobile user can access the cached data objects.
This way, we can enhance the data availability. However,
data caching introduces the data consistency problem. For
example, if two mobile clients reside in di�erent network
partitions and they modify the same data object, data con-
ict will occur. Because of this reason, we need a system-
atic way to detect any data conict and at the same time
classify which data conicts can be resolved. This will be
discussed in the following section.

3 Conict Detection
In general, a NFS/M client can cache a subset of �les

from the NFS server during the connected period. Let S
be the set of �le system objects on the NFS server. Let S0

be the set of �le system objects on the local disk cache of
the NFS/M client. All the objects in S0 were selected for
caching during the connected period of the mobile users.
It is obvious that S0 � S. In general, there are two kinds
of objects in a �le system, namely, the �le object and the
directory object. We use fi and dj to denote any arbitrar-
ily �le and directory object respectively. For notational
convenience, let us use oi to denote any �le system object,
which may either be a �le or a directory.

d1

d2 f1

f2

S

Figure 4: Example of �le system objects in S

Now, consider a NFS/M client, which has already
cached a subset S0 of the �le system objects from S, When
the phase changes from the connected to the disconnected
phase, the NFS/M proxy server module starts to emulate

the NFS server so as to provide �le system service. During
the period of disconnection, objects in S0 may be modi�ed,
e.g. fi 2 S0 may be changed to f 0

i (either by modifying
the �le fi or by renaming the �le fi to f 0

i). In addition,
there is a possibility that the subset S0 may grow or shrink,
which corresponds to the �le system operation - create or
remove. To make this more precise, two new notations are
introduced. We let C be a creation set and R be a removal
set, where C is the set of �le system objects which were
created or were removed during the disconnected phase,
respectively. We also note that the removal set only deals
with the objects which are originally in S0, i.e. R � S0. For
the case where a user has deleted a �le which was created
in the disconnected phase, i.e. a delete operation on �le
fi 2 C, we do not consider fi in R but rather representing
this case by removing a �le fi from C (or simply assuming
that there was no creation of fi during the disconnected
phase). It follows that, from the above convention, the set
of �le system objects on the NFS/M local disk cache at
the end of the disconnected phase (or at the beginning of
the reintegration phase) can be denoted by (S0 � R) [C.
Note that the NFS/M has enough information to distin-
guish the sets S0, R and C from the local disk cache via a
log facility which was constructed during the disconnection
period. The log is basically a sequence of �le operations
that occur during the disconnection period, with the ex-
ception that it does not contain any read-only operations,
e.g., like nfs read, nfs readdir, etc (detail description of the
log creation is given in Section 5.2).

To illustrate, �gures 4 and 5 shows the relationship be-
tween the sets S, S0, R and C. Figure 4 is an example of
the set S of �le system objects on the NFS server. Objects
d1, d2 are the directories, where d1 is the immediate parent
of d2, denoted by d2 � d1. At the same time the �le ob-
jects f1, f2 are under the directories d1 and d2 respectively,
i.e., f1 � d1 and f2 � d2. These objects reside in the NFS
server, and we denote the set of �le system objects by S,
where S = fd1; d2; f1; f2g.

Now, suppose there is a NFS/M client, and it cached S
completely. The cached set is called S0, assume that it is
fully cached, we have S0 = S = fd1; d2; f1; f2g. Then the
NFS/M client is disconnected from the network and the
situation is that there are two replicates of S, one is S and
the other is S0. Since the NFS/M allows the user to con-
tinue to work on the cached subset S0, and Figure 5 shows
an example of changes to S0. A NFS/M client �rst issues
a write(f1) operation, and then remove(f2), create(f3).
Recall that from the NFS/M semantics, the remove(f2)
can be reduced to two write operations, write(f2) and
write(d2), and similarly create(f3) is reduced to write(f3),
write(d2). Since d2 , f3 and f1 are modi�ed5 , their
changes should be propagated back to the NFS server when
the communication link is re-established. Notice that at
the end of the disconnected period, d1; f1; d2 2 S0, f2 2 R
and f3 2 C, and the objects need to be propagated back
to the server are: f1, d2 and f3.

According to the above discussion, the nature of reinte-
gration is to propagate the changes in the set (S0�R)[C
(from the NFS/M client) to the set S (on the NFS server).
Since there is a possibility that an object, either a �le or
a directory, oi 2 S0 and oi 2 S is modi�ed during the dis-
connection period, a data conict is possible. A natural

5changes in d2 include a deletion of f2 and a creation of f3

d1

d2 f1

f2

S’

d1

d2 f1

S’-R

d1

d2 f1

f3

(S’-R)UC

Write f1 Remove f2 Create f3

Figure 5: Example of �le system objects in S', R, C

question is how the system can detect any data conict.
We answer this question by �rst giving the following de�-
nition.

De�nition 3 Let � be the \last modi�ed time" of an object
oi that was fetched from the NFS server upon caching oi in
the local disk cache. Therefore, oi 2 S0 and oi 2 S before
the disconnection period. At the end of the disconnected
period, a conict is detected if the modi�ed time of the
object oi in the server is greater than � , or if the object oi
does not exist in the server (oi =2 S).

Since the \last modi�ed time" � of an object is stored
in the NFS/M upon caching of that object, the system
can use this information to detect any data conict and
at the same time, determine whether the conict can be
resolved or not. The above de�nition is the core algorithm
for detecting conict.

Theorem 1 Let user B be the mobile user and during his
disconnected period, B issued a write(oi), where oi 2 S0.
If there was no write operation to object oi issued by other
users during the disconnection period of B, then there is
no data conict for the object oi.

Proof: This can be observed easily from the de�nition
of data conict. Since there was no user who issued
a write(oi), therefore, during the reintegration period
of user B, the modi�ed time of oi in the server is less
than or equal to � , so there will not be any data conict.

NFS Server user A

user B

connected

disconnected
fkf jdj

cached
objects

dj

f j

fi

fk.....

Figure 6: Example of data conict.

Remarks: The implication of the above theorem is that
the NFS/M allows simultaneous reading of �les, simul-
taneous reading and writing of di�erent �les. Using the
example illustrated in Figure 6, some of the read/write
operations which were issued during the disconnection pe-
riod of B will not cause a data conict can be: (1) A is-
sued read(fi) and B issued read(fi), (2) A issued read(fi)
and B issued read(fj), (3) A issued read(fi) and B issued
write(fi), (4) A issued read(fi) and B issued write(fj),
(5) A issued write(fi) and B issued read(fj) and (6) A
issued write(fi) and B issued write(fj).

Corollary 1 When two or more users who resided in dif-
ferent network partitions issued a write(f) where f 2 S,
a �le conict will be detected during the communication
channel re-establishment.

Proof: Because a write(f) operation induces a change in
the modi�ed time, the modify time of f in the server will
be greater than the \stored modi�ed time" � . Therefore,
base on the de�nition of data conict, this conict can be
detected.

|||||||||||||||||||||||||
procedure CONFLICT DETECTION
begin

for each coi 2 S0 which is modi�ed (according to
the log)

if soi =2 S then return conict

else

if (soi:modified time >
coi:stored modified time)
then return conict

else return no conict

end

|||||||||||||||||||||||||-

Figure 7: Conict detection algorithm

Let coi and soi be �le system objects in the NFS/M
client and the NFS server, respectively. The conict de-
tection algorithm is given in Figure 7. The conict detec-
tion algorithm returns either conict or no conict. For
the case of no conict, the corresponding object is written
back to the server, that is, the changes of the object in
the mobile client's local disk cache is propagated back to
the server. On the other hand, if data conict is detected,
this object will be passed to the conict resolution module,
which will be discussed next.

4 Conict Resolution
In general, we can classify data conict into two classes,

namely, �le conict and directory conict. Each of them
can be dealt with di�erently. In this section, we present
these two classes of conict resolution algorithms.

4.1 File Conict Resolution
File conict to an object fi occurs when multiple write

operations were issued by two or more users which are
residing in di�erent network partitions. The nature of �le
conict prohibited us to merge two changes into one, unless
we know exactly the �le format (e.g., if it is a database
�le, we may merge the two writes on two di�erent tuples
back into a database �le). Because of this, we adopt an
approach of maintaining two versions of the �le object,
one is from the NFS server and the other is from the cache
of NFS/M client. For example, the system detects a �le
conict for �le fi, then the NFS/M creates a new �le on
the NFS server using the original �le name of fi, together
with a su�x. Then the content of the NFS/M client copy
is written to this new �le. For details, the su�x we chose is
the machine name of the NFS/M client. Once this is done,
the system will inform the NFS/M client who issued the
�le operation that caused the �le conict. Note that based
on the scheme described above, some interesting mobile
utilities can be developed so as to merge some well-known
format �les, as discussed in [11].

4.2 Directory Conict Resolution
Directory conict can be resolved by using the seman-

tics information on the structure of the directory data. A
directory can be viewed as a well-structured �le, which
contains a list of directory entries where each entry con-
sists of a �lename and a �leid.

Before we discuss about the resolution method, let us
de�ne the following notation:

� oi: A �le system object, either a �le or a directory
which is in both S0 (for client side) and S (for server
side). This implies oi 2 S0 (since S0 � S).

� o0i: A �le system object, either a �le or a directory,
which is in either C (for client side) or S (for server
side) or both.

� ds: A directory object in the NFS server, or ds 2 S.

� dc: Replicated copy of a directory object which is
stored in the NFS/M client, or dc 2 (S0 �R).

� oi � dc: indicates that oi is immediate under the
directory dc.

� oi 6� dc: indicates that oi is not immediate under the
directory dc.

� o0i � dc: indicates that o
0

i is a directory under dc, and
note that o0i 2 C.

� o0i 6� dc: indicates that o
0

i is not under a directory dc,
and in addition o0i =2 C.

� oi � ds (or o0i � ds): indicates that oi (or o0i) is
immediate under the directory ds, according to the
�le system set S on the server.

� oi 6� ds (or o0i 6� ds): indicates that oi (or o
0

i) is not
immediate under the directory ds, according to the
�le system set S on the server.

The resolution algorithm is as follow: ds and dc are
the corresponding server and client copies referring to the
conicting directory. Assume that there are ns directory
entries in ds and nc directory entries in dc. Therefore,
there are n = ns + nc objects that are possibly under dc
and ds. Note that some of them may be the same, but
in any case, the system examines these n objects one by
one. For each system object oi within those n objects,
the system executes the conict resolution procedures as
indicated in Table 8. After all n objects are examined, the
resolution algorithm terminates.

Situation upon reconnection Resolution strategy

1. oi � dc & oi � ds Do Nothing
2. oi � dc & oi 6� ds Remove oi from dc
3. oi 6� dc & oi � ds Remove oi from ds
4. o0i � dc & o0i � ds Name clash resolution
5. o0i � dc & o0i 6� ds Create o0i in ds
6. o0i 6� dc & o0i � ds Create o0i in dc

Figure 8: Directory Conict Resolution Strategy

Here, we give a comprehensive presentation on each en-
try of the table.

� Entry 1 represents the case that the object exists in
both copies (client and server) of the directory, this
implies that both the server and the NFS/M client
have the consistent view of oi, therefore no action is
necessary.

� Entry 2, oi 6� ds means that the oi has been removed
from ds on server side. Therefore, the algorithm re-
moves the corresponding oi under dc at client side to
preserve consistency.

� Entry 3, this is similar to entry 2. The object oi has
been removed from dc. So the corresponding oi under
ds needs to be removed to preserve consistency.

� Entry 4 is classi�ed as the name clash problem. Since
o0i 2 S and o0i 2 C, it implies that the users have cre-
ated an object o0i with the same �lename under the
same directory in di�erent network partition. There-
fore, the NFS/M resolves this by splitting a single
copy into two, the procedure is similar to the �le con-
ict resolution, in which the NFS/M adds a reason-
able su�x to the �lename of the copy o0i 2 C.

� Entry 5 is the case that object o0i is created on the
client side only. Since there is no name clash problem
(as oppose to entry 4), therefore, we can safely create
o0i on the NFS server.

� Entry 6 represents an object o0i is created on the server
partition but not in the NFS/M client. Therefore, the
client side should also include the object o0i in dc.

Note that one of the entries on the table states the
action as name clash resolution. This resolution method
is similar to the �le conict resolution, which is to add a
su�x on one of the copy of the �le fi, such that the system
maintains two versions of the object.

5 NFS/MModules and Functionalities
Briey speaking, the core of the NFS/M is the daemon

called middle, which traps all RPC tra�c that comes from
the NFS/M client to the NFS server. Two other impor-
tant modules include the Reintegrator (RI) and the Data
Prefetcher (DP). The module middle can be further sub-
divided into two logical modules, namely, 1) the Cache
Manager (CM) and 2) the Proxy Server (PS). These mod-
ules work independently in di�erent phases of the NFS/M.
During the connected phase, all the NFS requests from the
local client are serviced by the CM, which fetches data from
the NFS server and at the same time, decides which data
item needs to be cached in the cache so as to improve the
read/write performance. During the disconnected phase,
the PS module emulates the NFS server to provide �le ser-
vices. Therefore, local client can still read/write a �le (if it
is cached) as well as to create new �les or new directories.
During the reintegration phase, the RI performs reinte-
gration so as to propagate changes to �le system objects
which were inside the cache back to the NFS server. These
three modules work independently to provide all necessary
functionalities of the NFS/M.

5.1 Cache Manager (CM)
All the �le system operations to any cached objects in

the local disk cache are managed by the Cache Manager
(CM). The CM services all the requests de�ned in the NFS
2.0 protocol [7], and it functions only in the connected
phase. We describe the CM in two aspects: 1) the data
structure which de�nes the cache format, and 2) the oper-
ations related to any object in the cache.

5.1.1 Cache Data Structure

The local disk cache consists of �les and directories, which
are the fundamental objects of �le systems. Each �le sys-
tem object has two parts, the data and the metadata. For

Metadata Structure

directory �le
file attributes file attributes

new bit new bit

modified bit modified bit

accessed bit accessed bit

wholefile bit wholefile bit

server modified time (�) server modified time (�)
validation bitmap

Figure 9: Metadata Structure

the data part, the system stores the data that associated
with the �le, and for a directory, it contains the list of �le
entries inside it, i.e. all �le names that are immediately
under that directory. In the metadata part, the system
stores the information about the particular object. Figure
9 depicts the information that NFS/M stores for a �le or
a directory object.

The detail explanation of each item in the metadata
structure is described below:

� file attributes are the typical attributes for the
Unix �les.

� new bit is a ag that indicates a cached object which
is newly created during the disconnected phase.

� modified bit is a binary ag that indicates a cached
object which has been modi�ed during the discon-
nected phase.

� accessed bit is a binary ag that indicates whether
cached object which has been accessed (read/write)
during the disconnected phase.

� wholefile bit is a binary ag that indicates whether
a cached object is partially or fully cached. This ag
is true if all the validation bits are true, and it is false
otherwise. See below for the de�nition of validation
bit.

� server modified time (�) is the last known modi-
�ed time just before disconnected phase comes. It is
an important metadata which the system uses for de-
tecting any data conict, and this metadata is used
by the PS and the RI.

� Validation bitmap is a set of bits such that each
bit representing whether the corresponding block of
a �le is cached or not. The system also uses this
information to derive the whole�le bit.

5.1.2 Cache Operations

Upon a NFS read operation, the CM looks for the re-
quested object to see whether it exists in the local disk
cache and test whether it is valid or not. We say that
an object is valid if its server modified time, � , is the
same as the \modi�ed time" of the corresponding object
in the NFS server. To obtain the \modi�ed time" of an ob-
ject, the system uses the nfs getattr to request from the
NFS server the �le attribute, which contains the modi�ed
time. If the modi�ed time matches with � , the CM returns
the data blocks stored in the cache. Note that this kind
of operation reduces the communication overhead caused
by transferring large amount of data block from the NFS
server to the NFS/M client. Since the NFS/M only needs
to fetch the �le attribute, which is much smaller as com-
pare to the data blocks, so the response time of accessing

any cached data object is reduced. As for the read request
to any non-cached object, the CM will fetch the data block
from the server, and at the same time, the CM will store
the data block in the cache.

For a NFS write operation, the CM uses the write-
through mechanism. It writes the data both to the NFS
server and the cache, and then updates the value of � in
the cache so that it is same as the modi�ed time on the
server. Besides updating the value of � , it also updates the
validation bits of the corresponding object.

Note that since the disk cache has a limited size6. Due
to this size limit, the CM must perform cache replacement
when the cache space is exhausted. The cache replacement
algorithm that we are using is basically the least-recently-
used (LRU) algorithm, with one exception. Since our data
prefetcher provides an option for the user to specify some
�les which are more favorable for caching, therefore, these
�les will be given a higher priority to stay in the cache,
even though these �les may not be used recently.

5.2 Proxy Server (PS)
The NFS/M daemon middle serves as the proxy server

in the disconnected phase, it emulates the functionalities of
the remote NFS server by using the cached �le system ob-
jects in the local disk cache and at the same time, supports
new �le/directory creation. Optimistic replica control [16]
has been employed among di�erent network partitions so
as to increase the availability of �le system objects.

Since the cache contains only a subset of the �le system
objects of the NFS server, this implies that the PS can
only provide �le system services to the disconnected client
when the referred �le system objects are within this subset.
All the references to any uncached object will result in a
"file not found" error.

When the NFS/M client is �rst disconnected from the
NFS server, it contains a subset of the �le system objects
from the server. However, this situation changes when the
user continue to modify, create and delete objects in the
local disk cache. For example, when the user creates a new
�le during the disconnected period, this �le will not appear
in the NFS server until the end of the reintegration period.
This introduces a problem for object identi�cation. Under
the NFS protocol, each �le system object is identi�ed by
an unique object handle, and all handles are generated by
the NFS data server. During the disconnected period, PS
is responsible for generating new object handles for re-
quests from the NFS/M clients. At the same time, the
NFS server is able to generate new object handle for other
NFS clients. Since the network is partitioned, and there
is no communication between the NFS server and the PS,
it may turn out that the handle generated by these two
parties is the same. The question is how to maintain the
consistency of the handle generated by PS.

Since the handle generation pattern by any NFS server
varies depending on di�erent implementations. Therefore,
we choose not to modify the server side code to maintain
the compatibility. Since the PS has all the information
about the �le system objects within the cache, it follows
that the PS is able to generate an object handle which
is unique within the scope of the cache. We have imple-
mented an algorithm to generate a unique handle with
respect to the local disk cache.

6the default size of the cache is 10M and the disk cache size
can be dynamically adjusted by the NFS/M client.

Although it is possible to generate an unique handle
with respect to the cache, it does not guarantee that the
handle is unique with respect to the NFS server. When the
phase changes from the disconnection to the reintegration
phase, there is a possibility that two handles generated by
two parties (NFS server and PS) will cause a handle clash.
Because of this reason, the system takes care of the handle
clash problem in the Reintegrator module, which we will
discuss in a later section.

To enable the propagation of updates of the discon-
nected client to the NFS server after reconnection, the PS
will keep track of all the update operations to the cache,
it includes write, create, remove, rename, mkdir, rmdir,
setattr, symlink and link in the log. The log is a list of
entries that follows the chronological order of update op-
erations during the disconnection period. Each log entry
consists of the operation types, i.e. write, create, remove,
etc., and other parameters such as the object handles and
the �lenames. e.g. a log entry looks like:

[write, object handle];
[create, dir object handle, new filename];

Notice that for the write operation, the system only con-
siders the �nal write operation to a �le. If there are several
write operations upon a �le fi, the system only keeps the
�nal version of fi after those write operations. This is
because the cache keeps a single copy of fi only for the ef-
�cient usage of the disk space. Therefore, for the log entry
the system only keeps the last write operation to fi.

5.3 Reintegrator (RI)
The Reintegrator (RI) is responsible for propagating

the changes of the data objects in the local disk cache per-
formed during the disconnected period back to the NFS
server. Since �le operations are allowed during the dis-
connected period, there exists the possibility of conicts
among di�erent updates to the cached data objects. There
are three tasks for the RI, namely, 1) conict detection, 2)
update propagation, and 3) conict resolutions. Given the
log produced by the PS during the disconnected period,
the RI checks each entry in the log, to see whether the
propagation of the objects in the disconnected client back
to the NFS server will cause a conict or not (e.g. using
the conict detection algorithm described in section 3). If
the propagation will cause a conict, the �le system oper-
ation in the log is termed as "invalid". If the �le system
operation is valid, the RI propagates the changes back to
the NFS server, otherwise, the RI tries to resolve the con-
icting operations using the conict resolution algorithm
described in the section 4.

Lastly, it is important to mention the case of �le han-
dle clash. Recall that it is possible for the NFS/M client
to create a new �le during the disconnected period. For
example, there is a �le, with handle H1, which was cre-
ated during disconnected period. To propagate the new
�le back to the NFS server, the NFS server may create a
new �le handle, H2, for this newly created �le. Therefore,
RI needs to change the �le handle information of the �le
in the local disk cache as well as the entries in the log �le
from H1 to H2.

5.4 Data Prefetcher (DP)
Data prefetching is an e�ective technique for improving

data access performance [18, 19]. In a mobile �le system, it

also increases the availability of data during the disconnec-
tion period by collecting data objects in the cache. Also, it
reduces the latency during the weakly connected period by
selectively decide which data need to be cached and which
data need to be written back to the NFS server [10].

Data prefetching techniques can be classi�ed into two
categories, they include the informed prefetching and the
predictive prefetching. With informed prefetching, the
users and the application programmers can specify which
�les are needed ahead of time and thereby preload them
to the cache. With predictive prefetching, the system tries
to predict which objects will be referred and try to preload
these objects. In general, prediction is based on user's �le
traces or access patterns.

Note that both of these techniques have their advan-
tages and the performance gain is applicational dependent.
For a rarely accessed �le, such as the telephone number
database �le, which may sometimes be very critical for the
mobile user. In this case, the informed prefetching works
well because this kind of �le access cannot be derived by
past accesses. While in other cases, the users themselves
may not know exactly what �les are needed in the future.
One good example is the Unix password �le. Without this
�le, no user is allowed to login to the system. In this case,
predictive prefetching has an advantage over the informed
prefetching for it is totally transparent to the application
programs and users.

In NFS/M, we have implemented both techniques. For
the informed prefetching, the users can specify which �les
are preferred to be prefetched[20]. We have also imple-
mented a simple predictive prefetching technique such that
if a particular block of a �le is fetched, the rest of the blocks
will be fetched as well. Since it is very likely that the user
may want to access the rest of the �le when he/she starts
accessing a block of the �le. Therefore, it is a good idea to
fetch the remaining blocks into the data cache in advance.

6 Conclusion
In this paper, we present the design and implementa-

tion of a new mobile �le system, NFS/M, on the Linux
platform and it is based on the NFS protocol. We also
present the formal de�nition for the NFS/M �le seman-
tics, a conict detection algorithm and conict resolution
algorithms. We also illustrate how the NFS/M system can
keep track of the state of the network connectivity. We
have implemented various modules such that the NFS/M
can support client-side data caching (so as to improve the
system performance), �le services support during the dis-
connected period and data reintegration when the com-
munication channel is re-established. Finally, experiments
show the NFS/M actually improves the overall system per-
formance though client-side caching, as well as increased
the availability of �le system objects during disconnected
period (Please refer [21] for details of experiments). Future
work on NFS/M is focused on creating a set of �le conict
resolution utilities based on the semantic information of
di�erent applications.

Acknowledgments
The authors would like to thank the anonymous referees

for their insightful and helpful comments.

References
[1] Rafael Alonso and Henry F. Korth. Database System Issues

in Nomadic Computing, SIGMOD RECORD, Vol 22, 1993.

[2] George H. Forman and John Zahorjan. The Challenges of
Mobile Computing, IEEE Computer, April, 1994.

[3] Tomasz Imielinski and B. R. Badrinath Data Management
for Mobile Computing, SIGMOD RECORD, Vol 22, 1993.

[4] Henning Koch and Lars Krombholz and Oliver Theel. A
Brief Introduction into the World of Mobile Computing,
THD-BS-1993-03, Department of Computer Science, Uni-
versity of Darmstadt.

[5] Cedric C.F. Fong, John C.S. Lui , Man Hon Wong. Quan-
tifying Complexity and Performance Gains of Distributed
Caching in a Wireless Network Environment. 13th Interna-
tional Conference on Data Engineering (ICDE '97), Birm-
ingham, England, 1997.

[6] Cedric C.F. Fong, John C.S. Lui , M.H. Wong, E.Silva.
Performance Analysis of Mobile Terminals Tracking Algo-
rithms, 18th IFIP TC7 Conference on System Modeling
and Optimization, Detroit, 1997

[7] Bill Nowicki, RFC 1094: NFS 2.0 Protocol Speci�cation,
Sun Microsystems, Inc., March 1989

[8] George Coulouris, Jean Dollimore, Tim Kindberg, Dis-
tributed Systems - Concepts and Design (2nd Ed.),
Addison-Wesley

[9] J. J. Kistler, Disconnected Operation in a Distributed File
System, PhD thesis, School of Computer Science, Carnegie
Mellon University. May 1993

[10] Lily B. Mummert, Maria R. Ebling, M. Satyanarayanan,
Exploiting Weak Connectivity for Mobile File Access, Au-
gust 1995

[11] Peter Reiher, John Heidemann, David Ratner, Greg Skin-
ner, Gerald Popek, Resolving File Conicts in the Ficus
File System, Proceedings of the 1994 Summer Usenix Con-
ference

[12] Richard G. Guy, John S. Heidemann, Wai Mak, Thomas
W. Page, Jr., Gerald J. Popek, and Dieter Rothmeier, Im-
plementation of the Ficus replicated �le system, USENIX
Conference Proceedings June 1990, pages 63-71

[13] Fischer, M. J., and Michael, A., Sacri�cing serializability
to attain high availability of data in an unreliable network,
Proceedings of the 1st ACM SIGACT-SIGMOD Sympo-
sium on Principles of Database Systems, May., In ACM,
New York, pp. 70-75. 1982.

[14] Parker, D.S., and Ramos, R.A., A distributed �le sys-
tem architecture supporting high availability. Proceed-
ings of the 6th Berkeley Workshop on Distributed Data
Management and Computer Networks, pp. 161-183, 1982.
Lawrence Berkeley Laboratory, University of California,
Berkeley.

[15] Davidson S. B., An optimistic protocol for partitioned dis-
tributed database systems, Doctoral dissertation, Dept. of
Electrical Engineering and Computer Science, Princeton
Univ., Princeton, N.J. (Oct.) 1982.

[16] J.J. Kistler, M. Satyanarayanan, Disconnected Operation
in the Coda File System, ACM Transactions on Computer
Systems, Feb. 1992, Vol. 10, No. 1, pp. 3-25,

[17] Susan B. Davidson, Hector Garcia-Molina, and Dale Skeen,
Consistency in partitioned networks, ACM Computing
Surveys, 17(3):341-370, September 1985.

[18] Hui Lei and Dan Duchamp, An Analytical Approach to
File Prefetching, 1997 USENIX Annual Technical Confer-
ence, Anaheim CA, January 1997

[19] Geo�rey H. Kuenning, Gerald J. Popek, Peter L. Reiher,
An Analysis of Trace Data for Predictive File Caching in
Mobile Computing, 1994 Summer USENIX Conference,
April 1994

[20] NFS/M System Manual on Linux 2.0.x, NFS/M Project
Group, September 1997

[21] John C.S. Lui, K.Y. So, T.S. Tam, NFS/M: An Open Plat-
from Mobile File System, Technical Report CS-TR-97-14,
Department of Computer Science and Engineering, The
Chinese University of Hong Kong, Oct 1997.

