
Stochastic Complement Analysis of Multi-Server Threshold Queueswith HysteresisJohn C.S. LuiThe Dept. of Computer Science & EngineeringThe Chinese University of Hong Kong Leana GolubchikDept. of Computer ScienceUniversity of Maryland at College ParkAbstractWe consider a K-server threshold-based queueing system with hysteresis, for which a set of forward thresholds(F1; F2; : : : ; FK�1) and a set of reverse thresholds (R1; R2; : : : ; RK�1) are de�ned. A simple version of thismulti-server queueing system behaves as follows. When a customer arrives to an empty system, it is servicedby a single server. Whenever the number of customers exceeds a forward threshold Fi, a server is added to thesystem and server activation is instantaneous. Whenever the number of customer falls below a reverse thresholdRi, a server is removed from the system. We consider and solve several variation of this problem, namely:(1) homogeneous servers with Poisson arrivals, (2) homogeneous servers with bulk (Poisson) arrivals, and (3)heterogeneous servers with Poisson arrivals. We place no restrictions on the number of servers or the bulksizes or the size of the waiting room. In [8], the authors solve a limited form of this problem using the Green'sfunction method. More speci�cally, they give a closed-form solution for a K-server system, when the servers arehomogeneous, and for a 2-server system, when the servers are heterogeneous; the authors experienced di�cultiesin extending the Green's function method beyond the case of 2 heterogeneous servers. Rather than using Green'sfunction, we solve this problem using the concept of stochastic complementation, which is a more intuitive andmore easily extensible method. For the case of a homogeneous multi-server system we are able to derive a closed-form solution for the steady state probability vector; for the remaining cases we give an algorithmic solution.Note, however, that we can use stochastic complementation to derive closed-form solutions for some limitedforms of cases (2) and (3), such as heterogeneous servers with K = 2 and bulk arrivals with a limited bulk size.Finally, our technique works both for systems with �nite and in�nite waiting rooms.1 IntroductionA K-server hysteresis threshold-based queueing system is considered in which the number of servers,employed for servicing customers, is governed by a forward threshold vector F = (F1; F2; : : : ; FK�1)and a reverse threshold vector R = (R1; R2; : : : ; RK�1). Without loss of generality, we assume thatF1<F2< � � �<FK�1 and R1<R2< � � �<RK�1. The dynamics of this type of a multi-server queueing1



system can be described as follows. When the system is empty, a single server is used to service anarriving customer. If a customer arriving to a system with i active servers �nds that there are alreadyFi customers in the queueing system, then one additional server will be activated, i.e., this server willjoin the set active servers for servicing existing and incoming customers. A customer departure froma system with i active servers leaving Ri customers behind will force a removal of one server. In thispaper, we assume that the activation and deactivation of server is an instantaneous operation.There are many reasons for using the threshold-based approach to control the number of serversin the system. For instance, many systems incur signi�cant server setup, usage and removal costs.As in most cases, what concerns the system designer is not only the system performance but alsoits cost/performance ratio. Therefore, what we would like is for the system to use an \appropriate"number of servers so as to satisfy some performance requirements, such as the mean system responsetime. One approach to improving the cost/performance ratio of a system is to react to changes inworkload through the use of thresholds. For example, one can maintain the expected response time ofa job in a system at an acceptable level, and at the same time maintain an acceptable operating costby dynamically activating and deactivating servers as a function of the system load.Note that in many situations, a simple threshold-based system may not be su�cient to guaranteethat the system will operate in a \stable state". In fact, it is possible to cause the system to experiencee�ects of oscillation. One reason for avoiding oscillations in a computer system is to reduce the abovementioned server setup and removal costs, i.e., oscillations coupled with non-negligible server setupand removal costs can result in a poor cost/performance ratio of a system. More speci�cally, it isdesirable to add servers only when a system is moving towards a heavily loaded operation region,and it is desirable to remove servers only when a system is moving towards a lightly loaded operationregion. Thus, to avoid oscillation, hysteresis is introduced into the system | this is the motivationfor looking for general and e�cient techniques for analyzing threshold-based queueing systems withhysteresis. Note that, the forward and reverse thresholds should be \su�ciently far apart" in orderto insure that the system does not degenerate to a \simple" threshold-based system (i.e., one withouthysteresis behavior).Let us begin with a literature survey of several works on threshold-based queueing systems. In[13], a two-server heterogeneous system is presented, where a conjecture is made that for a M=M=2queueing system with heterogeneous service rates, the policy that optimizes system performance, suchas the mean response time, is of the threshold type. In [14], this conjecture is shown to be correct.An approximate solution for solving a degenerate form of this problem is presented in [6, 7], wherean arriving customer is assigned to the fastest idle server. In this degenerate case, all thresholdsare set to zero. An approximate solution for a multi-server queueing system that employs (non-zero)thresholds is presented in [20]; however, this queueing system lacks hysteresis. In [19], the waiting timedistribution of a two-server threshold system without hysteresis is derived. In [8], the authors solve alimited form of the multi-server threshold queueing system with hysteresis, using the Green's functionmethod [5, 9, 10]. More speci�cally, they give a closed-form solution for a K-server system, when theservers are homogeneous, and for a 2-server system, when the servers are heterogeneous; the authorsexperienced di�culties in extending the Green's function method beyond the case of 2 heterogeneousservers. In [3], authors consider a homogeneous server system where the server activation time isexponentially distributed. In general, no closed-form solution can be obtained but tight upper andlower bounds on some performance measures (i.e., expected response time and expected number of2



customers) are derived.In this paper, we consider and solve several variations of the multi-server threshold queueingsystem with hysteresis, namely: (1) homogeneous servers with Poisson arrivals, (2) homogeneousservers with bulk (Poisson) arrivals, and (3) heterogeneous servers with Poisson arrivals. We place norestrictions on the number of servers or the bulk sizes or the size of the waiting room. Rather thanusing the Green's function method, as in [8], we solve this problem using the concept of stochasticcomplementation [18], which is a more intuitive and a more easily extensible method. For case (1),we are able to derive a closed-form solution for the steady state probability vector; for the remainingcases, we give an algorithmic solution for computing the steady state probability vector. Of course,given the steady state probabilities, we can compute various performance measures of interest. Thus,the contributions of this work are as follows. We present a more intuitive and extensible method(than in the case of [8]) for obtaining a closed-form solution to the multi-server threshold queueingproblem with hysteresis, when the servers are homogeneous and there is no restriction on the numberof servers or the waiting room size. We also present algorithmic solutions for the bulk-arrivals andheterogeneous-servers variations of the problem (again, with no restrictions on the size of the bulkor the number of servers); to the best of our knowledge, these variations of the problem, with norestriction on the number of servers or the bulk size, have not been solved exactly in the past (exceptfor the solution of the 2-heterogeneous-servers problem in [8]). The ease with which we are able toobtain solutions to these variations of the problem demonstrates the extensibility of our method. Note,that we can use stochastic complementation to derive closed-form solutions for some limited forms ofheterogeneous-servers and bulk-arrivals variations of the problem, such as heterogeneous servers withK = 2 and bulk arrivals with a limited bulk size. Finally, our technique works both for systems with�nite and in�nite waiting rooms.The remainder of the paper is organized as follows. In Section 2 we briey review the conceptof stochastic complementation and its implications, and in Section 3 we outline the basic solutionapproach. In Section 4 we formally de�ne a model of a threshold-based queueing system with hys-teresis and present several variations on this system; in Section 5 we present solutions to the di�erentvariations of the system using stochastic complementation and the basic approach outlined in Section3. Numerical results obtained using our solution technique are given in Section 6. Our conclusionsare given in Section 7.2 Background on Stochastic ComplementationIn this section, we briey describe the concept of stochastic complementation [18], which we will useextensively to derive the solution of the threshold-based queueing systems with hysteresis. For thepurpose of this presentation, we assume that we are given a discrete state space, discrete time, ergodicMarkov chain with a transition probability matrix P . Throughout the paper we will also considercontinuous time Markov processes. Note, however, that there is a simple transformation between thetwo; that is, given a continuous time Markov process with a rate matrix Q, we can transform it to adiscrete time Markov chain via uniformization [4]:P = I +Q=� (1)3



where � � maxifjqiijg, qii is the ith diagonal element of Q, and I is an identity matrix. Note thatthe steady state probability vectors for P and Q are identical.Given an irreducible discrete time Markov chain, M, with state space S, let us partition this statespace into two disjoint sets A and B. Then, the one-step transition probability matrix of M is:P = " PA;A PA;BPB;A PB;B #and � = [�A;�B ] is the corresponding steady state probability vector of M. In what follows, wede�ne the notion of a stochastic complement and quote some useful results [18].De�nition 1 The stochastic complement of PA;A, denoted by CA;A, is:CA;A = PA;A + PA;B [I � PB;B]�1PB;A (2)Theorem 1 The stochastic complement is always a stochastic matrix and the associated Markov chainis always irreducible, if the original Markov chain is irreducible.Theorem 2 Let �jA be the stationary state probability vector for the stochastic complement CA;A,then �jA = 1=(�Ae)�A (3)where e is the column vector with all entries equal to 1.The implication of the above theorems is that the stationary state probabilities of the stochasticcomplement are the conditional state probabilities of the associated states of the original Markovchain.Let diag(v) be a diagonal matrix where the ith diagonal element is the ith element of the vector v.We can re-write Equation (2) as: CA;A = PA;A + diag(PA;Be)Z (4)where Z = P �A;B [I � PB;B]�1 PB;A and P �A;B is simply PA;B but with all the rows normalized tosum to 1. The square matrix Z is also an irreducible stochastic matrix, provided that the originalMarkov chain is irreducible. Let ri be the ith diagonal element of diag(PA;Be). The probabilisticinterpretation of ri is that it is the total probability of making a transition from state si 2 A to anystate in B. Also, let zi be the ith row of Z ; then we can re-write Equation (4) as:CA;A = PA;A + 266664 r1z1r2z2...rnzn 377775 (5)4



Remarks: the probabilistic interpretation of Equation (5) is as follows. If in the original Markovchain there is a transition from state si 2 A to any state in B, then in the stochastic complement thistransition becomes a transition to some state(s) in A instead. In other word, the derived Markov chain\skips over" the period of time spent in B. The transition from si 2 A to B becomes a transition tosj 2 A with probability zij . The stochastic complement of PA;A is therefore equal to PA;A plus anytransition probabilities, which used to go from A to B, \folded" back to A and redistributed accordingto the stochastic matrix Z . This interpretation implies that the ith row of matrix Z determines howri should be redistributed back to A. In general, it is not an easy task to compute Z, but for somespecial cases where su�cient \structure" exists in the original Markov chain, Z can be obtained withlittle or no computation.The following theorem illustrates a special structure which we will use in analyzing the threshold-based queueing system with hysteresis.Theorem 3 Given an irreducible Markov process with state space S, let us partition the state spaceinto two disjoint sets A and B. The transition rate matrix Q of this Markov process is:Q = " QA;A QA;BQB;A QB;B #where Qi;j is the transition rate sub-matrix corresponding to transitions from partition i to partition j.If QB;A has all zero entries except for some non-zero entries in the i-th column, then the conditionalsteady state probability vector (corresponding to the states in A), given that the system is in partitionA, is denoted by �jA and is the solution to the following system of linear equations:�jA hQA;A +QA;B e eTi i = 0�jA e = 1where eTi is a row vector with a 0 in each component, except a 1 in the the i-th component.Proof: This is intuitively clear based on the stochastic complementation arguments. For detailedderivation, please refer to [2, 16, 17].3 Basic ApproachBefore we proceed with a more detailed de�nition of our model and the presentation of the details ofthe analysis, let us briey describe the general approach we intend to use to solve the queueing problemdescribed in Section 1. We will model this queueing system as a Markov chain, M (see Section 4 fora detailed de�nition), where: (1) the main goal is to compute the steady state probabilities of theMarkov chain and use these to compute various performance metrics of interest (see Section 5) and(2) the main di�culty is that the Markov chain is in�nite and thus \di�cult" to solve using a \direct"approach1.1We could consider �nite versions of the model; however, the Markov chain would still be very large and the compu-tational complexity of a \direct" solution for a reasonable size system still unacceptable.5



As is often done in these cases, we need to look for special structure that might exist in the Markovchain; speci�cally, we intend to take advantage of the stochastic complementation technique brieydescribed in Section 2. The basic approach to computing the steady state probabilities of the Markovprocess and the corresponding performance measures is as follows. We will �rst partition the statespace of the original Markov chain M into disjoint sets. Using the concept of stochastic complemen-tation (see Section 2), for each set, we will compute the conditional steady state probability vector,given that the original Markov chainM is in that set. By applying the state aggregation technique [1],we will aggregate each set into a single state and then compute the steady state probabilities for theaggregated process, i.e., the probabilities of the system being in any given set. Lastly, we will applythe disaggregation technique [1] to compute the individual (unconditional) steady state probabilitiesof the original Markov process M. These can in turn be used to compute various related performancemeasures, as already mentioned.4 System ModelIn this section we present the model of a multi-server threshold queueing system with hysteresis whichcan be de�ned as follows. There are K servers in the system, where K is unrestricted, each with anexponential service rate �i. Customer arrivals are governed by a Poisson process with rate �. Additionand removal of servers in this queueing system is governed by the forward and the reverse thresholdvectors F = (F1; F2; : : : ; FK�1) and R = (R1; R2; : : : ; RK�1), where Ri < Fi for all i. Note that,there are multiple ways to create a total order between the Fi's and the Ri's; for clarity and ease ofpresentation, in the remainder of this paper (unless otherwise stated) we assume that Ri+1 < Fi 8i.However, our solution technique can be easily extended to all other cases as well.There are several variations of this queueing system that can be considered. In this paper, weconsider three such variations, namely: (1) homogeneous-server system, (2) bulk-arrival system, and(3) heterogeneous-server system. Each of the variations of the system can be modeled by a Markovprocess, of a similar structure. In the following sections we formally describe the Markov processescorresponding to each of the variations; the solution of each of these Markov processes is given inSection 5.4.1 Homogeneous ServersGiven a K-server homogeneous threshold-based queueing system with hysteresis, i.e., �i = � for all i,we can construct a corresponding Markov process M with the following state space S:S = f(N;Ns) j N � 0; Ns 2 f0; 1; 2; : : : ; Kggwhere N is the number of customers in the queueing system and Ns is the number of busy servers.Figure 1 illustrates the state transition diagram for such a system where K = 3. Formally, the6
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Figure 1: State transition diagram for a three identical server system.transition structure of M can be speci�ed as follows:(0; 0) �! (1; 1) �(i; j) �! (i+ 1; j) �1f (j 2 f1; : : : ; Kg)^ ((i 62 F ) _ ((i = Fz 2 F )^(j 6= z))) g(i; j) �! (i+ 1; j + 1) �1f (j 2 f1; : : : ; K � 1g) ^ (i = Fz 2 F ) ^ (j = z) g(i; j) �! (i� 1; j) j�1f (i � 1) ^ ((i; j) 6= (1; 1))^ (j 2 f1; : : : ; Kg)^ ((i� 1 62 R)_((i� 1 = Rz 2 R) ^ (j 6= z + 1))) g(i; j) �! (i� 1; j � 1) j�1f (j 2 f2; : : : ; Kg) ^ (i� 1 = Rz 2 R) ^ (j = z + 1) g(1; 1) �! (0; 0) � (6)where 1fxg is an indicator function that 1fxg = 1 if condition x is true and 0 condition x is false.4.2 Bulk ArrivalsIn another variation of the threshold-based queueing system with hysteresis each arrival event corre-sponds to an arrival of multiple customers. This type of a bulk arrival process is a generalization ofthe Poisson arrival process with a single customer, as used in Section 4.1; note that, we do not restrictthe bulk arrival size, and (as in the case of Section 4.1) we do not restrict the number of servers in thesystem. More speci�cally, the di�erence from the model considered in Section 4.1 is that each arrivalevent corresponds to a bulk arrival of size gi, where:gi = Prob[arrival of i customers] i � 1 (7)We can construct a corresponding Markov process Mb with the state space Sb:Sb = f(N;Ns) j N � 0; Ns 2 f0; 1; 2; : : : ; Kggwhere N is the number of customers in the system and Ns is the number of busy servers. Figure2 illustrates the state transition diagram for such as system where K = 3. Formally, the transitionstructure ofMb is de�ned as follows. Transitions that are due to arrivals have the following structure:(0; 0) �! (k; �(0; 1; k)) �gk(i; j) �! (i+ k; �(i; j; k)) �gk1f j 2 f1; 2; : : : ; Kg g (8)7
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For this threshold-based queueing system with hysteresis and heterogeneous servers we can con-struct a Markov process Mh with the following state space Sh:Sh = f(N;Ns) j N � 0;Ns 2 f0; 1gKgwhere N is the number of customers in the queueing system and N s is a string of K bits indicatingbusy and idle servers, i.e., N s = N1sN2s � � �NKs , whereNks = ( 1 if server k is busy0 if server k is idleFigure 3 illustrates a Markov process corresponding to such a system where K = 3.
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Figure 3: State transition diagram for a heterogeneous servers system with K = 3.Before formally de�ning the transition structure ofMh, let us de�ne the following notation. Let jk,j 2 f0; 1gK, represent a string ofK bits with the kth bit equal to 1, i.e., jk = f0; 1g(k�1)f1gf0; 1g(K�k).Let j(k), j 2 f0; 1gK, represent a string of K bits with the �rst k bits equal to 1, i.e., j(k) =f1gkf0; 1g(K�k). Let Gn+(j), 1 � n � K, be a function which, given j, returns a new string j 0 whichhas all bits identical to those of j , except for the nth bit, which is equal to 1. Let Gn�(j), 1 � n � K,be a function which, given j , returns a new string j 0 which has all bits identical to those of j, exceptfor the nth bit, which is equal to 0. Then, formally, the transition structure of Mh can be speci�ed as
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follows:(0; f0gK) �! (1; 1f0g(K�1)) �(i; j(k)) �! (i+ 1; j(k)) �1f (i � k) ^ (j 2 f1gkf0g(K�k)) ^ ((i 62 F )_((i = Fz 2 F )^(k 6= z))) g(i; j(k)) �! (i+ 1; j(k+ 1)) �1f (i � k) ^ (j 2 f1gkf0g(K�k))^(k < K) ^ (i = Fz 2 F ) ^ (k = z) g(i; j(k)) �! (i� 1; j(k)) Pkn=1 �n1f (i � k + 1) ^ ((i; j(k)) 6= (1; f1gf0gK�1))^(j 2 f1gkf0g(K�k))^((i� 1 62 R) _ ((i� 1 = Rz 2 R) ^ (k 6= z + 1))) g(i; j(k)) �! (i� 1; j(k� 1)) �k1f (i � k + 1) ^ (j 2 f1gkf0g(K�k))^(i� 1 = Rz 2 R) ^ (k = z + 1) g(i; jk) �! (i� 1; Gn�(jk)) �n1f (n < k) ^ (1 < i � k) ^ (j 2 f0; 1gK) g(i; jk) �! (i+ 1; Gn+(jk)) �1f (n < k) ^ (1 � i < k)^((n = 1)_ (j 2 f1g(n�1)f0gf0; 1g(K�n))) g(1; f1gf0gK�1) �! (0; f0gK) �1 (10)
Note that in [8], the authors describe a solution for a system with K = 2 heterogeneous servers;however, they experience di�culties in extending the Green's function method to the general case ofK > 2. In Section 5, we present a solution for the general case heterogeneous servers system using theapproach of stochastic complementation, as in the other two cases.5 AnalysisIn this section we present the details of the basic analysis approach outlined in Section 3. We �rstillustrate this technique using the simpler case, of homogeneous servers, and then show how it canbe extended (fairly simply) to the other two cases, namely, the bulk arrivals and the heterogeneousservers cases.5.1 Homogeneous ServersThe goal of this section is to compute the steady state probabilities �(n) for all n 2 S, where S is thestate space of the Markov process M (see Section 4.1). As outlined in Section 3, the �rst step is topartition the state space. Speci�cally, given the original Markov process M, let us partition the statespace S into K disjoint sets Sl, where:Sl = f(i; j) j (i; j) 2 S and j = lg l = 1; 2; : : : ; KWe can view partition Sl as representing all states corresponding to exactly l busy servers2. For2 � l � K � 1, we can order the states in Sl as follows:f(Rl�1 + 1; l); : : : ; (Rl; l); : : : ; (Fl�1 + 1; l); : : : ; (Fl; l)g2To simplify notation, we assume that state (0; 0) is also in S1.10



Let us de�ne another Markov processesMl, for l 2 f2; : : : ; K�1g, such that the state space ofMlcorresponds to the states in Sl. The transition structure ofMl is similar to the transition structure ofM for the states in Sl, except for the following modi�cations: (rule 1) a transition from (Rl�1 + 1; l)to (Rl�1; l� 1) in the original process M is replaced by a transition from (Rl�1+ 1; l) to (Fl�1 + 1; l)in Ml and (rule 2) a transition from (Fl; l) to (Fl + 1; l+ 1) in the original process M, is replaced bya transition from (Fl; l) to (Rl; l) in Ml. Figure 4 illustrates the state transition diagram for Ml, forl 2 f2; : : : ; K � 1g. Similarly, for l = 1, we can order the states in S1 as follows:
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probabilities for states in Sl, given that the process is in Sl.In the following section, we show how to compute the steady state probability vector for each ofthe Markov processes Ml, where l 2 f1; 2; : : : ; Kg.5.1.1 Analysis of MlAs outlined in Section 3, the next step is to derive the steady state probability vector for the statesin Ml where l 2 f1; : : : ; Kg, namely �Ml(n). Since all states in Ml represent l busy servers, for easeof presentation, we can ignore that portion of the state description, i.e., we can identify states in Mlbased on the number of customers. Figure 4 illustrates the state transition diagram of Ml, wherel 2 f2; : : : ; K�1g; let us begin with the analysis of these Markov processes. Based on the ow balanceequations for all states i, where Rl�1 + 1 � i � Rl, we can de�ne the coe�cient terms Cli such that:�l(i) = �l(Rl�1 + 1)Cli whereCli = i�Rl�1�1Xj=0 � �l��j = ll� � "1� ��l�i�Rl�1# i = Rl�1 + 1; : : : ; Rl (11)and � = �=�. (Note that above we assume that �l� 6= 1; a similar derivation can be given for �l� = 1,which we omit for clarity of presentation.)If we consider the ow balance equations for all states i, where Rl + 1 � i � Fl�1 + 1, we canexpress their state probabilities �l(i) in term of �l(Rl�1 + 1) and �l(Fl) as:�l(i) = �l(Rl�1 + 1)24i�Rl�1�1Xj=0 � �l��j35� �l(Fl)24i�RlXj=1 � �l��j35 (12)Similarly, the ow balance equations for all states i, where Fl�1 + 2 � i � Fl � 1 are:�l(i) = �l(Rl�1 + 1)24 i�Rl�1�1Xj=i�Fl�1�1� �l��j35� �l(Fl)24i�RlXj=1 � �l��j35 (13)Lastly, the ow balance equation for i = Fl is:�l(Fl � 1)� = �l(Fl)(�+ l�) (14)Now, observe that based on Equations (11), (12), (13) and (14), we can express �l(Fl) in terms of�l(Rl�1 + 1). After simplifying the necessary expressions, we have:�l(Fl) = �l(Rl�1 + 1)ClFl whereClFl = 241 + l�� + Fl�1�RlXj=1 � �l��j35�1 24Fl�1�(Rl�1+1)Xj=Fl�Fl�1 � �l��j35= �l+ � (�=l)Fl�Rl "��l�Fl�Fl�1 � ��l�Fl�Rl�1+1# (15)12



Now that �l(Fl) depends only on �l(Rl�1 + 1), we can substitute the expression for �l(Fl) back intoEquations (12) and (13) and �nd the corresponding coe�cients Cli for Rl + 1 � i � Fl � 1; then,�l(i) = �l(Rl�1 + 1)Cli whereCli = 8><>: Pi�Rl�1�1j=0 � �l��j � ClFlPi�Rlj=1 � �l��j for Rl + 1 � i � Fl�1 + 1Pi�Rl�1�1j=i�Fl�1�1 � �l��j � ClFlPi�Rlj=1 � �l��j for Fl�1 + 2 � i � Fl � 1After further simpli�cations, we have:Cli =8>><>>: ll�� �1���l �i�Rl�1� �ClFll [1���l �i�Rl ]� for Rl + 1 � i � Fl�1 + 1ll�� ���l �i�Fl�1� ��l �i�Rl�1� �ClFll [1���l �i�Rl+1]� for Fl�1 + 2 � i � Fl � 1 (16)With all coe�cient Cli de�ned in Equations (11), (15), and (16), we can determine �l(Rl�1+1) throughnormalization, that is, the sum of all the steady state probabilities in Ml has to be equal to 1:�l(Rl�1 + 1) = 24 FlXi=Rl�1+1Cli35�1 (17)For the Markov processM1, we can use a similar approach to derive the steady state probabilities.They are: �1(0) = "1� �R1+11� � + �F1+1�F1�R1+1 � 1  F1 � R1 � �F1�R1 � 1[�� 1] [�F1�R1 ]!#�1 (18)�1(j) = �1(0)�j j = 1; 2; : : : ; R1 (19)�1(j) = �1(0)�j  �F1�j+1 � 1�F1�R1+1 � 1! j = R1 + 1; : : : ; F1 (20)where � = �=�. Finally, the steady state probabilities for the Markov process MK are:�K(RK�1 + 1) = K � �K(FK�1�RK�1+1) (21)�K(j) = 1FK�1�RK�1+1 "1�� �K�j�RK�1# j=RK�1+2; :::; FK�1+1 (22)�K(j) = 1FK�1�RK�1+1 "� �K�j�FK�1�1� � �K�j�RK�1# j>FK�1+1 (23)5.1.2 Analysis of the Aggregated ProcessOnce we have obtained an expression for the steady state probability vector of each Ml, which isalso the conditional state probability vector of M, given that the system is in Sl, the only remainingstep (as outlined in Section 3) is to �nd the aggregate state probability of the system being in Sl.13
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λ1 λ2 λ3 λ 4 λ K-1Figure 5: State transition diagram for aggregated process.Therefore, for each l, 1 � l � K let us aggregate all the states in Sl into a single state. The transitionstate diagram of the resulting aggregated process is illustrated in Figure 5. The transition rates of theaggregated process can be computed as follows:�i = ��i(Fi) i = 1; 2; : : : ; K � 1 (24)�i = i��i(Ri�1 + 1) i = 2; 3; : : : ; K (25)where �i(Fi) and �i(Ri�1 + 1) are the conditional state probabilities obtained in Section 5.1. Thesteady state probabilities of this aggregated process are as follows [12]:�(1) = 241 + KXk=2 k�1Yj=1  �j�j+1!35�1 (26)�(i) = 241 + KXk=2 k�1Yj=1  �j�j+1!35�1 i�1Yj=1 �j�j+1! i = 2; 3; : : : ; K (27)5.1.3 Performance MeasuresAt this point we have all the necessary information to compute the steady probabilities for M. Thatis, once we determine, for each l: 1) the conditional state probabilities of all states in Sl, given thatthe system is in Sl and 2) the steady state probability of being in state l of the aggregated process,then the steady state probability of each individual state (i; j) in M can be expressed as:�(i; j) = �j(i)�(j) where (i; j) 2 Sj (28)Then (as outlined in Section 3) we can compute various performance measures; more speci�cally, we cancompute many performance measures which can be expressed in the form of a Markov reward function,R, where R = Pi;j �(i; j)R(i; j) and R(i; j) is the reward for state (i; j). Two useful performancemeasures for our system are the expected number of customers and the expected response time.Below, we illustrate how easy it is to obtain such performance measures, once we have the steadystate probabilities; for instance, the expected number of customers can be expressed as a Markovreward functions, where R(i; j) = i.Let N and T denote the expected number of customers and the expected response time, respec-tively, of the original threshold-based queueing system with hysteresis, corresponding to the Markovprocess M. Then N can be expressed as:N = F1Xi=1 i�1(i)�(1)+ K�1Xj=2 FjXi=Rj�1+1 i�j(i)�(j)+ 1Xi=RK�1+1 i�K(i)�(K) (29)14



Using Little's result [15], we can express T as:T = 1� 24 F1Xi=1 i�1(i)�(1)+ K�1Xj=2 FjXi=Rj�1+1 i�j(i)�(j) + 1Xi=RK�1+1 i�K(i)�(K)35 (30)Remarks on Complexity of Solution: it would be useful at this point to briey discuss the com-plexity of computing N , where we consider the number of multiplications required by a computationas a measure of time complexity. The major contributors to the time complexity of computing N are:(a) computation of the aggregate state probabilities and (b) evaluation of the summations in Equation(29). The complexity of computing the aggregate state probabilities is O(K). The complexity of eval-uating the �nite summations in Equation (29), each corresponding to a partition Sl, is O(Fl � Rl�1)for each 2 � l � K � 1 and O(F1) for l = 1. What remains is the complexity of evaluating the in�nitesummation, which may not be apparent directly from Equation (29). Using Equation (23), we canevaluate the tail of the in�nite summation in Equation (29) to be (assuming that �K 6= 1):�(K)24� �K ��1 � � �K �(FK�1�RK�1)FK�1 �RK�1 + 1 35"FK�1 + 11� �K + 1�1� �K �2#which requires O(FK�1�RK�1) multiplications to compute. The remainder of the in�nite summation,which can be computed using Equations (22) and (23), requires O(FK�1�RK�1) multiplications. Thusthe total time complexity of evaluating N isO(max(K; (F1+ 2(FK�1 �RK�1) + K�1Xl=2 (Fl � Rl�1))))and the corresponding space complexity is O(1). Note that, one advantage of the homogeneous casesolution is that the di�erent partitions can be solved in parallel, i.e., the construction of stochasticcomplements for all partitions and their solution can proceed in parallel.5.2 Bulk ArrivalsAlthough, in general, there may not exist a closed-form solution for the steady state probabilities ofa threshold-based queueing system with hysteresis and bulk arrivals, we can still devise an e�cientalgorithm for computing the steady state probability vector �(n) (where n 2 Sb in the original Markovprocess Mb) as well as the expected number of customers, Nb, and the expected response time of acustomer, Tb. This can be accomplished using the approach outlined in Section 3, similarly to theprocedure used in Section 5.1.As in the case of homogeneous servers, we �rst partition the state space Sb of the Markov processMb into K disjoint sets, Sl, where:Sl = f(i; j) j (i; j) 2 Sb and j = lg l = 1; 2; : : : ; Kand, as before, Sl represents all the states with exactly l busy servers3. Also, we de�ne:S�i = fSi+1 [ Si+2 [ � � � [ SKg for i = 1; 2; : : : ; K � 13Recall that, to simplify notation, we can assume that state (0; 0) is in S1.15



Using Theorem 3, we can easily compute the conditional steady state probabilities for states in S1,given thatMb is in S1. This is accomplished by constructing a Markov processM1 which has the statespace S1, with all transitions being the same as those (corresponding to states in S1) in the originalMarkov process Mb, except that any transition from a state in S1 to a state in Sj (where 1 < j � K)becomes a transition to (R1; 1) 2 S1. In general, there does not exist a closed-form solution for M1;however, since the state space of M1 is usually small and �nite, we can easily obtain the steady stateprobability vector using any chosen solution technique, as described in [21]. Let us denote the steadystate probability vector of M1 by �M1 .Other than for S1, it appears to be di�cult to apply Theorem 3 directly to other sets Sl, 2 � l � K,in Mb since there are multiple ways of entering Sj from Si for j > i. To solve this problem, let ustake advantage of stochastic complementation once again. Since we are able to compute the steadystate probability vector �M1 , which is also the conditional steady state probability vector (for thestates in S1) ofMb, given than the system is in S1, we can easily construct the stochastic complementfor states in S�1 = fS2 [ S3 � � � [ SKg. A probabilistic interpretation of this approach is that we areredistributing the transition rates4 from states in S�1 to S1 (which exist in the original Markov process)back to states in S�1 . This redistribution should be proportional to the relative visit ratios at whichS�1 is entered from S1. These relative visit ratios are known since we have an e�cient procedure forcomputing �M1 . Thus, the relative rates back to S�1 are:f1 = h�M1QS1;S�1 ei�1 �M1QS1;S�1 (31)where QS1;S�1 is the transition rate matrix from S1 to S�1 and f1 denotes the row vector of relativevisit ratios to S�1 . It is not di�cult to observe that f1e = 1. The validity of this claim is reected inthe following theorem.Theorem 5 The steady state probability vector for the Markov process MS�1 is the conditional steadystate probability vector for the states in S�1 of the original Markov process Mb, given that the systemis in partition S�1 .Proof: Let us rearrange the states of the original process such that the transitional rate matrix ofMb is: " QS�1 ;S�1 QS�1 ;S1QS1;S�1 QS1;S1 #whereQi;j is the transition rate sub-matrix corresponding to transitions from partition i to partition j.Note that the sub-matrix QS�1 ;S1 has only a single non-zero row which has only a single non-zero entry.This row, call it row i of QS�1 ;S1 , corresponds to state (R1 + 1; 2) in S�1 and the non-zero entry hasthe value of 2�. Referring to the form of a stochastic complement given in Equation (5), ri = 2� andrj = 0 for j 6= i. Thus, we only need to construct zi, a vector which determines how ri is redistributedbetween the states in S�1 . This vector zi is determined by the conditional steady state probabilities ofstates in S1, i.e., �M1 , and the transitional matrix QS1;S�1 . Therefore, the redistribution is governedprecisely by the vector f1, as speci�ed in Equation (31).4In this case, the transition rate in question is 2�. 16



Thus, we have constructed a stochastic complement for the states in S�1 . The Markov processMS�1 , corresponding to the example of Figure 2, is illustrated in Figure 6. Note that this newly
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and express �(j) in terms of �(1)Cj, where:Cj =  1rj;j�1!24j�1Xk=1Ckr�k;j35 2 � j � K (37)with the initial value of C1 = 1. With all the coe�cients Cj de�ned, we have:�(1) =  KXk=1Ck!�1 and (38)�(j) =  KXk=1Ck!�1 Cj 2 � j � K (39)5.2.2 Performance MeasuresLet VMi denote a column vector such that the jth component of the vector represents the number ofcustomers in the queueing system when the system is in the jth state in Si. Then the average numberof customers in the original Markov process Mb, denoted by Nb, can be expressed as:Nb = K�1Xi=1 �(i)�MiVMi + �(K)� d P (z)dz ����z=1 + RK�1 + 1� (40)Using Little's result, we can obtain the average customer response time, denoted by Tb, as:Tb = 1�g "K�1Xi=1 �(i)�MiVMi + �(K)� d P (z)dz ����z=1 +RK�1 + 1�# (41)Remarks on Complexity of Solution: As in Section 5.1, it is useful at this point to consider thecomplexity of our technique where the number of multiplications required by the computation of Nbis used as the measure of time complexity. As before, the major contributors to the time complexityof computing Nb are: (a) computation of the aggregate state probabilities and (b) evaluation ofthe summation in Equation (40). The complexity of computing the aggregate state probabilities isO(K2). The time complexity of evaluating the �nite summation in Equation (40) is due to the methodchosen to compute the steady state probabilities, for instance, using the power method [21] gives thecomplexity5 of O((F 31+PK�1l=2 (Fl�Rl�1)3)). Of course, the corresponding space complexity, for storinga transition matrix for partition Sl, is O((max(F 21 ;max2�l�K�1(Fl � Rl�1)))2). What remains is thecomplexity of evaluating the in�nite part of Equation (40); this is a function of the bulk arrival sizesdistribution, i.e., it depends on the actual Z-transform of Equation (33). Since we do not assume aspeci�c distribution for bulk sizes in the derivation of our solution, we do not pursue this matter anyfurther. Note that, one drawback of the bulk arrivals case solution is that the di�erent partitions cannot be solved in parallel, as in the homogeneous servers case, i.e., we need to \fold the partitions" onepartition at a time, and thus the computation must necessarily proceed in a sequential manner.5Empirical evidence indicates that other iterative as well as direct methods are more e�cient than the power method,which we use here for simplicity of presentation; however, since that is not the focus of the paper, we will not discuss ithere any further. 19



5.3 Heterogeneous ServersAs in the case of homogeneous servers, we �rst partition the state space, Sh, of the original MarkovprocessMh into disjoint sets (refer to Figure 3), where the states in each set Sl, 1 � l � K, correspondto the states of the original Markov process where server l is busy6 (of course, other servers may bebusy in set Sl, that is any server k < l maybe be busy as well), i.e.,Sl = f(i; j) j (i; j) 2 Sh ^ j 2 f0; 1g(l�1)f1gf0g(K�l)gAlso let us de�ne S�l = l�1[i=1Si and S+l = K[i=l+1SiThe heterogeneous case is somewhat more complicated than the homogeneous servers case, however,we can still use the method of stochastic complementation as follows. The last partition, SK , has onlya single entry state from a state in SK�1, namely the state with FK�1+1 customers. This means thathowever we leave SK , and whatever partition we go to, we will always come back to SK , from a statein SK�1, through the state with FK�1 + 1 customers. Therefore, in creating a stochastic complementfor the states in SK, all rates out of the states in SK (regardless of what state they are from and wherethey lead) can be \folded back" to the state with FK�1 + 1 customers. Thus, we can compute theconditional steady state probabilities for states in SK , given that Mh is in SK . This is accomplishedby constructing a Markov process, MK , which has state space SK with all transitions being the sameas those (corresponding to states in SK) in the original Markov processMh, except that any transitionfrom SK to Sj (where 1 � j < K) in Mh becomes a transition to state (FK�1+1; f1gK) inMK . Thisis precisely an application of Theorem 3. The resulting process, MK, corresponding to the 3-serverexample of Figure 3, is illustrated in Figure 8. The solution for the steady state probabilities for all
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3 Figure 9: State transition diagram for fSK�1SS+K�1g, where K = 3.FK�1 customers, but multiple returns from S+K�1 to SK�1. Since SK = S+K�1, and since we are able tocompute �MK , the conditional steady state probability vector for the states in SK, given that Mh isin SK , we can use this information to complete the construction of the stochastic complement for thestates in SK�1. (Note that, since SK = S+K�1, from now on we will refer to SK only.) Similarly to thecase of bulk arrivals, the probabilistic interpretation of this approach is that we are redistributing thetransition rate of � (from the state with FK�1 customers in SK�1 to the state with FK�1+1 customersin SK) back to the states in SK�1. This redistribution should be proportional to the relative visitratios at which SK�1 is entered from SK , either directly or by �rst going to some other partition Sj,j < K � 1 and then returning to SK�1 through SK�2. We can compute a vector, f , corresponding tothese visit ratios, using our solution for �MK ; the elements of f are as follows:f(i; j) = 8>>>>>>>>><>>>>>>>>>: 0 for RK�1 < i � FK�1and (i; j) 6= (FK�2 + 1,j = f1g(K�1)f0g)�MK (i+1;GK+ (j))�KP(1�k�RK�1+1)^(n2f0;1g(K�1)f1g)�MK (k;n)�K for 1 � i � RK�1P(1�k�K�1)^(n2f0;1g(K�2)f01g)�MK (k;n)�KP(1�k�RK�1+1)^(n2f0;1g(K�1)f1g)�MK (k;n)�K for i = FK�2 + 1, j = f1g(K�1)f0g (42)where �MK(i; j) is the conditional steady state probability of being in state (i; j) in SK , given thatthe original Markov process Mh is in SK andX(1�i�FK�1)^(j2f0;1g(K�2)f10g)f(i; j) = 1The transition diagram for MK�1 is illustrated in Figure 10, where l = K � 1.Thus, we can compute the conditional steady state probabilities for states in SK�1, given thatMhis in SK�1 by constructing a Markov process, MK�1 which has state space SK�1 with all transitionsbeing the same as those in the original Markov process Mh, except that any transition from SK�1 toS�K�1 inMh becomes a transition to state (FK�2+1; f1g(K�1)f0g) in MK�1. Furthermore, the singletransition from state (FK�1; f1g(K�1)f0g) to state (FK�1+1; f1gK) inMh is redistributed back to thestates in SK�1 according to the visit ratios given in Equation (42). This is reected in the followingtheorem (which is the \heterogeneous counterpart" to Theorems 4 and 5).21



+1,111...0F (l-1)

µ
l

Σ
i=1

l-1

µ
i

l,111...0

λ

2,101...0

1,001...0

2,011...0 λλ

µ
1

µ
1

µ
2

λλ λ

µ
l

µ
l

µ
l

-1,111...0R (l-1)

Σ
i=1

l-1

µ
i Σ

i=1

l-1

µ
i

λ

Σ
i=1

l-1

µ
i

λ

+1,111...0R (l-1)

Σ
i=1

l

µ
i

,111...0R (l-1)

µ
l

µ
l

µ
l

λ

Σ
i=1

l

µ
i

λ

Σ
i=1

l

µ
i

,111...0R l

λ

Σ
i=1

l

µ
i

λ

Σ
i=1

l

µ
i

λ

Σ
i=1

l

µ
i

,111...0F l

µ
2

-1,111...0)λ f(R (l-1)f(l,111...0)λ
f(2,011...0)λ

f(2,101...0)λf(1,001...0)λ ,111...0)f(R lλ+1,111...0)f(R (l-1)λ,111...0)f(R (l-1)λ +1,111...0)f(F (l-1)λFigure 10: State transition diagram for subset Sl, where 1 � l < K.Theorem 6 The steady state probabilities solution of the Markov process MK�1 is the conditionalsteady state probabilities solution for the states in SK�1 of the original Markov processMh, given thatMh is in partition SK�1.Proof: Since there is a single return from S�K�1 to fSK�1 [ S+K�1g, using Theorem 3, we can obtainconditional steady state probabilities for the states in fSK�1 [ S+K�1g, given that the original processMh is in fSK�1 [ S+K�1g. Thus we can construct a stochastic complement for the states in fSK�1 [S+K�1g; the transition rate matrix of the corresponding Markov process is:24 QSK�1;SK�1 QSK�1;S+K�1QS+K�1;SK�1 QS+K�1;S+K�1 35whereQi;j is the transition rate sub-matrix corresponding to transitions from partition i to partition j.Note that,QSK�1;S+K�1 has only a single non-zero row which has a single non-zero entry (correspondingto state (FK�1; f1g(K�1)f0g)). QS+K�1;SK�1 , however, has multiple non-zero columns. Each non-zerocolumn that corresponds to a state (i; f0; 1g(K�2)f10g), where (1 � i � RK�1), has only a singlenon-zero element. The non-zero column that corresponds to the state (FK�2 + 1; f1g(K�1)f0g) hasmultiple non-zero entries. Referring to Theorem 3, in order to compute the stochastic complementof Equation (4), we must compute diag(QSK�1;S+K�1e)Z. Computing diag(QSK�1;S+K�1e) is simple,since QSK�1;S+K�1 has only a single non-zero element. Thus, referring to Equation (5), ri = � for icorresponding to state (FK�1; f1g(K�1)f0g) and rj = 0, for all j 6= i.8 This means that, referring toEquation (5) again, we need only to construct zi, i.e., a vector which determines how ri is redistributedbetween the states in SK�1. This redistribution is governed by the original process Mh, namely bythe relative frequencies with which the states in SK�1 are visited, when the original process makes atransition out of SK ; these frequencies are determined by the conditional steady state probabilities ofthe states in SK , i.e., �MK , and the transitions which take the original process, Mh, from states inSK to states in SK�1, either directly or by �rst going to some other partition Sj, j < K � 1, and thencoming back to SK�1 through SK�2. Thus, the redistribution of ri is governed precisely by the vectorf computed in Equation (42), i.e., zi = f .If we continue in this manner, we can solve for all conditional steady state probabilities for states inSK through S1.8In the discussion of Section 2, ri refers to a transition probability and here we are discussing transition rates; however,as mentioned in that section, we can easily convert between the two.22



5.3.1 Analysis of the Aggregated ProcessAs in Sections 4.1 and 4.2, we can now create an aggregated version of Mh which is illustrated inFigure 11 and all that remains to compute are the probabilities of being in each set Sl. The aggregatedprocess is fairly simple to solve and has the following transition rates (refer to Figure 11)�i = ��Mi(Fi;n) for (n 2 f1gif0g(K�i)) and (i = 1; 2; : : : ; K � 1) (43)�ij = �i X(1�k�i)^(n2H)�Mi(k;n) for 1 � j < i � K (44)where H = fc j c = Gi+(d) ^ d 2 f0; 1g(j�1)f1gf0g(K�j)g. Note that the structure of the aggregated
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1 2 l-1 l l+1 KFigure 11: State transition diagram for aggregated system.processes for the heterogeneous servers case can be made identical to that of the aggregated processfor the bulk arrivals case, if we rename the states properly, i.e., in the bulk arrivals case, there is asingle transition due to a departure from state i to state i� 1 and multiple transition due to arrivals,from state i to state j, for all j > i; in the heterogeneous servers case, there is a single transition dueto an arrival from state i to state i+1 and multiple transitions due to departures, from state i to statej, for all j < i. Thus, we can use similar equations to obtain the aggregate steady state probabilitiesfor the heterogeneous servers case as we used for the bulk arrivals case (refer to Section 5.2). In theinterests of brevity, we do not repeat these equations here.Given the steady state probabilities, � = (�(1); �(2); : : : ; �(K)), for the aggregated process, wecan use them to adjust the conditional steady state probabilities computed in Section 5.3.3 to obtainthe �nal solution, i.e., to compute the steady state probabilities for the original Markov process Mhas follows: �Mh(i; j) = �(l) ��Ml(i; j)where �Ml(i; j) is the conditional steady state probability of being in state (i; j) 2 Sl, where j 2f0; 1g(l�1)f1gf0g(K�l), and �(l) is the probability of being in partition Sl.5.3.2 Performance MeasuresFinally, we can compute some performance measures. Let Nh be the average number of customersand Th be the average customer waiting time in the original process Mh. Also, let G(n) be a function23



which returns the number of 1's in the string n. Then,Nh = K�1Xi=1 �(i)24i�1Xk=1G(n)�i(k;n) + FiXk=i k�i(k;n)35+ �(K) "K�1Xk=1 G(n)�K(k;n) + 1Xk=K k�K(k;n)# (45)where �i(k;n) is the conditional steady state probability of being in state (k;n), given that the originalprocess is in Si, and n 2 f0; 1g(i�1)f1gf0g(K�i). Using Little's result, we can obtain Th, that is:Th = 1� 0@K�1Xi=1 �(i)24i�1Xk=1G(n)�i(k;n) + FiXk=i k�i(k;n)35+ �(K) "K�1Xk=1 G(n)�K(k;n) + 1Xk=K k�K(k;n)#! (46)Remarks on Complexity of Solution: As in Sections 5.1 and 5.2, it is useful at this point toconsider the complexity of our technique where the number of multiplications required by the com-putation of Nh is used as the measure of time complexity. As before, the major contributors to thetime complexity of computing Nh are: (a) computation of the aggregate state probabilities and (b)evaluation of the summations in Equation (45). The complexity of computing the aggregate stateprobabilities is O(K2). The complexity of evaluating the �nite summations in Equation (45), eachcorresponding to a partition Sl, is O(Fl) for each 1 � l � K � 1. What remains is the complexityof evaluating the in�nite summation, which may not be apparent directly from Equation (45). Usingthe equations for conditional steady probabilities of SK (refer to Section 5.3.3), we can evaluate thein�nite summation in Equation (45) | in fact, to simplify this problem, we need only to evaluate thefollowing part of the in�nite summation�(K) 1Xk=FK�1+2k�K(k;n)which can be done by using Equation (47) alone; this equation can be simpli�ed to be (assuming that�PKj=1 �j 6= 1): �(K)�K(FK�1 + 1;n) �PKj=1 �j 2666664 FK�1 + 11� �PKj=1 �j + 1 1� �PKj=1 �j!23777775where evaluation of this equation requires O(1) multiplications, and thus evaluation of the entirein�nite summation in Equation (45) requires O(K3 + FK�1) multiplications. Thus, the overall timecomplexity of evaluating Nh is O(K3 + FK�1 + PK�1l=1 F 3l ), where the overall space complexity isO((max1�l�K�1(Fl))2). Note that, one drawback of the heterogeneous case solution (just as in thecase of bulk arrivals) is that the di�erent partitions can not be solved in parallel, as in the homogeneouscase, i.e., we need to \fold the partitions up" one partition at a time, and thus the computation mustnecessarily proceed in a sequential manner. 24



5.3.3 Analysis of MlWe begin by solving for the conditional steady state probabilities of the states in SK, given that theoriginal process Mh is in SK . In the following derivation, referring to Figure 8, we give a set of owbalance equations for the states in SK , where the notation �l(i; j) refers to a state with i customers inpartition Sl, i.e., a partition where the lth server is busy and j = f0; 1g(l�1)f1gf0g(K�l). Furthermore,in the remainder of this sectioniXk=1 �l(k;n) = X(1�k�l�1)^(n2f0;1g(l�1)f1gf0g(K�l))�l(k;n) + X(l�k�i)^(n2f1g(l)f0g(K�l))�l(k;n)where for ease of presentation, we use the simpler notation of Pik=1 �l(k;n).For all states where the number of customers is i, where i � FK�1 + 2:�K(i� 1; j)� = �K(i; j) KXj=1�j�K(i; j) = �K(FK�1 + 1; j) " �PKj=1 �j #(i�FK�1�1) for (i � FK�1 + 2) ^ (j 2 f1gK) (47)For all states where the number of customers is i, where RK�1 + 1 < i < FK�1 + 2:�K(i� 1; j)�+ �K RK�1+1Xk=1 �K(k;n) = �K(i; j) KXj=1�j�K(i; j) = �K(RK�1+1; j) �PKj=1 �j !(i�RK�1�1)+ �KPRK�1+1k=1 �K(k;n)PKj=1 �j ! i�RK�1�2Xn=0  �PKj=1 �j !nIf we let C1 = �PKj=1 �j and assume that C1 6= 1 (a similar derivation can be given for C1 = 1), thenwe can simplify the above equation to�K(i; j) = �K(RK�1 + 1; j)(C1)(i�RK�1�1)+  �KPRK�1+1k=1 �K(k;n)PKj=1 �j ! �1� (C1)(i�RK�1�1)�1� C1 (48)for (RK�1 + 1 < i < FK�1 + 2)^ (j 2 f1gK)For all states where the number of customers is i, where K < i � RK�1 + 1:�K(i� 1; j)�+ �K i�1Xk=1 �K(k;n) = �K(i; j)K�1Xj=1 �j25



�K(i; j) = �K(K; j) �PK�1j=1 �j!(i�K) + i�K�1Xn=0 " �KPK�1j=1 �j  i�n�1Xk=1 �K(k;n)! �PK�1j=1 �j!n#If we let C2 = �PK�1j=1 �j and assume that C2 6= 1 (a similar derivation can be given for C2 = 1), thenwe can simplify the above equation to�K(i; j) = �K(K; j)(C2)(i�k)+ �KPK�1j=1 �j 24 1� (C2)(i�K)1� C2 ! KXk=1 �K(k;n) + i�1Xk=K+1 �K(k;n) 1� C(i�k)21� C2 !35 (49)for (K < i � RK�1 + 1) ^ (j 2 f1gK)At this point, all that remains is to determine expressions for conditional steady state probabilitiesfor the states in SK with K or fewer customers. Let S 0K be a subset of SK containing all states (i; j)where 1 � i � K and j 2 f0; 1g(K�1)f1g. Since the ow balance equations for states in S 0K do nothave \nice" structure, we will determine the conditional steady state probabilities for states in S 0K byemploying the concept of stochastic complementation one last time. The rate of �K out of any statein S 0K, which corresponds to a transition to state (FK�1 + 1; f1gK) in fSK � S 0Kg, can be \folded"back into state (K; f1gK) in S 0K , since this is the only entry state into S 0K from fSK � S 0Kg. In otherwords, we can compute a stochastic complement of the states in S 0K using Theorem 3 and solve thisrelatively small subset of states using any chosen solution technique, as described in [21].At this point the conditional steady state probability for each state i, �K(i; j), is expressed as afunction of conditional steady state probabilities of states with j customers, where j < i. Once wecompute the conditional steady state probabilities for the states in S 0K (using any chosen solutiontechnique, as described in [21]), we can express all other conditional steady state probabilities inEquations (47)-(50) in terms of �K(K; j), and �K(K; j) can be computed using the following equation:1Xi=1 �K(i;n) = 1Thus, we have determined the conditional steady state probability vector, �MK , for all states in SK,given that the original process Mh is in SK .We can now proceed to computing �Ml for 1 � l < K. The transition structure of partition Sl,1 � l < K, is depicted in Figure 10. As can be seen from Figure 10, unfortunately, none of the otherpartitions, Sl, 1 � l � K � 1, are as \well-structured" as SK ; fortunately, they are all �nite andthus we can compute all �Ml , 1 � l � K � 1, using any chosen solution technique, as described in[21]. At this point, we have obtained all the conditional steady state probabilities9 for each set Sl,1 � l � K � 1.9As pointed out in Section 5.3.1, all that remains is to solve the aggregated process of Figure 11 and adjust theconditional steady state probabilities accordingly. Thus, we have a complete solution for the steady state probabilitiesof a heterogeneous multi-server threshold queueing system with hysteresis.26



6 Numerical ExamplesIn this section we present numerical examples of the performance of the di�erent variations of thethreshold-based queueing system with hysteresis, using expected system response time as the perfor-mance measure of interest.We �rst consider the homogeneous servers case. Figures 12 and 13 illustrate examples of homo-geneous server systems with Poisson arrivals, where K = 2 and 5, respectively, and � = 1:0. In
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Figure 12: Results for K = 2; � = 1:0 and di�erent forward and reverse thresholds.both cases, we vary the forward and reverse threshold vectors and observe how the queueing systemwith hysteresis maintains a level of expected system response time for large input ranges. From these�gures, we observe that the average response time curves are di�erent from the usual queueing (e.g.,M/M/K) response time curves. This is due to a combination of threshold values and workload { thatis, the response time may decrease with higher loads (as can be seen in �gures below) since at higherloads we may cross some threshold(s) \more frequently" (on the average) which allows us to operatewith a greater number of servers more frequently (on the average). Note that, in these experiments, thedi�erence in expected response time between systems with di�erent threshold vectors (with all otherthings being equal) is relatively small. Of course, the expected cost of those systems would necessarilyhave to be di�erent, since (as was mentioned in Section 1) it is a function of various factors, includingthreshold vector values. This indicates that there is room for improvement of the cost/performanceratio of the system | a topic (although outside the scope of this paper) we intend to pursue in ourfuture work.We next consider the bulk arrivals variation of the problem. Figure 14 illustrates an example of ahomogeneous servers system with a bulk arrival process, that is, the arrival process is Poisson whereeach arrival corresponds to an arrival of i customers with probability gi, where 1 � i � 3; in this27



0

2

4

6

8

10

12

14

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
ve

ra
ge

 R
es

po
ns

e 
T

im
e

Average Arrival Rate

Response Time for K=5

F=[8,10,12,14], R=[2,4,6,8]
F=[10,12,14,16], R=[2,4,6,8]
F=[8,10,12,14], R=[4,6,8,10]
F=[8,10,12,14], R=[6,7,9,11]
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