
57

The Online Knapsack Problem with Departures
BO SUN, The Chinese University of Hong Kong, Hong Kong SAR
LIN YANG∗, Nanjing University, China
MOHAMMAD HAJIESMAILI, University of Massachusetts Amherst, USA
ADAMWIERMAN, California Institute of Technology, USA
JOHN C.S. LUI, The Chinese University of Hong Kong, Hong Kong SAR
DON TOWSLEY, University of Massachusetts Amherst, USA
DANNY H.K. TSANG, The Hong Kong University of Science and Technology (Guangzhou), China and The
Hong Kong University of Science and Technology, Hong Kong SAR

The online knapsack problem is a classic online resource allocation problem in networking and operations
research. Its basic version studies how to pack online arriving items of di�erent sizes and values into a
capacity-limited knapsack. In this paper, we study a general version that includes item departures, while also
consideringmultiple knapsacks andmulti-dimensional item sizes. We design a threshold-based online algorithm
and prove that the algorithm can achieve order-optimal competitive ratios. Beyond worst-case performance
guarantees, we also aim to achieve near-optimal average performance under typical instances. Towards this
goal, we propose a data-driven online algorithm that learns within a policy-class that guarantees a worst-case
performance bound. In trace-driven experiments, we show that our data-driven algorithm outperforms other
benchmark algorithms in an application of online knapsack to job scheduling for cloud computing.

CCS Concepts: • Theory of computation ! Online algorithms; • Applied computing ! Decision
analysis; • Networks! Network economics.

Additional Key Words and Phrases: online knapsack problems; knapsack with departures; data-driven algo-
rithms; competitive ratio; cloud job scheduling

ACM Reference Format:
Bo Sun, Lin Yang, Mohammad Hajiesmaili, AdamWierman, John C.S. Lui, Don Towsley, and Danny H.K. Tsang.
2022. The Online Knapsack Problem with Departures. Proc. ACM Meas. Anal. Comput. Syst. 6, 3, Article 57
(December 2022), 32 pages. https://doi.org/10.1145/3570618

1 INTRODUCTION
The online knapsack problem (OKP) is a classic online algorithms problem that studies how to
pack arriving items of di�erent sizes and values to capacity-limited knapsacks. It models an
online decision-making process where one provider allocates resources (i.e., knapsack capacity)
to sequentially arriving customers (i.e., items) to maximize the total return. OKP has been widely
∗Corresponding author for this work; the �rst two authors contribute equally to this work.

Authors’ addresses: Bo Sun, bsun@cse.cuhk.edu.hk, The Chinese University of Hong Kong, Hong Kong SAR; Lin Yang,
linyang@nju.edu.cn, Nanjing University, China; Mohammad Hajiesmaili, hajiesmaili@cs.umass.edu, University of Mas-
sachusetts Amherst, USA; Adam Wierman, adamw@caltech.edu, California Institute of Technology, USA; John C.S. Lui,
cslui@cse.cuhk.edu.hk, The Chinese University of Hong Kong, Hong Kong SAR; Don Towsley, towsley@cs.umass.edu,
University of Massachusetts Amherst, USA; Danny H.K. Tsang, eetsang@ust.hk, The Hong Kong University of Science and
Technology (Guangzhou), China and The Hong Kong University of Science and Technology, Hong Kong SAR.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the
full citation on the �rst page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2476-1249/2022/12-ART57 $15.00
https://doi.org/10.1145/3570618

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

57:2 Bo Sun et al.

used in networking and operations research applications, such as online job scheduling in cloud
computing [32], online routing of virtual circuits [6], admission control in 5G mobile network
slicing [25], online electric vehicle charging in smart grids [27], online hotel booking in revenue
management [16], online bidding in repeated auctions [5], and beyond.

In the most basic version of OKP, there is only one knapsack, and each item is characterized by its
value and one-dimensional (scalar) size. The problem is to irrevocably decide whether to admit each
item upon its arrival with the goal of maximizing the total values of admitted items while respecting
the capacity of the knapsack. The sequence of items can only be revealed one-by-one and may
even be adversarial. From this basic version, a wide array of generalizations have been considered.
Three important extensions are: (i) the online multiple knapsack (OMK) problem, where there exist
multiple knapsacks and the decision becomes whether to admit each item, and which knapsack the
item should be assigned to if admitted; (ii) the online multi-dimensional knapsack (OMdK) problem,
where each item has a multi-dimensional (vector) size and the decision is whether to admit each
item while simultaneously respecting multi-dimensional capacity limits; (iii) the online knapsack
with departures (OKD) problem, where arriving items depart after �nite time duration.
The most general form of OKP includes all three of these extensions: online multiple, multi-

dimensional knapsacks with departures. It is this version that is most applicable to the applications
listed above. For example, in the case of online cloud job scheduling, jobs have multi-dimensional
requirements (e.g., computing, memory), there are multiple knapsacks, i.e., VM servers, and jobs
depart after receiving the desired amount of service. Similarly, the application of online hotel
booking also requires all three extensions. Di�erent hotels correspond to multiple knapsacks, each
with multiple types of rooms (e.g., single/double room). Then a new order requests to book a certain
numbers of di�erent room types (e.g., one single room and one double room for three people)
and stay for a given duration. However, there currently do not exist algorithms with provable
guarantees for this general setting. Providing the �rst such algorithm is the goal of this paper.
More speci�cally, OKP has been extensively studied under the framework of competitive anal-

ysis [27–29, 32, 33] with the goal of designing online algorithms that can achieve the minimal
competitive ratio, which is the worst-case ratio of values obtained by the o�ine algorithm in
hindsight and the online algorithm. It is well-known that even the most basic OKP has unbounded
competitive ratios [23]. Thus, this line of research aims to achieve competitive ratios that depend
on setup information, such as the numbers of knapsacks and dimensions, knapsack capacities, etc.
Optimal online algorithms have been designed for the classic OKP [32, 33] and OMK [27, 33] settings,
both achieving a competitive ratio of ⇥(ln\), where \ is the �uctuation of the item value density
(i.e., the maximum value-to-size ratio). More recently, OMdK was shown to have a competitive ratio
of $ (" ln\) that increases linearly in the the number of knapsack dimension" [32]. This result
has been then improved to $ (ln("\)), which matches its lower bound ⌦(ln("\)) and thus is
order-optimal [29].

While optimal algorithms (in terms of competitive ratios) exist for settings with multiple knap-
sacks and multi-dimensional items, handling extensions with departures has proven more di�cult.
A recent result from [32] extends OMdK to allow item departures. In particular, it treats each time
slot in a) -slot horizon as one dimension of the knapsack and designs an online algorithm that
achieves a competitive ratio of $ () ln\), linearly increasing in the time horizon) . Based on this
time-expanded OMdK model, the competitiveness result can be further improved by the theoretical
improvement of OMdK in [29] to $ (ln()\)); however, the dependence on) remains and limits
practical use. Further, both results focus on a single knapsack.

One may ask if it is possible to eliminate the dependence on) in the case of departures. Results
from a related area suggest that this may be possible. Speci�cally, in another classic problem, online
interval scheduling [16, 22], which can be considered as a special case of OKD with item durations

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

The Online Knapsack Problem with Departures 57:3

Table 1. State-of-the-art results for OKP and its extensions. All papers (except [29]) assume either the sizes of
items are much smaller than the capacity of knapsacks or the item is fractionally admissible. Capacities of all
dimensions are identical. We use⇥(·) to denote a matching upper$ (·) and lower bound ⌦(·), which indicates
order optimality. Parameters \ and U are the fluctuation ratios of value density and duration, respectively.

paper knapsack dimension duration value density competitive ratio

[27, 28, 32, 33] 1 1 +1 [1, \] ⇥(ln\)
[27, 33] 1 +1 [1, \] ⇥(ln\)
[29] 1 " +1 [1, \] ⇥(ln("\))
[32] 1 " [1,U] [1, \] $ ("U ln\)
[16] 1 1 [1,U] 1 ⇥(lnU)

Theorem 1 1 [1,U] [1, \] ⇥(ln(U\))
Theorem 4 " [1,U] [1, \] ⇥(ln("U\))

bounded within [⇡,⇡] but with �xed value density and item size, the optimal competitive ratio
has been shown to be ⇥(lnU), where U = ⇡/⇡ is the duration �uctuation ratio. Thus, one may
conjecture whether the optimal competitive ratio of OKD in its most general form is $ (ln("U\)).
In this paper, the core open question we answer is:

Is there an algorithm for OKD that can achieve a competitive ratio of $ (ln("U\))?
We �rst provide two impossibility results that show the competitive ratios of direct extensions

of prior algorithms [29, 31, 33] are lower bounded by ⌦(U) or ⌦(ln(⇡)), which is either linear in
the duration ratio U or logarithmic in the maximum duration ⇡ (See Lemma 1). This motivates us
to develop new algorithms and analysis tools to attain the target competitive ratio in this work.

1.1 Contributions
Our main result shows that the answer to the above question is “yes.” As Table 1 shows, we provide
the �rst algorithm with a competitive guarantee for the case of multiple knapsacks with multi-
dimensional items and item departures. Further, we achieve an order-optimal competitive ratio.
This result opens the door for a wide array of applications, like online job scheduling, which require
the full generality of multiple knapsacks with multi-dimensional items and item departures.

Our algorithm extends a classic approach in the OKP literature to OKD settings, which decomposes
the algorithm into subroutines that check the admissibility of each item into each single knapsack,
and adopts a threshold-based algorithm to decide the admissibility. The algorithmic challenge lies in
the design of threshold functions, andwe formalize the challenge involved in this via an impossibility
result that shows that two state-of-the-art designs fail to achieve the target ratio$ (ln("U\)) under
one of two types of hard instances (see Lemma 1). To overcome this challenge, we design a threshold
function that balances the worst-case ratios over the two types of instances that lead to di�culties
for current state-of-the-art approaches. This results in an order-optimal competitive ratio. Further,
our design provides a class of parameterized threshold functions and characterizes the regimes of
the parameters such that all thresholds with properly selected parameters can achieve the target
competitive ratio (see Theorems 1 and 4).

Underlying our competitive analysis is a novel instance partitioning procedure. Because analyzing
the competitive ratio of OKD directly over a) -slot horizon has proven di�cult, we take advantage
of the weak dependence of items across the horizon, leading to a partitioning of one instance into
sub-instances with a shorter interval. To be more precise, as each item in OKD stays in the knapsack

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

57:4 Bo Sun et al.

for at most ⇡ consecutive slots, the items that start at time C are only correlated with items in slots
{C � ⇡ + 1, . . . , C + ⇡ � 1}. Leveraging this structure, we use a novel partitioning technique that
reduces the competitive analysis over the original instance to sub-instances, each of which is of
length 3⇡ . This partitioning greatly simpli�es the worst-case analysis under two di�erent types
of hard instances, making it possible to design a threshold function that balances the worst-case
performances from the two cases. The partitioning procedure together with the newly-designed
threshold function is essential to improve the dependence of competitive ratios on item duration,
from ⌦(U) or ⌦(ln⇡) of prior designs to the optimal order ⇥(lnU).

A common critique of competitive analysis is that it leads to algorithms optimized for the worst-
case instances. As a result, such algorithms can under-perform for typical instances from real-world
applications (see comparison in Figures 4 and 5 in §6). Motivated by this, we go beyond worst-case
analysis and use our analysis to derive a data-driven online algorithm that learns to optimize its
average performance based on past data while maintaining a worst-case competitive guarantee.
Theorem 3 bounds the competitive ratio for the data-driven algorithm and then we empirically
demonstrate its performance in §6 using an application to job scheduling in cloud computing. The
results highlight that the data-driven online algorithm provides signi�cant improvement in practice,
while still maintaining bounded worst-case performance.

The remainder of the paper is structured as follows. We begin by studying the online multiple
one-dimensional knapsack problem with departures in §2-4. We �rst introduce the model and its
application scenarios in §2. Then, we show our algorithms and main results in §3. Proofs of the
main results are deferred to §4. Next we show extensions to the multi-dimensional case in §5. In §6,
we present numerical experiments using real traces from cloud job scheduling. Finally, we review
the related literature in §7 and draw conclusions in §8.

2 ONLINE MULTIPLE KNAPSACKS WITH DEPARTURES
2.1 Problem statement
Consider knapsacks in a slotted time horizon [)] = {1, . . . ,) }, where each knapsack : 2 [] has
capacity⇠: 2 R+. A total of # items arrive sequentially and each item = is characterized by its item
information I= = {0=, {F=: , E=: ,T=: }:2 [] }, where 0= is the arrival time, and for each knapsack : ,
F=: and E=: are the size and value, and T=: := {B=: , . . . , B=: + 3=: � 1} is the set of time slots that
item = requests to stay in knapsack : from its starting time B=: to its departure time B=: + 3=: � 1.
The set T=: contains 3=: consecutive time slots and we call 3=: the duration of the item.

Upon arrival of item =, a decision maker observes its item information I= and determines (i)
whether to admit this item, and (ii) which knapsack this item should be assigned to if it is admitted.
Let x= = {G=: }:2 [] denote the decision variable, where G=: 2 {0, 1} indicates whether to admit
item = to knapsack : and

Õ
:2 [] G=: = 0 represents declining the item. The goal is then to design

an online algorithm to causally determine x= based on the item information up to =, i.e., {I=0}=0 = ,
that maximizes the total value of all admitted items while ensuring the capacities of all knapsacks
not to be violated over the time horizon.

Let I := {I=}=2 [#] denote an instance of OKD. Given I, the o�ine problem can be formulated as

(o�ine OKD) max
G=:

’
=2 [#]

’
:2 []

E=:G=: , (1a)

s.t.
’

=2 [#]:C 2T=:
F=:G=: ⇠: ,8: 2 [], C 2 [)], (1b)’

:2 []
G=: 1,8= 2 [#], (1c)

G=: 2 {0, 1},8= 2 [#],: 2 [] . (1d)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

The Online Knapsack Problem with Departures 57:5

Let OPT(I) and ALG(I) denote the values obtained by the o�ine problem (1) and an online
algorithm under the instance I. The competitive ratio of the online algorithm is de�ned as the
worst-case performance ratio of the o�ine and online algorithms, i.e., CR = maxI OPT(I)/ALG(I).
Our goal is to design an online algorithm that can achieve the smallest competitive ratio.

2.2 Application scenarios
In the following, we highlight a few sample application scenarios that could be captured by OKD.
Online job scheduling in cloud computing. A cloud provider allocates cloud resources (e.g., com-

puting, memory) from a pool of VM servers to # cloud jobs that arrive sequentially over a time
horizon) . Upon the arrival of a job = 2 [#], it submits its request information that includes its
resource requirementF=: , processing time T=: , and the corresponding value (willingness-to-pay)
E=: for each server : . Each job can be processed in any server : 2 [] but it may have di�erent
requests and values across di�erent servers that are located in di�erent regions, con�gured in
di�erent resource bundles (e.g., a bundle consisting of 2vCPUs and 8GB memory), and run at
di�erent operating costs. Upon receiving each job, the cloud provider then decides whether to
admit this job and if admitted, which server the job should be assigned to.
As pointed out by [28, 32], OKD also captures the model of dynamic pricing for cloud resource

allocation. In this problem, each job = has its own private value E=: for server : , which will not be
submitted together with its request. The provider’s decision is to post a set of prices for available
servers. Then the job itself decides to take which price to join, or leave the platform. The online job
scheduling and dynamic pricing converge to the same problem when we focus on threshold-based
algorithms, where the threshold values (See equations (2) and (17)) are used to determine the
scheduling or set as the posted prices in the two applications, respectively.
Online reservation problem.Motivated by the emerging online shopping and sharing-economy

platforms such as Expedia (for hotel booking), Turo (for car rental), OpenTable (for restaurant
reservation), etc., the platform service provider often faces an online reservation problem [16],
which can be modeled by the OKD. Take the online hotel booking as an example, booking orders
arrive sequentially, and for each potential hotel : (after being �ltered based on prices and locations),
each order = speci�es how many rooms and how many people in each room (modeled byF=:), the
check-in and check-out dates (modeled by T=:) and the value E=: . The provider then immediately
decides to accept or decline each order, and which hotel the order should be allocated to if the order
is accepted. Using a similar argument as in the previous example, the setting can be adapted to
include dynamic pricing to cope with the private values of the orders.

Other applications. OKD has similarities with several other online problems in the literature. For
example, the o�ine formulation of OKD can also be used to model the generalized assignment
problem [20] where bins correspond to knapsacks. OKD is a special case of the online generalized
assignment problem by putting additional assignment restrictions speci�ed in Assumptions 1-3.
Similarly, the problem of electric vehicle charging scheduling with �xed charging rate [15], the
online tra�c routing problem [19], the online appointment booking in healthcare [26] can all be
considered as special cases of OKD.

2.3 Additional Notations and Assumptions
Even for the most basic version of OKP, it is impossible to design competitive algorithms without
making additional assumptions [23]. Here, we present three standard technical assumptions that
capture the key features of the abovemotivating applications and allow the derivation of competitive
bounds for the proposed algorithms.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

57:6 Bo Sun et al.

First, de�ne the value density of item = in knapsack : as the item value per unit size per unit time,
i.e., E=:/(F=:3=:). To distinguish low-valued and high-valued items, we assume the value density
varies within a bounded set. This assumption is consistent with those in the literature [29, 32, 33].

A��������� 1 (V���� ������� �����������). The value density of each item = in knapsack : is
bounded, i.e., E=:/(F=:3=:) 2 [1, \:],8= 2 [#] and value density (�uctuation) ratio is de�ned as \: .

Next, since each item only stays in the knapsack for a �nite duration that is much smaller than
the time horizon, we assume that the duration 3=: of the item = in knapsack : is bounded.

A��������� 2 (D������� �����������). The duration of each item = in knapsack : is bounded,
i.e., 3=: 2 [⇡: ,⇡:], 8= 2 [#] and duration (�uctuation) ratio is de�ned as U: = ⇡:/⇡: .

The duration ratio U: is a dimensionless quantity that can model the variation of item duration.
This assumption has been commonly used in the classic online interval scheduling problem [16, 22].
Under this assumption, OKD can be considered a generalized version of the online interval scheduling
problem with varying value density and item sizes.
Last, we assume the size of each item is upper bounded and smaller than the capacities of the

knapsacks. This eliminates the irrelevant items that are inadmissible to knapsacks.

A��������� 3 (U���� ����� �� ���� ����). The size of each item = is upper bounded, i.e.,
F=: Y: ⇠: ,8: 2 [],= 2 [#].

Finally, we want to emphasize that all three assumptions are consistent with the motivating
applications we have discussed. For example, in the online job scheduling, the value of each job = is
proportional to the required resources, e.g., computing, memory (modeled byF=:), and its running
duration (modeled by 3=:) in a server : . Each job only occupies the resources for a �nite duration
3=: and then the required resources can be released for future jobs. In addition, the resources
required by each job are smaller than the capacity provided by a server.

3 ALGORITHMS AND MAIN RESULTS
3.1 Algorithms
Our main results consist of two novel algorithms. First, in §3.1.1, we propose an online algorithm
that achieves the order-optimal competitive ratio for OKD. Then, in §3.1.2, we extend this algorithm
to design a data-driven algorithm that can learn to optimize the average-case performance while
ensuring a competitive bound.

3.1.1 A worst-case optimized algorithm for OKD. We propose a simple yet e�ective online algorithm
(OA-OKD) to solve OKD in Algorithm 1. The algorithm works as follows. Upon the arrival of item =,
it �rst determines the admissibility of the item to each knapsack (lines 5-7) by calling an online
threshold-based algorithm (OTA) subroutine in Algorithm 2, which takes a carefully-designed
threshold function q and real-time knapsack utilization over concerned time slots as inputs. If item
= is admissible to at least one knapsack, OA-OKD then admits item = and assigns it to the knapsack
: 0 that provides the maximum value among all admissible knapsacks. Otherwise, item = is rejected
(lines 8-13). Finally, the knapsack utilization is updated (line 14), and is used to determine the
admissibility for the next item. The key step is the admission control of items to each knapsack via
OTA in Algorithm 2. To check admissibility, OTA de�nes a threshold value (line 3) as

� =
’

C 2T
Fq (IC) , (2)

where q (IC) can be interpreted as the marginal cost of the unit item if it stays in the knapsack
in slot C , and is a function of the real-time knapsack utilization IC . Thus, � is the estimated total

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

The Online Knapsack Problem with Departures 57:7

Algorithm 1 Online Algorithms for Online Multiple Knapsacks with Departures (OA-OKD)
1: input: threshold function q = {q: }:2 [] , knapsack capacities {⇠: }:2 [] ;
2: output: admission and assignment decision x= = {G=: }:2 [] ;
3: initialization: set initial knapsack utilization I (0):C = 0,8: 2 [], C 2 [)];
4: for each item = with item information I= = {0=, {F=: , E=: ,T=: }:2 [] } do
5: for each knapsack : 2 [] do
6: call Algorithm 2 to check admissibility Ĝ=: = OTA(I=,q: , {I (=�1):C }C 2T=: ,⇠:);
7: end for
8: if

Õ
:2 [] Ĝ=: > 0 then

9: admit item = and assign it to knapsack : 0 = argmax:2 []:Ĝ=:=1 E=: ;
10: set G=:0 = 1 and G=: = 0,8: 2 [] \ {: 0};
11: else
12: decline item = and set G=: = 0,8: 2 [];
13: end if
14: update knapsack utilization I (=):C = I (=�1):C +F=:G=: ,8: 2 [], C 2 T=: .
15: end for

Algorithm 2 Online Threshold-based Algorithm for Admission Control (OTA)
1: input: item information {E,F ,T }, threshold function q , utilization {IC }C 2T , capacity ⇠;
2: output: admission decision Ĝ ;
3: determine a threshold value � =

Õ
C 2T Fq (IC);

4: if E � � and IC +F ⇠,8C 2 T then
5: item is admissible and set Ĝ = 1;
6: else
7: item is inadmissible and set Ĝ = 0.
8: end if

cost of the item that has size F and stays in the knapsack over the time slots in T . An item is
admissible if it passes a threshold check, i.e., item value is greater than or equal to the threshold
value (E � �), and a capacity check, i.e., the knapsack capacity is not violated due to admission of
the item (IC +F ⇠,8C 2 T). The core of OA-OKD is the design of the threshold function q such that
the competitive ratio of OA-OKD can be guaranteed. For notational convenience, let OA(q) denote
OA-OKD with threshold function q and CR(OA(q)) denote the corresponding competitive ratio.

OA(q) consists of two parts: decomposing the multiple knapsack problem into the admissibility
check of each individual knapsack and admission control of each individual knapsack via OTA. The
ideas of both parts can date back to the early work [33] for the classic OKP and we extend those
ideas to settings that allow item departures in OA(q). Although extending the algorithm from OKP

to OKD is straightforward and some similar extensions exist in the literature (e.g., the time-expanded
knapsack in [32]), designing a threshold function q with the tightest competitiveness guarantee
for OKD is still an open problem. The main algorithmic contribution of this paper is to design q to
achieve an order-optimal competitive ratio for OKD, and this is made possible by a careful redesign
of the threshold function and a novel partitioning technique in the analysis of the competitive ratio.
We discuss this more in §3.3.

3.1.2 Beyond the worst case: a data-driven algorithm for OKD. As is typical of optimal competitive
algorithms, OA(q) is conservative in its decisions in order to ensure an order-optimal competitive

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

57:8 Bo Sun et al.

Algorithm 3 Data-driven online algorithm (DOA)
1: input: bounds of item information {\: ,U: , Y: }:2 [] , knapsack capacities {⇠: }:2 [] ;
2: output: reward of each round '✓ (I✓ ,q ✓);
3: for each round ✓ = 1, . . . , ! do
4: select the threshold function q ✓ using a data-driven approach;
5: run OA(q ✓) to execute the instance I✓ and collect reward '✓ (I✓ ,q ✓).
6: end for

ratio. In this section, we propose an algorithm that moves beyond optimizing for the worst-case.
The idea is to adaptively learn a policy that works well on practical instances by using a policy
class that ensures any algorithm selected has a competitive ratio guarantee. In particular, consider
running OA(q) repeatedly for ! rounds. At the beginning of round ✓ 2 [!], we select the threshold
function q ✓ and then run OA(q ✓) to execute the instance I✓ . Let '✓ (I✓ ,q ✓) denote the reward of
round ✓ . The goal of the data-driven online algorithm (DOA) is to maximize the average reward
over ! rounds. Its pseudo-code is summarized in Algorithm 3. We say DOA achieves good average
performance if its average reward is close to that obtained by a �xed threshold function selected in
hindsight, i.e., qoff = argmaxq

Õ
✓2 [!] '

✓ (I✓ ,q)/!.
This approach has been successfully applied to the basic OKP and online set cover problem in [30].

However, existing results cannot be generalized to cope with the two technical challenges in our
setting: (i) how to restrict the selection of q to a feasible set, which not only contains q that can
achieve good average performance under typical instances but also has guaranteed worst-case
performance; (ii) given the feasible set, how to design a data-driven algorithm to selectq to achieve a
good average performance. In this paper, we provide theoretical results to tackle the �rst challenge
(see Theorem 3) and show a viable empirical approach to solve the second challenge (see the
numerical results in §6).

3.2 Main results
We now state our main results, which provide an upper bound on the competitive ratio of OA(q)
(Theorem 1), a lower bound on the competitive ratio of any online algorithm (Theorem 2), and a
competitive ratio bound for the data-driven algorithm (Theorem 3).

T������ 1. Under Assumptions 1-3, there exists W: = $ (ln(U:\:)),8: 2 [], if the item size is
upper bounded by Y: ⇠: ln 2/W: ,8: 2 [], and the threshold function is qW := {qW:: }:2 [] , where

qW:: (I) = exp (IW:/⇠:) � 1, I 2 [0,⇠:],8: 2 [], (3)

then the competitive ratio of OA(qW) is $ (ln(U\)), where \ = max:2 [] \: and U = max:2 [] U: .

T������ 2. There is no online algorithm that can achieve a competitive ratio smaller than
⌦(ln(U\)) for the online multiple one-dimensional knapsacks with departures.

Combining the upper bound result in Theorem 1 and the lower bound result in Theorem 2, we
conclude that our proposed OA(qW) achieves an order-optimal competitive ratio for OKD. Before
proceeding to the detailed proofs (§4 for Theorem 1 and §5 for Theorem 2), we �rst provide
intuitions underlying the design and analysis of OA(qW). In fact, Theorem 1 provides a class of
threshold functions in (3) parameterized by W := {W: }:2 [] . When W and the upper bound of item
size (i.e., {Y: }:2 []) are both in the proper regimes, we have CR(OA(qW)) = $ (ln(U\)).
Besides the optimal competitiveness guarantee, Theorem 1 also provides two additional new

results compared to the competitive algorithms for OKP in the literature.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

The Online Knapsack Problem with Departures 57:9

ߠܦ

ͳ

ߠ

utilization ܥݖͲ

Design-II

ߠߙ

Design-I

Our design

(a) Plots of di�erent designs

Designs Threshold functions

Design-I [32, 33] q� (I) =
(
1 I 2

⇥
0, ⇠

1+ln\

⌘
4 (1+ln\)I/⇠�1 I 2

⇥
⇠

1+ln\ ,⇠
⇤

Design-II [29] q II (I) = 2bI log(⇡\)/⇠c � 1, I 2 [0,⇠]

Our design qwco (I) = 4I ln(U\+1) � 1, I 2 [0,⇠]

(b) Formulas of di�erent designs

Fig. 1. Illustrating threshold functions of two benchmark designs and our proposed design. Design-I consists of
a flat segment and an exponential segment. Design-II is a discretized version of an exponential function (i.e., the
dashed line). Our proposed design is a continuous exponential function in Equation (3) with Wwco = ln(U\ +1).

First, to design online algorithms for OKP [28, 29, 31, 33], Y: is commonly assumed to be in�nites-
imal compared to the knapsack capacity, i.e., Y: ⌧ ⇠: ,8: 2 [], since the in�nitesimal setting can
eliminate challenges from the size variations of items and simplify the algorithms to focus on the
key challenge from the varying value density. Our result removes the in�nitesimal assumption and
characterizes the regime of item size to achieve an order-optimal competitive result.
Second, Theorem 1 empowers us to design a data-driven online algorithm, which cannot only

have worst-case performance guarantees but also learn from past data to optimize average-case
performance of typical instances in real-world applications. In particular, for a given target compet-
itive ratio V , we can characterize a parameter set �(V) such that CR(OA(qW)) V,8W 2 �(V), which
is formally presented as follows.

T������ 3. Given V � V̂ := 10 + 12
ln 2 ln(U\ + 1), OA(qW) is V-competitive if the parameter

W := {W: }:2 [] is chosen from �(V), where the parameter set �(V) ✓ R is given by

�(V) =
n
W : (V � 1)Z: � 2,

⇣ (V � 1)Z:
2
p
2

exp
⇣ (V � 1)Z:

2

⌘⌘
 W: ln 2 ·min

n (V � 4)
6

,
⇠:
Y:

oo
, (4)

where Z: := � ln 2/(6U:\:) and, (·) is the Lambert, function.

Theorem 3 essentially speci�es a class of parameterized online algorithms for OKD that can
provide the same competitiveness guarantee. Note that although those algorithms provide the same
guarantee in the worst-case, their performances can be distinguished in practice since “typical
instances” from real-world applications can be far from the worst-case instances. Theorem 3 further
gives us the design space to choose the parameter of qW with worst-case guarantees. Thus, in
Algorithm 3, we can use a data-driven approach to adaptively select W (equivalently qW) from �(V)
to learn the best choice of W in an online manner and, in the meantime, ensure the overall worst-case
performance V . We evaluate the performance of data-driven algorithms in §6.1.

3.3 Discussion
We end this section with a discussion of the design decisions in our algorithm, and provide a
contrast to the design of prior algorithms. In particular, Figure 1 compares our proposed design qW
with two important state-of-the-art designs q I and q II. q I is most widely used (e.g., [32, 33]) and
has been proven optimal for the basic OKP and OMK. q II has recently been proposed for OMdK in [29],

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

57:10 Bo Sun et al.

where it can achieve the order-optimal competitive ratio. Although these benchmark designs are
the best possible designs for the classic OKP, OMK, and OMdK, applying them directly in OA(q) cannot
achieve the desired competitive results for OKD. We formalize this in the following lemma.

L���� 1. Under Assumptions 1-3,
(1) if the threshold function is given by Design-I, then CR(OA(q �)) = ⌦(U ln\);
(2) if the threshold function is given by Design-II, then CR(OA(q � �)) = ⌦(ln(⇡\)).

The above lemma gives impossibility results for applying the benchmark designs to achieve an
order-optimal competitive ratio⇥(ln(U\)). We provide a complete proof of Lemma 1 in Appendix A.
In what follows we give insights on why both designs fail to achieve order-optimal performances.
In fact, Design-I and Design-II fail due to two di�erent types of worst-case instances. To be more
precise, given a threshold function, the input instances that satisfy Assumptions 1-3 can be divided
into two types: capacity-free instances where the �nal utilization values of all knapsacks lie below
the capacity limits and hence the admission control in OTA is purely determined by the threshold
check; and capacity-limited instances where the utilization of at least one knapsack in one slot
approaches the capacity limit and thus admission control depends on both threshold and capacity
checks. The lower bounds of Design-I and Design-II result from their poor performances compared
to o�ine algorithms under capacity-limited and capacity-free instances, respectively.
In particular, q I neglects the item duration and thus any item with value density \ regardless

of its duration can pass the threshold check in OTA. Then, the knapsack capacity can be quickly
fully �lled by short-duration items, while long-duration items that arrive later are declined due to
capacity check. In contrast, the o�ine algorithm admits the long items declined by OTA and this
leads to a unavoidable worst-case ratio that increases linearly in the duration ratio U .
To make order improvement in competitive ratios, q II proactively prohibits the occurrence

of capacity-limited cases, by setting the terminal value q II (⇠) approximately equal to ⇡\ . If an
item has size F and its duration has overlap with any nearly full slots, then the item faces a
threshold value of at least � ⇡ F⇡\ , which is the largest possible value of a F-sized item. Thus,
the item will be declined due to the threshold check, and in this way, q II essentially avoids the
occurrence of capacity-limited cases. However,q II is over-conservative, reserving too much capacity
for future high-valued items that may never come, and this results in a lower bound ⌦(ln(⇡\))
under capacity-free instances.

We note that the threshold functions of existing designs in the literature are generally of the form
qW (I) = $ (exp(IW/⇠)), where W is a critical parameter. A larger W leads to a steeper exponential
function and accordingly a more conservative algorithm since more capacity will be reserved for
high-valued items that may arrive later. q � and q � � can be considered as two special cases by setting
W = $ (ln\) and W = $ (ln(⇡\)), respectively. To overcome the limitations of q � and q � � , we directly
analyze the competitive performance of the algorithm with the general parameterized threshold
function qW . We can show that its competitive ratio is $ (W) under capacity-free instances and
$ (U\W/(exp((W � ln 2)/2) � 1)) under capacity-limited instances (see §4.2 for more details). Thus,
we choose W = $ (ln(U\)) to tradeo� the performances under the two types of hard instances.

The key challenge in the competitive analysis is how to attain the optimal dependence on item
duration ratio U . Since an instance for OKD is de�ned over a long time horizon [)], the values
of the online items may not be comparable with the o�ine values over the whole time horizon.
Fortunately, as the maximum duration of each item is ⇡ , the items in OKD are only correlated
over a much shorter interval, i.e., the items that start in slot C are only correlated with items that
start in slot {C � ⇡ + 1, . . . , C + ⇡ � 1}, and this motivates us to partition an instance into smaller
sub-instances based on item’s starting time and analyze the performance for each sub-instance.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

The Online Knapsack Problem with Departures 57:11

Combining the new design of the threshold function with the corresponding new analysis, we
show that our design achieves an optimal order competitive ratio.

R����� 1. We focus on threshold-based algorithms in this paper. In the literature, a class of
online primal-dual algorithms (OPD) [6, 7] has also been proposed to solve online knapsack problems.
However, it is still challenging to extend OPD in [6] to the setting of OKD (See details in §7). In addition,
to attain the optimal competitive ratio, we explicitly take advantage of the structural property of OKD.
For example, the weak dependence of items across time horizon is utilized to partition the original
instance into sub-instances with smaller intervals in our analysis. Such problem structure is crucial
in our algorithm design and analysis. However, it is unclear how to take into account such structural
information when designing OPD yet. Therefore, it is non-trivial to design OPD to achieve the optimal
competitive ratio of OKD, but it is a promising future direction to explore.

4 COMPETITIVE ANALYSIS
In this section, we analyze the competitive ratio of the online algorithm OA(qW) and formally prove
Theorem 1 and Theorem 3. We �rst sketch the proofs of both theorems based on two technical
lemmas and then prove the lemmas in §4.1 and §4.2, respectively.
To facilitate the competitive analysis of OA(qW), we �rst de�ne ancillary problems for OKD

with knapsacks. Let OKD: denote the :-th ancillary problem, which only allows items assigned to
the :-th knapsack. The online decision of OKD: only depends on the item information related to
knapsack : and is purely determined by the OTA with threshold function qW:: , which is called OTA: .
With the ancillary problems, we decompose the analysis of OA(qW) into two lemmas.

L���� 2. Given OTA: is CR: -competitive for : 2 [], then CR(OA(qW)) = 1 +max:2 [] CR: .

Lemma 2 decomposes the analysis of OA-OKD into analysis of ancillary algorithms {OTA: }:2 [] ,
where each is the OTA for a single OKD. Based on Lemma 2, the competitiveness of OA-OKD is no worse
than the worst CR: among {OKD: }:2 [] plus 1. Therefore, based on OA-OKD, multiple-knapsack OKD

is not much harder than single OKD and we can focus on the analysis of OTA: ,8: 2 []. Lemma 3
provides the competitive ratio of OTA: .

L���� 3. Under Assumptions 1-3, if the threshold function qW:: is given by Equation (3) with
W: 2 (ln 2, +1) and the item size is upper bounded by Y: ⇠: ln 2/W: , the competitive ratio of OTA: is

CR: (W:) = 3max
⇢
1 + 2

ln 2
W: ,

2
ln 2

· U:\:W:
exp(W: � ln 2)/2) � 1

�
. (5)

The competitive ratio CR: (W:) consists of two terms, which capture the worst-case ratios under
the capacity-free and capacity-limited instances, respectively. We choose to set W: = $ (ln(U:\:))
that best balances these two worst-case ratios. Particularly, with Ŵ: = 2 ln(U:\: + 1) + ln 2, we have

CR: (Ŵ:) := max
⇢
9 + 12

ln 2
ln(U:\: + 1), 6 + 12

ln 2
ln(U:\: + 1)

�
= $ (ln(U:\:)).

Therefore, there exist W: = $ (ln(U:\:)) such that CR: = $ (ln(U:\:)). Combining with the
decomposition in Lemma 2, there exist Ŵ := {Ŵ: }:2 [] such that

CR(OA(qŴ)) = 1 + max
:2 []

CR: (Ŵ:) = 10 + 12
ln 2

ln(U\ + 1) = $ (ln(U\)),

which gives the main result in Theorem 1.
The proof of Theorem 3 also leverages the results in Lemma 2 and Lemma 3. De�ne V̂ :=

CR(OA(qŴ)) as the reference competitive ratio. To ensure CR(OA(qW)) V,8W 2 �(V), we need to

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

57:12 Bo Sun et al.

choose W := {W: }:2 [] such that 1 + CR: (W:) V,8: 2 []. In addition, the results of Lemma 3
requires W: ⇠: ln 2/Y: . Combining above results gives us the parameter set �(V) in Theorem 3.

4.1 Proof of Lemma 2: Decomposition
Denote by S: and S⇤

: the sets of items assigned to knapsack : by OA-OKD and an o�ine algorithm
that achieves an optimal solution, respectively. Then the total values of online and o�ine algorithms
under instance I are ALG(I) = Õ

:2 []
Õ
=2S: E=: and OPT(I) = Õ

:2 []
Õ
=2S⇤

:
E=: .

For each knapsack : , let S⇤
: \ S: denote the set of items that are admitted to knapsack : by

the o�ine algorithm but not by OA-OKD. There can be two reasons why an item = in S⇤
: \ S: is

not admitted by the OA-OKD: (i) the item is inadmissible to knapsack : (i.e., Ĝ=: = 0 in Line 6 in
Algorithm 1); or (ii) the item is admissible to : but it is �nally assigned to knapsack : 0 since the
item value in : 0 is larger than that in : , i.e., E=:0 � E=: (Line 9 in Algorithm 1). Let Ŝ: denote the
set of items due to the second reason, which are the coupling items across knapsacks. Since items
in Ŝ: are admitted by OA-OKD, we have {Ŝ: }:2 [] ✓ {S: }:2 [] , and thus’

:2 []

’
=2Ŝ:

E=:
’

:2 []

’
=2S:

E=: = ALG(I) . (6)

We divide S⇤
: to two subsets S⇤

: \ Ŝ: and Ŝ: , and we have

OPT(I)
ALG(I) =

Õ
:2 []

Õ
=2S⇤

:
E=:Õ

:2 []
Õ
=2S: E=:

=

Õ
:2 []

Õ
=2S⇤

:\Ŝ:
E=: +

Õ
:2 []

Õ
=2Ŝ: E=:Õ

:2 []
Õ
=2S: E=:

 1 +
Õ
:2 []

Õ
=2S⇤

:\Ŝ:
E=:Õ

:2 []
Õ
=2S: E=:

 1 + max
:2 []

Õ
=2S⇤

:\Ŝ:
E=:Õ

=2S: E=:
, (7)

where the �rst inequality in (7) is due to Equation (6).
For each knapsack : , we construct an instance �̂: by extracting the items belonging to the set

S: [(S⇤
: \ Ŝ:) from the original instance I and keeping the item sequence. Note that in the

instance �̂: , the set S: includes all items that are admissible to knapsack : via OTA because other
admissible items in Ŝ: have been excluded in the construction. If we present �̂: to the ancillary
problem OKD: , the online algorithm OTA: also admits items S: as does OA-OKD under instance I,
and achieves value

Õ
=2S: E=: . In addition, the o�ine value of OKD: under instance �̂: is no less

than
Õ
=2S⇤

:\Ŝ:
E=: since admitting items in S⇤

: \ Ŝ: is a feasible admission decision. Let CR: denote
the competitive ratio of OTA: for OKD: . By the de�nition of CR: , we haveÕ

=2S⇤
:\Ŝ:

E=:Õ
=2S: E=:

 CR: ,8: 2 [] . (8)

Thus, the competitive ratio of OA-OKD is CR = 1 +max:2 [] CR: .

4.2 Proof of Lemma 3: Single Online Knapsack with Departures
We next analyze the competitive ratio of OTA: for OKD: . For convenience of notation, we omit the
index : . Let N denote the instance for a single OKD and # = |N | denote the number of items in N .

Partitioning of the time horizon into small segments. The �rst key step in our proof is to
reduce the dependence of the competitiveness of the algorithm from the entire time horizon to
smaller segments that are in the order of item duration. Let {I (#)

C }C 2 [)] denote the �nal utilization
of all time slots after OTA executes all items inN . Assume the time horizon) is an integer multiple
of ⇡ and divide the time horizon into � =) /⇡ segments. Let T⌘ := {C 2 [)] : (⌘ � 1)⇡ + 1
C ⌘⇡} denote the set of time slots in the ⌘-th segment and N⌘ denote a sub-instance of N that

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

The Online Knapsack Problem with Departures 57:13

contains items whose starting times are in T⌘ . We further denote a 3-segment sub-instance by
Ñ⌘ = N⌘�1 [N⌘ [N⌘+1,⌘ 2 [�], where N 0 = N�+1 = ;. The order of the items in Ñ⌘ is based
on their arrival times.

Let OPT(N) and ALG(N) denote the value of items admitted fromN by the o�ine algorithm and
OTA, respectively. The competitive ratio of OTA is

OPT(N)
ALG(N) =

Õ
⌘2 [�] OPT(N⌘)Õ
⌘2 [�] ALG(N⌘) =

3
Õ
⌘2 [�] OPT(N⌘)

ALG(N 1) + Õ
⌘2 [�] ALG(Ñ⌘) + ALG(N�)

 3 max
⌘2 [�]

OPT(N⌘)
ALG(Ñ⌘)

.

By partitioning the instance based on the items’ starting time, the competitive analysis of OTA can
be turned to the analysis of OPT(N⌘)/ALG(Ñ⌘), which is the ratio of the o�ine value from the
sub-instance N⌘ and the online value from the 3-segment sub-instance Ñ⌘ . In the following, we
focus on analyzing the upper bound of OPT(N⌘)/ALG(Ñ⌘) in two cases.

Case I: capacity-free case: The �nal utilizations of all time slots in T̂⌘ := T⌘ [T⌘+1 are below
the capacity, i.e., I (#)

C ⇠ � Y,8C 2 T̂⌘ .
In this case, the only reason why one item is rejected by OTA is that it fails to pass the threshold

check, i.e., E < � in Line 4 in Algorithm 2. Then OPT(N⌘) and ALG(Ñ⌘) can be connected via the
�nal utilization {I (#)

C }C 2T̂⌘ . We �rst show that ALG(Ñ⌘) is lower bounded.

P���������� 1. In Case I, the value of items in Ñ⌘ admitted by OTA is lower bounded by

ALG(Ñ⌘) � ln 2
2W

’
C 2T̂⌘

q (I (#)
C)⇠ . (9)

P����. Since q (0) = 0, we can apply q (I (#)
C) = Õ

=2N [q (I (=)C) � q (I (=�1)C)] and have’
C 2T̂⌘

q (I (#)
C)⇠ =

’
C 2T̂⌘

’
=2N

⇠ [q (I (=)C) � q (I (=�1)C)]

=
’

C 2T̂⌘

’
=2Ñ⌘ :C 2T=

⇠ [q (I (=)C) � q (I (=�1)C)]

’

=2Ñ⌘

’
C 2T=

⇠ [q (I (=)C) � q (I (=�1)C)], (10)

where T= is the stay duration of item =. The second equality holds because the maximum duration
of each item is ⇡ and hence the items that can stay in T̂⌘ must be from Ñ⌘ . The last inequality
holds since the items in Ñ⌘ can stay up to segment ⌘ + 2, which is outside T̂⌘ .

Let �ALG= denote the increment of OTA due to processing item =. �ALG= = 0 if item = is declined
and�ALG= = E= if it is admitted.We next show

Õ
C 2T= ⇠ [q (I

(=)
C)�q (I (=�1)C)] (2W/ln 2)�ALG=,8= 2

Ñ⌘ in the following two sub-cases.

Case I(a). When item = is declined by OTA, we have I (=)C = I (=�1)C ,8C 2 T= , and thus this givesÕ
C 2T= ⇠ [q (I

(=)
C) � q (I (=�1)C)] = 0 2W

ln 2�ALG= .

Case I(b). When item = is admitted by OTA, we have I (=)C = I (=�1)C +F=,8C 2 T= , and then’
C 2T=

⇠ [q (I (=)C) � q (I (=�1)C)] = ⇠
’

C 2T=
exp(I (=�1)C W/⇠) [exp(F=W/⇠) � 1] (11a)

 ⇠
’

C 2T=
exp(I (=�1)C W/⇠) · F=W

⇠ ln 2
(11b)

=
W

ln 2

’
C 2T=

F=q (I (=�1)C) + W

ln 2
F=3= (11c)

 W

ln 2
E= +

W

ln 2
E= =

2W
ln 2

�ALG= . (11d)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

57:14 Bo Sun et al.

Equation (11a) is obtained by substituting threshold function (3). Inequality (11b) holds since
exp(G ln 2) � 1 G if 0 G 1, and F=W/(⇠ ln 2) YW/(⇠ ln 2) 1 based on the additional
condition on the item size in Theorem 1. The last inequality (11d) holds since

Õ
C 2T= F=q (I

(=�1)
C)

E= when item = can pass the threshold check, andF=3= E= based on Assumption 1.
Combining Equations (10)-(11) gives’

C 2T̂⌘
q (I (#)

C)⇠
’

=2Ñ⌘
2W
ln 2

�ALG= =
2W
ln 2

ALG(Ñ⌘),

which completes the proof. ⇤

Next, we show the o�ine optimal value of items in N⌘ is upper bounded.

P���������� 2. In Case I, the value of items in N⌘ admitted by the o�ine algorithm is

OPT(N⌘) ALG(N⌘) +
’

C 2T̂⌘
q (I (#)

C)⇠ . (12)

P����. Let S⌘ \ S⌘⇤ denote the set of items in N⌘ that are admitted by both online algorithm
OTA and the o�ine algorithm, and S⌘⇤ \ S⌘ denote the set of items that are declined by OTA but
admitted by the o�ine algorithm. We have’

=2S⌘\S⌘⇤
E= ALG(N⌘), (13)’

=2S⌘⇤\S⌘
E=

’
=2S⌘⇤\S⌘

’
C 2T=

F=q (I (=�1)C)
’

=2S⌘⇤\S⌘

’
C 2T=

F=q (I (#)
C) (14)

=
’

C 2T̂⌘

’
=2S⌘⇤\S⌘ :C 2T=

F=q (I (#)
C)

’
C 2T̂⌘

q (I (#)
C)⇠,

where the �rst inequality in (14) holds since the item fails to pass the threshold check, and the
last inequality holds since the items admitted by the o�ine algorithm cannot exceed the knapsack
capacity, i.e.,

Õ
=2S⌘⇤\S⌘ :C 2T= F= ⇠ . Thus, we have

OPT(N⌘) =
’

=2S⌘\S⌘⇤
E= +

’
=2S⌘⇤\S⌘

E= ALG(N⌘) +
’

C 2T̂⌘
q (I (#)

C)⇠,

which completes the proof. ⇤

Combining Proposition 1 and Proposition 2 gives OPT(N⌘)
ALG(Ñ⌘) ALG(N⌘)+ÕC2T̂⌘ q (I (#)

C)⇠
ALG(Ñ⌘) 1 + 2

ln 2W .

Case II: capacity-limited case: There exists at least one time slot C 0 2 T̂⌘ whose utilization
approaches the knapsack capacity, i.e., ⇠ � Y < I (#)

C 0 ⇠ .
In this case, if one item is rejected, the reason can be the failure of passing either threshold check

(the item value is smaller than the threshold) or capacity check (admitting this item violates the
capacity constraint). A key observation is that if there exists one slot (say C 0) whose utilization
approaches the capacity, then the �nal utilization of the knapsack around this fully utilized slot
will be above a certain value due to the minimum duration assumption. In the following result, we
leverage this observation to obtain a lower bound for ALG(Ñ⌘).

P���������� 3. In Case II, the value of items in Ñ⌘ admitted by OTA is lower bounded by

ALG(Ñ⌘) � ln 2⇠⇡
W

[exp((W � ln 2)/2) � 1] . (15)

P����. In Case II, there exists at least one time slot C 0 2 T̂⌘ , in which the �nal utilization by
OTA approaches the capacity. Also, each item stays in the knapsack for at least ⇡ successive slots.
In Figure 2, we show the �nal utilization of the capacity-limited case in the worst case, where there
are two groups of items. Group-1 items start at the slot C 0 � ⇡ + 1 and Group-2 items start at slot C 0.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

The Online Knapsack Problem with Departures 57:15

Segment ݄ െ ͳ Segment ݄ Segment ݄ ͳ

Capacity ܥ െ ߝ ഥܦ ൌ Ͷ, ܦ ൌ ͵

Start time of
group-1 items

Start time of
group-2 items

Group 1

Group 2

Segment ݄ ʹ

……

Total size ሺܥ െ ʹሻȀߝ

Total size ሺܥ െ ʹሻȀߝ

Ԣݐ

Fig. 2. Illustration of the worst-case final utilization in capacity-limited case.

All items stay in the knapsack for ⇡ slots, and the total sizes of both groups are (⇠ � Y)/2. These
two groups of items result in the nearly full capacity at slot C 0, i.e., I (#)

C 0 = ⇠ � Y, and around half
utilization in surrounding slots, i.e., I (#)

C = (⇠ � Y)/2 for C = C 0 � ⇡ + 1, . . . , C 0 � 1, C 0 + 1, C 0 + ⇡ � 1.
Then based on Proposition 1, ALG(Ñ⌘) is lower bounded by

ALG(Ñ⌘) � ln 2
2W

[(2⇡ � 2)q ((⇠ � Y)/2) + q (⇠ � Y)]⇠ � ln 2⇠⇡
W

[exp((W � ln 2)/2) � 1] .

This completes the proof. ⇤

In Case II, the o�ine value can only be trivially bounded by OPT(N⌘) 2⇠\⇡ , which is the
maximal possible value for items in 2⇡ slots. Thus, we have OPT(N⌘)

ALG(Ñ⌘) 2
ln 2 ·

U\W
exp((W�ln 2)/2)�1 .

Summarizing the results from the two cases, the competitive ratio of OTA is

CR(W) = 3max
⇢
1 + 2

ln 2
W,

2
ln 2

· U\W

exp((W � ln 2)/2) � 1

�
. (16)

This completes the proof of Lemma 3.

5 MULTI-DIMENSIONAL ONLINE MULTIPLE KNAPSACKS WITH DEPARTURES
We now move to the general OKD, which additionally considers multi-dimensional items. In particu-
lar, the size of item = in knapsack : is modeled as an ": -dimension vectorw=: = {F=:<}<2 [":] .
Accordingly, the capacity of each knapsack : is also a multi-dimensional vector I: := {⇠:<}<2 [":] .

Before stating our main result in this setting, we �rst extend the assumptions on the value density
and item size to the multi-dimensional setting.

A��������� 4 (V���� ������� ����������� �� ����������������� �������). The value
density of each item = in knapsack : is bounded by E=:/(3=:

Õ
<2 [":] F=:<) 2 [1, \:],8= 2 [#].

Compared to the one-dimensional setting, the size of item in the value density is replaced by the
aggregate size over all dimensions in the multi-dimensional setting. Similar de�nitions have been
used by previous works [29, 32] in studying online multi-dimensional knapsack problems.

A��������� 5 (U���� ����� �� ���� ���� �� ����������������� �������). The item size of
each item = in dimension< in knapsack : is bounded byF=:< Y:< ⇠:<,8= 2 [#].

To generalize our algorithms to this setting, we take into account the multi-dimensional item
size by modifying the de�nition of threshold value in Line 3 in Algorithm 2 as

�̃ =
’

C 2T

’
<2 ["]

F<q< (I<C), (17)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

57:16 Bo Sun et al.

where I<C is the utilization of dimension< in slot C and q< is the threshold function for dimension
<. By carefully designing the threshold function, we can further show the modi�ed algorithm can
achieve the order-optimal competitive ratio.
In the multi-dimensional setting, the worst-case performance depends on the capacities of the

di�erent dimensions. For knapsack : , de�ne a new parameter [: =
Õ
<2 [":] ⇠:</(min<2 [":] ⇠:<)

as the ratio of the aggregate knapsack capacities over all dimensions and the minimum capacity of
a single dimension. Let [= max:2 [] [: .

We can now state a generalization of Theorem 1 to the multi-dimensional setting as follows.

T������ 4. Under Assumptions 2, 4, and 5, there exists W: = $ (ln([:U:\:)), if the item size
is upper bounded by Y:< ⇠:< ln 2/W: ,8: 2 [],< 2 [":], and the threshold function qW :=
{qW::<}:2 [],<2 [":] is given by

qW::< (I) = exp (IW:/⇠<:) � 1,8: 2 [],< 2 [":], (18)

then the competitive ratio of OA(qW) is $ (ln([U\)).
A special case that is often discussed is when all dimensions have identical capacities. Then,

the capacity ratio [: = ": ,8: 2 [], and OA(qW) achieves a competitive ratio $ (ln("U\)) with
" = max:2 [] ": . Our proof of Theorem 4 is involved, but uses standard techniques to build on
Theorem 1. It is given in Appendix B. We can also obtain the following lower bound in this setting.

T������ 5. There exists no online algorithm that can achieve a competitive ratio smaller than
⌦(ln([U\)) for online multiple multi-dimensional knapsacks with departures.

Theorem 5 includes Theorem 2 as a special case and can be proved based on existing lower bound
results in the literature. In particular, the lower bounds of competitive ratios for two special cases
of the general OKD have been proven: ⌦(ln([\)) (Theorem 2 in [29]) for online multi-dimensional
knapsack and ⌦(lnU) (Theorem 2 in [16]) for online interval scheduling. Thus, the competitive
ratio of OKD is lower bounded by

CR � max{⌦(lnU),⌦(ln([\))} � 1
2
⌦(lnU) + 1

2
⌦(ln([\)) = ⌦(ln([U\)) . (19)

6 EXPERIMENTAL RESULTS
We focus our experimental results on evaluating the empirical performance of the data-driven
online algorithm (DOA) in Algorithm 3. The worst-case optimized algorithm can be considered as a
special case of DOA by choosing the same optimized threshold function over all instances.

We start our evaluation by demonstrating the essential trade-o�s between average and worst-case
performance in DOA. To do this, we �rst compare the algorithm with multiple baseline algorithms
under a set of hard instances for OKD in §6.1. Then we show the performance of the algorithms
under typical instances from real traces of the online cloud job scheduling in §6.2. Compared
with benchmark algorithms in prior works and our worst-case optimized algorithm, DOA achieves
signi�cant improvement in the average performance at a moderate sacri�ce of its worst-case
guarantees under both hard and typical instances, and thus is of most practical use.

Experimental setup. We set a time horizon of) = 3000 slots. In each experiment, we test a total
of ! = 1000 instances, which are generated by 50 traces of item sequences (that include item arrival
times, start times, and stay durations) and 20 random trials of item sizes and value densities for each
trace. Each trace is either generated to capture hard instances for OKD in the worst case or sampled
from real application traces. We refer to them as hard instances and typical instances, and detail
how to generate them at the beginning of §6.1 and §6.2, respectively. We evaluate the performance
of an online algorithm by its empirical ratio, which is de�ned as the ratio of rewards from the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

The Online Knapsack Problem with Departures 57:17

(a) Parameter sets � (V)

1 1.5 2 2.5 3 3.5 4

Empirical ratio

0

0.2

0.4

0.6

0.8

1

C
u

m
u

la
ti

v
e

d
en

si
ty

 f
u

n
ct

io
n

(b) CDFs for di�erent target ratios V

E
m

p
ir

ic
al

 r
at

io

average ratio
99 percentile

(c) Average vs. worst performances

Fig. 3. Empirical performance of data-driven algorithms with di�erent guaranteed competitive ratios.

o�ine algorithm to those of the online algorithm under a given instance. In each experiment,
we sequentially compute the empirical ratios of ! instances of di�erent online algorithms, and
report the average and 99 percentile of the empirical ratios to evaluate the average and worst-case
performances of those algorithms.

Implementation of DOA. Given a target competitive ratio guarantee V , we �rst determine the
feasible parameter set �(V) based on Theorem 3. The target ratio is set as a multiple of the reference
value V̂ = 10 + 12

ln 2 ln(U\ + 1). In the experiments, we implement a discretized version of DOA. In
particular, we discretize �(V) into �̃(V) with a step size of 0.1 and let 3 denote the cardinality
of �̃(V). We refer to each 8 2 [3] as an expert advice (which is equivalent to the selection of a
threshold function). DOA can then be restated as a learning with expert advice problem. At the
beginning of each round ✓ 2 [!], we select an advice 8✓ 2 [3] and execute the instance using the
selected threshold-based algorithm. After observing the whole instance, the rewards of all advices
r✓ := {A✓,8 }82 [3] can be evaluated and used to determine the selection of the advice in next round.
In our experiments, the Hedge algorithm [14, 22] is used to determine the advice selection and

it guarantees the regret E
⇥
max82 [3]

Õ
✓2 [!] A✓,8 �

Õ
✓2 [!] A✓,8✓

⇤
 $ (

p
! ln3), which is sublinear in

the number of rounds. In Appendix D, we provide the details of DOA, including its implementation,
regret guarantee, and limitations. In the rest of the paper, this DOA is denoted by OA(Won).

6.1 Performance of data-driven online algorithms
Hard instances for OKD. The hard instance has repeated patterns every⇡ +⇡ slots. In each pattern,

the hard instance consists of two batches of items. The �rst batch contains 50 items that have the
shortest duration ⇡ , �xed (normalized) item size 0.05 and value density randomly drawn from
[1, \]. Then the second batch arrives and it has 50 items that have duration uniformly drawn from
[⇡,⇡], �xed item size 0.05, �xed value density \ , and starting time that overlaps with the ending
slot of the �rst batch of items. The value density ratio is set \ = 5. The maximum duration is set
⇡ = 500 and we test hard instances with varying U . Note that such instances are hard for OKD
since any algorithm that aggressively admits items in the �rst batch can easily �ll up the knapsack
capacity in the �rst ⇡ slots of each pattern and declines the more valuable second batch of items.
This hardness leads to the lower bound performance of Design-I as shown in Lemma 1. Our �rst
set of empirical results are based on the hard instances that our algorithms are designed for.

6.1.1 Trade-o�s between average and worst-case performances. We start by investigating the impact
of the target ratio V on the performance of OA(Won). Note that V is an important hyper-parameter
for OA(Won). Figure 3(a) illustrates the parameter sets when target ratios are set to 1.2V̂ , 1.4V̂ , and 2V̂

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

57:18 Bo Sun et al.

1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

OA

OA

OA

(a) CDF when \ = 5 and U = 2

1.5 2 2.5 3
1

1.5

2

2.5

3

3.5

4

4.5
OA

OA

OA

(b) Average performance when \ = 5

1.5 2 2.5 3
1

1.5

2

2.5

3

3.5

4

4.5

(c) Worst performance when \ = 5

Fig. 4. Performance comparison of di�erent algorithms under hard instances.

1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

OA

OA

OA

(a) CDF when \ = 30 and U = 50

10 20 30 40 50

1.5

2

2.5

3

3.5

OA

OA

OA

(b) Average performance when U = 50

10 20 30 40 50

1.5

2

2.5

3

3.5

(c) Worst performance when U = 50

Fig. 5. Performance comparison of di�erent algorithms under typical instances for cloud job scheduling.

(i.e., solid blue, red, and green lines). As we increase V , we tolerate a looser worst-case guarantee,
in the meantime, we have a larger parameter set �(V) for selecting W , and thus a better chance
to �nd the threshold function that can achieve a better average performance. Figure 3(b) shows
the cumulative density functions (CDFs) of empirical ratios for di�erent V that correspond to the
parameter sets in Figure 3(a). We observe that a looser worst-case guarantee (V = 2V̂) can give
better empirical ratios for most of instances (more than 90%) but has a longer tail in the worst case
as the cost. Figure 3(c) further compares the average and 99 percentile of the empirical ratios with
varying V . The trade-o� between average and worst-case performances can be clearly observed.
In addition, we cannot always achieve a better average performance with a large V . As shown in
Figure 3(c), the average ratio when V = 1.8V̂ is smaller than that when V = 2V̂ . This is because
the best parameter W has already been included in �(1.8V̂) and a further enlarged parameter set
increases the di�culty of learning the best parameter, leading to a worse performance on average.

6.1.2 Performance comparisons with benchmark algorithms. Based on howW is chosen, our proposed
algorithm takes three forms: (i) OA(Won), the DOA that selects W based on the data-driven approach; (ii)
OA(Wwco), the worst-case optimized algorithm that setsWwco = ln(U\+1) for all instances; (iii) OA(Woff),
the average-case optimized algorithm that selects best possible static Woff to minimize the average
reward. Online determination of Woff is impossible since it requires knowledge of all instances
and thus this algorithm is just considered as a reference algorithm for OA(Won). We compare our
proposed algorithms with three other benchmark algorithms. All of them correspond to OA(q) with

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

The Online Knapsack Problem with Departures 57:19

di�erent threshold functions: (i)Greedy is a �rst-come-�rst-served algorithm that equivalently sets
the threshold function to the smallest value density, i.e., q (I) = 1,8I 2 [0,⇠]; (ii) Design-I adopts
q � in Figure 1 and it is equivalent to the algorithm in [32] for the time-expanded OKP; (iii) Design-II
adopts q � � in Figure 1 that is used for OMdK in [29]. Generally speaking, these three algorithms are
increasingly conservative due to their choice of threshold functions. The conservativeness of our
worst-case optimized algorithm OA(Wwco) lies between Design-I and Design-II.

Figure 4(a) compares the CDFs of empirical performances of di�erent algorithms when \ = 5
and U = 2. Under the hard instances, a more conservative algorithm works better among the
three benchmarks since such algorithms prohibit short-duration items from quickly occupying the
knapsack capacities and blocking the followed long items. And the conservative design becomes
increasingly more important as the duration ratio U increases, which is shown in Figures 4(b)
and 4(c). Our worst-case optimized algorithm OA(Wwco) outperforms all the benchmarks in both
average and worst-case performances. Moreover, as U increases, the empirical ratio of Design-I
grows linearly in U while that of OA(Wwco) grows logarithmically, which is consistent with the lower
bound results in Lemma 1 and Theorem 2. Compared with those algorithms with �xed threshold
functions, our proposed data-driven algorithm OA(Won) achieves the best average performance,
which is also close to that of the static o�ine benchmark OA(Woff). This improvement in average
performance is at the sacri�ce of the worst-case performance as shown in Figure 4(c).

6.2 Trace-driven evaluation in online cloud job scheduling
To further validate the bene�t of our proposed algorithms in real-world applications, we evaluate
and compare the performances under typical instances for online cloud job scheduling.

Typical instances from cloud job traces. We extract traces of item sequences from the Google
cluster traces [24]. One key feature from the cloud job traces is that there exist many short jobs
and very few long jobs. To better show the comparisons, we set each time slot to be 10 seconds
and restrict the duration of each job between 10 to 500 slots, i.e., any jobs that are shorter (longer)
than 10 (500) are rounded to 10 (500). In this way, the duration ratio is �xed to U = 50 for all
typical instances. We consider a single server with one-dimension resource (e.g., CPU) and set its
capacity to one. The resource requirement of each job is uniformly drawn from three possible values
F= 2 [0.01, 0.03, 0, 05] and the value of each job is set to E= = b=3=F= , where b= is a uniform random
variable within [1, \]. Then we evaluate the algorithms’ average and worst-case performances
when the value density ratio \ varies from 10 to 50.

Figure 5 illustrates the empirical performances of di�erent algorithms under the typical instances.
The behaviors of the algorithms with �xed threshold functions are very di�erent from those under
the hard instances. A more aggressive algorithm generally performs better except Greedy, while our
worst-case optimized algorithm OA(Wwco) is even worse than Greedy. This result is not unexpected
since, even though the few elephant jobs are blocked due to capacity limitation, many mouse
jobs can �ll up the unused capacity, indicating an aggressive algorithm is already a good choice.
Those typical instances are far from the hard instances and thus the algorithms optimized for the
worst case cannot work well. In contrast, our data-driven algorithm OA(Won) adaptively adjusts the
threshold function based on the instances and still outperforms all other benchmarks in the average
performance at a moderate sacri�ce of the worst-case performance.

7 RELATEDWORK
The online knapsack problem. The fundamental di�culty of OKP is �rst shown by [23], which

highlights that without additional assumptions on setup information, no competitive online al-
gorithms can be designed. By assuming the value-to-size ratio of items is bounded within [1, \]

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

57:20 Bo Sun et al.

and the item size is in�nitesimal, [33] �rst designs an online threshold-based algorithm for the
(multiple) one-dimensional knapsack and shows it achieves an optimal competitive ratio ⇥(ln\).
The follow-up work [32] extends the algorithm in [33] to the online multi-dimensional knapsack
(OMdK) using the same threshold function and shows the competitive ratio is$ (" ln\), where" is
the number of dimensions. Then recent paper [29] redesigns the threshold function and obtains an
order-optimal online algorithm for OMdK with a competitive ratio ⇥(ln("\)). The online knapsack
with departures (OKD) problem is �rst approached by [32]. It treats each time slot in a) -slot horizon
as one dimension of a knapsack and applies the result from OMdK that gives a competitive ratio
$ () ln\). Based on the recent OMdK result in [29], this result can be further improved to$ (ln()\)).
However, all these results depend on the time horizon) , which can be a undesirable large value.

Online interval scheduling problem. The online interval scheduling (OIS) problem [22], (a.k.a.,
online reservation problem [16] in the operations research community) aims to schedule # jobs
to (processors. Each job arrives at a random time and requires occupying one processor for a
predetermined interval. Two jobs with overlapped intervals con�ict with each other and must be
placed on di�erent processors. Upon arrival, each job informs the scheduler about its start time
and stay duration, and the scheduler immediately assigns the job to one of the processors with no
con�icts or declines it. The goal is to maximize the aggregate occupation of all processors over
the time horizon. We note that OIS can be considered as a special case of OKD that has a single
knapsack with capacity 1, �xed item size 1/(, and unit value density. Based on the state-of-the-art
result of OIS [16], if the duration of all jobs is bounded within [⇡,⇡] and the number of processors
is large ((! 1), a randomized algorithm can achieve the optimal competitive ratio ⇥(lnU), where
U = ⇡/⇡ is the duration (�uctuation) ratio. This result basically provides a lower bound ⌦(lnU)
for OKD. However, it is unclear how to extend the algorithm in [16] to the general OKD problem. If
we add the bounded duration assumption to the online threshold-based algorithms in [32] and [29],
we can show their competitive ratios are lower bounded by ⌦(U ln\) and ⌦(ln(⇡\)), respectively
(see Lemma 1 for more details). Thus, there still exist no online algorithms in the literature that can
achieve a competitive ratio $ (ln("U\)) for OKD.

Other variants to online knapsack problem. There exist many variants of the online knapsack
problems for practical use. To capture the supply cost of using knapsack capacity (e.g., electricity
cost), [18, 28] consider the online knapsack with supply cost, which is a convex function in the
utilization of the knapsack. Some applications essentially have continuous decision variables (e.g.,
the online electric vehicle charging problem). The algorithms and results in OKP can be extended to
continuous decisions under the in�nitesimal item size assumption. Particularly, the classic one-way
trading problem [12] can be considered as a continuous version of the basic OKP, and this connection
has been extended to online fractional multiple knapsacks in [27].

Online primal-dual algorithms. Besides the online threshold-based algorithm (OTA), there exists
an alternative class of online primal-dual algorithms (OPD) [7] that can potentially solve the online
knapsack problems. The most relevant work is Buchbinder and Naor’s paper [6] that designs OPD
for a general online packing problem, which is equivalent to OMdK in the knapsack literature [29, 31].
However, there still exist algorithmic challenges in extending OPD to solve OKD. In particular, the key
step of OPD is to design the dual variable update such that the increment ratio of dual and primal
objectives is bounded, and both primal and (scaled) dual solutions are feasible. In addition, OPD
produces a fractional solution and it needs a randomized rounding procedure to achieve the integral
solution. It is unclear how to design the dual variable update and the randomized rounding in the
setting of OKD with item departures and multiple knapsacks. Further, OPD in [6] replies on di�erent
assumptions and achieves di�erent results compared to OTA (See the di�erence and connections in

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

The Online Knapsack Problem with Departures 57:21

Appendix C for more detail). This di�erence creates di�culties in extending OPD to solve OKD. Thus,
it is non-trivial to extend OKD to the setting of OKD, but it is a promising future direction to explore.

Beyond the worst-case algorithms. Since the online algorithms that are designed for the worst
case are usually too conservative for typical instances in practice, many works design beyond the
worst-case algorithms for OKP and they usually make additional statistical assumptions on the
input instance and present the problems as general resource allocation problems. For example,
some works [1, 10] assume that items arrive in uniformly random order (i.e., random permutation
model). Some others [5, 11, 21] assume that the item information is drawn i.i.d. from an unknown
distribution (i.e., stochastic model). The algorithms from these works generally are designed to �rst
learn the dual variables of the resource constraints by re-solving an optimization problem using
past data [1, 21] or running online learning algorithms [5], and then determine the online allocation
based on the learned dual variables. In addition, some recent works [13, 17] have also considered
item departures in the general context of online allocation with reusable resources. However, the
approaches and results in these works reply on the additional statistical assumptions, and thus are
fundamentally di�erent from our worst-case analysis in this paper.

8 CONCLUSIONS
This paper has designed an online algorithm that achieves order-optimal competitive ratios for the
online multi-dimensional multiple knapsacks with departures problem. Our model and algorithms
have generalized the state-of-the-art results in the online knapsack literature and opened the doors
for real-world applications that require such full generality. From our trace-driven experiments,
we have observed that the online algorithms that are optimized for the worst-case instances can
be too conservative when faced with typical instances from real applications. To go beyond the
worst case, we have further designed a data-driven online algorithm that can achieve the good
performance under both worst-case and typical instances. Future works can further investigate
how to improve the exact competitive ratios for online knapsack problems, instead of focusing only
on the order-optimality. In addition, it is also interesting to explore how to provide a theoretical
guarantee on the average-case performance of the original data-driven online algorithm.

ACKNOWLEDGMENTS
Bo Sun and Danny H.K. Tsang acknowledge the support received from the Hong Kong Research
Grant Council (RGC) General Research Fund (Project 16202619 and Project 16211220). Adam Wier-
man acknowledges the support received fromNSF grants (CNS-2146814, CPS-2136197, CNS-2106403,
and NGSDI-210564) and the additional support from Amazon AWS. Mohammad Hajiesmaili’s re-
search is supported by NSF grants (CNS-2106299, CNS-2102963, CPS-2136199, NGSDI-2105494, and
CAREER-2045641). The work of John C.S. Lui is supported in part by the RGC’s SRFS2122-4S02.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

57:22 Bo Sun et al.

REFERENCES
[1] Shipra Agrawal, Zizhuo Wang, and Yinyu Ye. 2014. A dynamic near-optimal algorithm for online linear programming.

Operations Research 62, 4 (2014), 876–890.
[2] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. 2002. The nonstochastic multiarmed bandit

problem. SIAM journal on computing 32, 1 (2002), 48–77.
[3] Maria-Florina Balcan. 2020. Data-driven algorithm design. arXiv preprint arXiv:2011.07177 (2020).
[4] Maria-Florina Balcan, Travis Dick, and Ellen Vitercik. 2018. Dispersion for data-driven algorithm design, online

learning, and private optimization. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).
IEEE, 603–614.

[5] Santiago Balseiro, Haihao Lu, and Vahab Mirrokni. 2021. The Best of Many Worlds: Dual Mirror Descent for Online
Allocation Problems. Operations Research (2021), forthcoming.

[6] Niv Buchbinder and Joseph Naor. 2009. Online primal-dual algorithms for covering and packing. Mathematics of
Operations Research 34, 2 (2009), 270–286.

[7] Niv Buchbinder, Joseph Se� Naor, et al. 2009. The design of competitive online algorithms via a primal–dual approach.
Foundations and Trends® in Theoretical Computer Science 3, 2–3 (2009), 93–263.

[8] Nicolo Cesa-Bianchi and Gábor Lugosi. 2006. Prediction, learning, and games. Cambridge university press.
[9] Vincent Cohen-Addad and Varun Kanade. 2017. Online optimization of smoothed piecewise constant functions. In

Arti�cial Intelligence and Statistics. PMLR, 412–420.
[10] Nikhil R Devanur and Thomas P Hayes. 2009. The adwords problem: online keyword matching with budgeted bidders

under random permutations. In Proceedings of the 10th ACM conference on Electronic commerce. 71–78.
[11] Nikhil R Devanur, Kamal Jain, Balasubramanian Sivan, and Christopher A Wilkens. 2019. Near optimal online

algorithms and fast approximation algorithms for resource allocation problems. Journal of the ACM (JACM) 66, 1
(2019), 1–41.

[12] Ran El-Yaniv, Amos Fiat, Richard M Karp, and Gordon Turpin. 2001. Optimal search and one-way trading online
algorithms. Algorithmica 30, 1 (2001), 101–139.

[13] Matthew Faw, Orestis Papadigenopoulos, Constantine Caramanis, and Sanjay Shakkottai. 2022. Learning To Maximize
Welfare with a Reusable Resource. Proceedings of the ACM on Measurement and Analysis of Computing Systems 6, 2
(2022), 1–30.

[14] Yoav Freund and Robert E Schapire. 1997. A decision-theoretic generalization of on-line learning and an application to
boosting. Journal of computer and system sciences 55, 1 (1997), 119–139.

[15] Lingwen Gan, Ufuk Topcu, and Steven H Low. 2012. Stochastic distributed protocol for electric vehicle charging with
discrete charging rate. In 2012 IEEE Power and Energy Society General Meeting. IEEE, 1–8.

[16] Shashank Goyal and Diwakar Gupta. 2020. The Online Reservation Problem. Algorithms 13, 10 (2020), 241.
[17] Vineet Goyal, Garud Iyengar, and Rajan Udwani. 2021. Asymptotically Optimal Competitive Ratio for Online Allocation

of Reusable Resources. InWeb and Internet Economics - 17th International Conference, WINE 2021, Potsdam, Germany,
December 14-17, 2021, Proceedings, Vol. 13112. Springer, 543.

[18] Zhiyi Huang and Anthony Kim. 2019. Welfare maximization with production costs: A primal dual approach. Games
and Economic Behavior 118 (2019), 648–667.

[19] Devansh Jalota, Dario Paccagnan, Maximilian Schi�er, and Marco Pavone. 2021. Online Tra�c Routing: Deterministic
Limits and Data-driven Enhancements. arXiv preprint arXiv:2109.08706 (2021).

[20] Hans Kellerer, Ulrich Pferschy, and David Pisinger. 2004. Multiple knapsack problems. In Knapsack Problems. Springer,
285–316.

[21] Xiaocheng Li and Yinyu Ye. 2021. Online linear programming: Dual convergence, new algorithms, and regret bounds.
Operations Research (2021).

[22] Richard J Lipton and Andrew Tomkins. 1994. Online Interval Scheduling. In SODA, Vol. 94. 302–311.
[23] Alberto Marchetti-Spaccamela and Carlo Vercellis. 1995. Stochastic on-line knapsack problems. Mathematical

Programming 68, 1 (1995), 73–104.
[24] Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H Katz, and Michael A Kozuch. 2012. Heterogeneity and

dynamicity of clouds at scale: Google trace analysis. In Proceedings of the third ACM symposium on cloud computing.
1–13.

[25] Vincenzo Sciancalepore, Konstantinos Samdanis, Xavier Costa-Perez, Dario Bega, Marco Gramaglia, and Albert Banchs.
2017. Mobile tra�c forecasting for maximizing 5G network slicing resource utilization. In IEEE INFOCOM 2017-IEEE
Conference on Computer Communications. IEEE, 1–9.

[26] Cli�ord Stein, Van-Anh Truong, and Xinshang Wang. 2020. Advance service reservations with heterogeneous
customers. Management Science 66, 7 (2020), 2929–2950.

[27] Bo Sun, Ali Zeynali, Tongxin Li, Mohammad Hajiesmaili, Adam Wierman, and Danny H.K. Tsang. 2020. Competitive
Algorithms for the Online Multiple Knapsack Problem with Application to Electric Vehicle Charging. Proc. ACM Meas.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

The Online Knapsack Problem with Departures 57:23

Anal. Comput. Syst. 4, 3, Article 51 (Nov. 2020), 32 pages.
[28] Xiaoqi Tan, Bo Sun, Alberto Leon-Garcia, Yuan Wu, and Danny HK Tsang. 2020. Mechanism design for online resource

allocation: A uni�ed approach. Proceedings of the ACM on Measurement and Analysis of Computing Systems 4, 2 (2020),
1–46.

[29] Lin Yang, Ali Zeynali, Mohammad HHajiesmaili, Ramesh K Sitaraman, and Don Towsley. 2021. Competitive Algorithms
for Online Multidimensional Knapsack Problems. Proceedings of the ACM on Measurement and Analysis of Computing
Systems 5, 3 (2021), 1–30.

[30] Ali Zeynali, Bo Sun, Mohammad Hajiesmaili, and AdamWierman. 2021. Data-driven competitive algorithms for online
knapsack and set cover. In Proceedings of the AAAI Conference on Arti�cial Intelligence, Vol. 35. 10833–10841.

[31] Xiaoxi Zhang, Zhiyi Huang, Chuan Wu, Zongpeng Li, and Francis CM Lau. 2015. Online auctions in IaaS clouds:
Welfare and pro�t maximization with server costs. In Proceedings of the 2015 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems. 3–15.

[32] Zijun Zhang, Zongpeng Li, and Chuan Wu. 2017. Optimal Posted Prices for Online Cloud Resource Allocation. Proc.
ACM Meas. Anal. Comput. Syst. 1, 1 (June 2017), 26 pages.

[33] Yunhong Zhou, Deeparnab Chakrabarty, and Rajan Lukose. 2008. Budget constrained bidding in keyword auctions
and online knapsack problems. In International Workshop on Internet and Network Economics. Springer, 566–576.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

57:24 Bo Sun et al.

A PROOF OF LEMMA 1
To show the lower bounds of OA(q �) and OA(q � �), we construct two instances (one capacity-limited
instance for Design-I and one capacity-free instance for Design-II), and show that CR(OA(q �)) and
CR(OA(q � �)) are at least ⌦(U ln\) and ⌦(ln⇡\) under the two instances, respectively.

Lower bound of OA(q �). Consider a capacity-limited instance that consists of two groups of items.
Items in both groups have the same in�nitesimal sizeF and starting time (e.g., slot 1). Each group
has # items such that the capacity can be fully �lled by either group, i.e., #F = ⇠ . Group-1 items
arrive �rst. Each item = requests to stay for ⇡ slots and its item value is equal to the threshold value
of OA(q �) upon its arrival, i.e., E= = F

Õ
C 2 [⇡] q

� (I (=�1)C) = F⇡q � (I (=�1)1). Group-2 items arrive after
Group-1, and each of its items requests to stay for ⇡ slots and has the same valueF⇡\ .
Under above instance, OA(q �) admits all items in Group-1 that can �ll up the capacity of the

knapsack in the �rst ⇡ slots and declines all Group-2 items due to capacity limits. Then the online
values obtained by OA(q �) is

ALG
� =

#’
==1

E= = ⇡
#’
==1

Fq � (I (=�1)1) ⇡ ⇡
π ⇠

0
q � (D)3D =

⇡⇠\

1 + ln\
. (20)

The o�ine algorithm will only admit Group-2 items and achieve the optimal value OPT� = ⇡⇠\ .
Thus, the competitive ratio of OA(q �) is at least

CR(OA(q �)) � OPT
�

ALG
�
= U (1 + ln\) = ⌦(U ln\). (21)

Lower bound of OA(q � �). Consider a capacity-free instance that has # identical items. Each item
has unit value density 1, �xed in�nitesimal sizeF , starting time in slot 1, and stay duration ⇡ . The
total size of all items can �ll up the capacity ⇠ , i.e., #F = ⇠ .

Under above instance, OA(q � �) admits items up to utilization

I 0 = argmax
I2 [0,⇠]:q� � (I)1

I =
2⇠

log(⇡\)
, (22)

and achieves a total value ALG� � = ⇡I 0 = 2⇠⇡/(log(⇡\)). The o�ine algorithm will admit all items
and achieve the optimal value OPT� � = ⇠⇡ . Thus, the competitive ratio of OA(q � �) is at least

CR(OA(q � �)) � OPT
� �

ALG
� �

=
log(⇡\)

2
= ⌦(ln⇡\). (23)

B PROOF OF THEOREM 4
Compared to the proof of Theorem 1, we note Lemma 2 still holds in the multi-dimensional
setting. Therefore, to prove Theorem 4, we only need to prove the multi-dimensional counterpart
of Lemma 3, which bounds the competitive ratio C̃R: of each ancillary problem OKD: , which is a
single multi-dimensional knapsack with departures. Thus, we next prove the following lemma.

L���� 4. Under Assumptions 2, 4, and 5, if the threshold function qW::< is given by Equation (18)
with W: 2 (ln 2, +1) and the item size is upper bounded by Y:< ⇠:< ln 2/W: ,8: 2 [],< 2 [":],
the competitive ratio of OTA: is

C̃R: (W:) = 3 ·max
⇢
1 + 2

ln 2
W: ,

2
ln 2

· U:[:\:W:
exp((W: � ln 2)/2) � 1

�
. (24)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

The Online Knapsack Problem with Departures 57:25

We can apply the same partitioning procedure and then focus on analyzing the worst-case ratio
of OPT(N⌘)/ALG(Ñ⌘),8⌘ 2 [�]. Consider the following two cases.
Case I: capacity-free case. The �nal utilizations of all dimensions in ["] across all time slots in
T̂⌘ := T⌘ [T⌘+1 are far from reaching the capacity, i.e., I (#)

<C ⇠< � Y<,8< 2 ["], C 2 T̂⌘ .
In this case, the only reason why one item is rejected by OTA is that it fails to pass the threshold

check. Then OPT(N⌘) and ALG(Ñ⌘) can be connected via the �nal utilization {I (#)
<C }<2 ["],C 2T̂⌘ . We

�rst show that ALG(Ñ⌘) is lower bounded.

P���������� 4. In Case I, the value of items in Ñ⌘ admitted by OTA is lower bounded by

ALG(Ñ⌘) � ln 2
2W

’
C 2T̂⌘

’
<2 ["]

q< (I (#)
<C)⇠< . (25)

P����. Since q< (0) = 0, we can have’
C 2T̂⌘

’
<2 ["]

q< (I (#)
<C)⇠< =

’
C 2T̂⌘

’
<2 ["]

’
=2N

⇠< [q< (I (=)<C) � q (I
(=�1)
<C)]

=
’

C 2T̂⌘

’
<2 ["]

’
=2Ñ⌘

⇠< [q< (I (=)<C) � q (I
(=�1)
<C)]

’

=2Ñ⌘

’
C 2T=

’
<2 ["]

⇠< [q< (I (=)<C) � q (I
(=�1)
<C)] . (26)

Let �ALG= denote the increment of OTA due to processing item =. Thus, �ALG= = 0 if item = is
declined and �ALG= = E= if it is admitted. We next show

Õ
C 2T=

Õ
<2 ["] ⇠< [q< (I (=)<C)�q (I

(=�1)
<C)]

(2W/ln 2)�ALG=,8= 2 Ñ⌘ in the following two sub-cases.

Case I(a). When item = is declined by OTA, we have I (=)<C = I (=�1)<C ,8C 2 T=,< 2 ["] and thus
’

C 2T=

’
<2 ["]

⇠< [q< (I (=)<C) � q< (I (=�1)<C)] = 0 2W
ln 2

�ALG= . (27)

Case I(b). When item = is admitted by OTA, we have I (=)<C = I (=�1)<C +F=<,8C 2 T=,< 2 ["], and’
C 2T=

’
<2 ["]

⇠< [q< (I (=)<C) � q< (I (=�1)<C)]

=
’
C 2T=

’
<2 ["]

⇠<

"
exp

(I (=�1)<C +F=<)W

⇠<

!
� exp

I (=�1)<C W

⇠<

!#
(28a)

=
’
C 2T=

’
<2 ["]

⇠< exp

I (=�1)<C W

⇠<

!
exp

✓
F=<W

⇠<

◆
� 1

�
(28b)

’
C 2T=

’
<2 ["]

⇠< exp

I (=�1)<C W

⇠<

!
· F=<W
ln 2⇠<

(28c)

=
W

ln 2

’
C 2T=

’
<2 ["]

F=< exp

"
I (=�1)<C W

⇠<

!
� 1

#
+ W

ln 2

’
C 2T=

’
<2 ["]

F=< (28d)

=
W

ln 2

’
C 2T=

’
<2 ["]

F=<q< (I (=�1)<C) + W

ln 2
3=

’
<2 ["]

F=< (28e)

 W

ln 2
E= +

W

ln 2
E= =

2W
ln 2

�ALG= . (28f)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

57:26 Bo Sun et al.

Inequality (28c) holds since F=<W
⇠< ln 2 Y<W

⇠< ln 2 1 based on the additional condition on the item
size in Theorem 4. The last inequality (28f) is due to the decision rule in themulti-dimensional settingÕ
C 2T=

Õ
<2 ["] F=<q< (I (=�1)<C) E= when item= can pass the threshold check, and3=

Õ
<2 ["] F=<

E= is based on Assumption 4.
Combining above equations gives’

C 2T̂⌘

’
<2 ["]

q< (I (#)
<C)⇠<

’
=2Ñ⌘

2W
ln 2

�ALG= =
2W
ln 2

ALG(Ñ⌘),

which completes the proof. ⇤

Next, we show the o�ine optimal value of items in N⌘ is upper bounded.

P���������� 5. In Case I, the value of items in N⌘ admitted by the o�ine algorithm is upper
bounded by

OPT(N⌘) ALG(N⌘) +
’

C 2T̂⌘

’
<2 ["]

q< (I (#)
<C)⇠< . (29)

P����. Let S⌘ \ S⌘⇤ denote the set of items in N⌘ that are admitted by both online algorithm
OTA and the o�ine algorithm and S⌘⇤ \ S⌘ denote the set of items that are declined by OTA but
admitted by the o�ine algorithm. We have’

=2S⌘\S⌘⇤
E= ALG(N⌘), (30)’

=2S⌘⇤\S⌘
E=

’
=2S⌘⇤\S⌘

’
C 2T=

’
<2 ["]

F=<q< (I (=�1)<C) (31)

’

=2S⌘⇤\S⌘

’
C 2T=

’
<2 ["]

F=<q< (I (#)
<C)

=
’

C 2T̂⌘

’
<2 ["]

q< (I (#)
<C)

’
=2S⌘⇤\S⌘ :C 2T=

F=<

’

C 2T̂⌘

’
<2 ["]

q< (I (#)
<C)⇠<,

where the �rst inequality in (31) holds since the item fails to pass the threshold check, and the
last inequality holds since the items admitted by the o�ine algorithm cannot exceed the knapsack
capacity in any dimension, i.e.,

Õ
=2S⌘⇤\S⌘ :C 2T= F=< ⇠<,8< 2 ["].

Thus, we have

OPT(N⌘) =
’

=2S⌘\S⌘⇤
E= +

’
=2S⌘⇤\S⌘

E= ALG(N⌘) +
’

C 2T̂⌘

’
<2 ["]

q< (I (#)
<C)⇠<, (32)

which completes the proof. ⇤

Combining Proposition 4 and Proposition 5 gives

OPT(N⌘)
ALG(Ñ⌘)

ALG(N⌘) + Õ

C 2T̂⌘
Õ
<2 ["] q< (I (#)

<C)⇠<
ALG(Ñ⌘)

 1 + 2
ln 2

W . (33)

Case II: capacity-limited case. There exists at least one time slot C 0 2 T̂⌘ whose utilization in
one dimension<0 2 ["] approaches the knapsack capacity, i.e., ⇠<0 � Y<0 < I (#)

<0C 0 ⇠<0 .

P���������� 6. In Case II, the value of items in Ñ⌘ admitted by OTA is lower bounded by

ALG(Ñ⌘) � ln 2⇠<0⇡

W

exp

✓
W � ln 2

2

◆
� 1

�
, (34)

where<0 = argmin<2 ["] ⇠< .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

The Online Knapsack Problem with Departures 57:27

P����. In this case, if there exists one slot (say C 0) whose utilization in one dimension (say<0)
approaches the capacity, then the �nal utilization of dimension<0 in the worst-case is also in the
pattern illustrated in Figure 2. Then based on Proposition 4, ALG(Ñ⌘) is lower bounded by

ALG(Ñ⌘) � ln 2
2W

(2⇡ � 2)q<0

✓
⇠<0 � Y<0

2

◆
+ q<0 (⇠<0 � Y<0)

�
⇠<0 (35a)

� ln 2⇠<0⇡

W
q<0

✓
⇠<0 � Y<0

2

◆
(35b)

� ln 2⇠<0⇡

W

exp

✓
W � ln 2

2

◆
� 1

�
, (35c)

which is minimized when<0 = argmin<2 ["] ⇠< . This completes the proof. ⇤

In Case II, since the value density is upper bounded by \ . The total value of 2⇡ slots with total
size of items

Õ
<2 ["] ⇠< is thus upper bounded by

OPT(N⌘) 2\⇡
’

<2 ["]
⇠< . (36)

Thus, in Case II, we have
OPT(N⌘)
ALG(Ñ⌘)

 2
ln 2

· [U\W

exp((W � ln 2)/2) � 1
, (37)

where [=
Õ
<2 ["] ⇠</(min<2 ["] ⇠<).

Summarizing the results from the two cases, the competitive ratio of OTA is

C̃R(W) = 3max
⇢
1 + 2

ln 2
W,

2[U\
ln 2

· W

exp((W � ln 2)/2) � 1

�
. (38)

This completes the proof of Lemma 4.
Based on Lemma 4, we can choose Ŵ: = 2 ln([:U:\: + 1) + ln 2,8: 2 [] and this gives

C̃R: (Ŵ:) = max
⇢
9 + 12

ln 2
ln([:U:\: + 1), 6 + 12

ln 2
ln([:U:\: + 1)

�
= $ (ln(U:\:)),8: 2 [] . (39)

Then the competitive ratio of OA(qW) is C̃R = 1 +max:2 [] C̃R: (Ŵ:) = $ (ln([U\)).

C THRESHOLD-BASED ALGORITHMS VS. ONLINE PRIMAL-DUAL ALGORITHMS
The online primal-dual algorithm (OPD) and the online threshold-based algorithm (OTA) rely on
di�erent assumptions and achieve di�erent competitive results. In the following, we show the
di�erences and connections between the two algorithms.

The online packing problem, or the online multi-dimensional knapsack problem (OMdK), solved
by OPD in [6] is a special case of OKD and can be formulated as a linear program

max
G=

’
=2 [#]

E=G=, (40a)

s.t.
’

=2 [#]
F=<G= ⇠<,8< 2 ["], (40b)

G= 2 {0, 1},8= 2 [#], (40c)

where< 2 ["] is the index for knapsack dimension and= 2 [#] is the index for items. In the online
knapsack literature [29, 31], we commonly assume the value density is bounded E=/(

Õ
<2 ["] F=<) 2

[1, \] since the value density is usually the most critical parameter in knapsack problems regardless
of online or o�ine settings. \ can be considered as the ratio of the maximum to minimum value
density. For clear comparison, we present the threshold-based algorithm for the OMdK in Algorithm 4.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

57:28 Bo Sun et al.

Algorithm 4 Online Threshold-based Algorithm for Online Multi-dimensional Knapsack
1: input: threshold function q := {q< (·)}<2 ["] , capacity {⇠<}<2 ["] ;
2: output: admission decision G= ;
3: initialization: utilization I (0)< = 0,8< 2 ["];
4: for item = = 1, . . . ,# do
5: observe item value E= and size {F=<}<2 ["] ;
6: determine a threshold value � =

Õ
<2 ["] F=<q< (I (=�1)<);

7: if E= > � and I (=�1)< +F=< ⇠<,8< 2 ["] then
8: admit the item and set G= = 1;
9: else
10: decline the item and set G= = 0.
11: end if
12: update utilization I (=)< = I (=�1)< +F=<G=,8< 2 ["].
13: end for

This algorithm can achieve the competitive ratio $ (ln([\)), where [=
Õ
<2 ["] ⇠</min<2 ["] ⇠<

is the capacity variation. Its proof is similar to that of Theorem 4 by omitting the partitioning
procedure. For completeness, the result can be summarized as the following lemma.

L���� 5. Under Assumptions 4 and 5, there exists W = $ (ln([\)), if the item size is upper bounded
by Y< ⇠< ln 2/W,8< 2 ["], and the threshold function qW = {qW<}<2 ["] is given by

q< (I) = exp(IW/⇠<) � 1,8< 2 ["], (41)

then the competitive ratio of Algorithm 4 is $ (ln([\)).

In the online packing problem, the value of each item is usually set to be identical. For example,
in the online virtual circuits routing problem (See §5.2 in [6]), the value of each virtual circuit
is identical and equal to 1, i.e., E= = 1,8= 2 [#]. In this problem, the most crucial parameters
are Fmax

< = max=2 [#] F=< and Fmin
< = min=2 [#]:F=<<0F=< that represent the maximum and

minimal item size in each dimension. The OPD can achieve a competitive ratio of $ (log" +
logmax<2 ["]

Fmax
<

Fmin
<

) (See Theorem 3.1 in [6]).
Although relying on di�erent assumptions, OPD and OTA can be connected. We can in fact apply

OTA to the setting of the OPD and achieve a slightly better competitive ratio guarantee. First, we
normalize the item size of each dimension by its capacity and considerF=</⇠< as the size of item =
in dimension<. In this way, the capacities of all dimensions are normalized to 1. Then the capacity
variation becomes [= " and the value density becomes E=/(

Õ
<2 ["] F=</⇠<). In addition, the

value density is bounded from below and above by
E=Õ

<2 ["] F=</⇠<
 E=Õ

<2 ["] min=2 [#]:F=<<0F=</⇠<
=

E=Õ
<2 ["] F

min
< /⇠<

, (42)

E=Õ
<2 ["] F=</⇠<

� E=Õ
<2 ["] max=2 [#] F=</⇠<

=
E=Õ

<2 ["] F
max
< /⇠<

. (43)

Therefore, the variation of value density is upper bounded by

\ =

E=Õ
<2 ["] F

min
< /⇠<

E=Õ
<2 ["] F

max
< /⇠<

=

Õ
<2 ["] F

max
< /⇠<Õ

<2 ["] F
min
< /⇠<

 max
<2 ["]

Fmax
<

Fmin
<

. (44)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

The Online Knapsack Problem with Departures 57:29

Thus, OTA can achieve a competitive ratio of $ (ln("\)) that is better than the ratio $ (log" +
logmax<2 ["]

Fmax
<

Fmin
<

) achieved by the OPD.
In addition, OTA can achieve the same result as the OPD in a special case of the online packing

problem with sparse demand requests. In the special case, the values of all items are identical, i.e.,
E= = E,8= 2 [#] and all item sizes are binary, i.e., F=< 2 {0, 1}. Let ⇤ = max=2 [#]

Õ
<2 ["] F=<

denote the sparsity parameter, i.e., maximum number of dimensions used by each item. The OPD
in [6] achieves a competitive ratio of$ (ln⇤) when the capacity is large enough⇠< � $ (ln⇤),8< 2
["] based on the results of Theorem 3.2 and Lemma 5.4 in [6] for the integral version of the online
packing. We can show that Algorithm 4 can also achieve a competitive ratio of $ (ln⇤).

L���� 6. If all item sizes are binary F=< 2 {0, 1} and item size is small compared to capacity
with ⇠< � W/ln 2, the competitive ratio of Algorithm 4 is $ (ln⇤) when the threshold function is

q< (I) = E

⇤
[exp(IW/⇠<) � 1],8< 2 ["], (45)

where W = ln(⇤ + 1).

P���� �� L���� 6. The proof is similar to that of the capacity-free case in Lemma 3. There is
no capacity-limited case because the threshold check in Algorithm 4 can already guarantee no
violations of the capacity constraints. To be precise, suppose one dimension<0 reaches the capacity
⇠< after processing item =0. Then any item = that comes after =0 and requests dimension<0 (i.e.,
F=<0 = 1) will face a threshold value in Algorithm 4

� =
’

<2 ["]
F=<q< (I (=�1)<) � F=<0q<0 (I (=�1)<0) = q<0 (⇠<0) = E . (46)

Therefore, the item = cannot pass the threshold check and the capacity violation is avoided. We
next show that values obtained by Algorithm 4 and o�ine algorithm under the same instance I
are lower bounded and upper bounded, respectively.

The value of admitted items by Algorithm 4 is lower bounded by

ALG(I) � ln 2
2W

’
<2 ["]

q< (I (#)
<)⇠<, (47)

where I (#)
< is the �nal utilization of dimension< after processing the # items in I.

Since q< (0) = 0,8< 2 ["], we have
’

<2 ["]
q< (I (#)

<)⇠< =
’

=2 [#]

’
<2 ["]

[q< (I (=)<) � q< (I (=�1)<)]⇠< . (48)

Next we show that
Õ
<2 ["] [q< (I (=)<) �q< (I (=�1)<)]⇠< 2W

ln 2�ALG= , where �ALG= is the increment
of Algorithm 4 by processing item =. �ALG= = E if item = is admitted and �ALG= = 0 otherwise.

Case I. When item = is declined, we have I (=)< = I (=�1)< ,8< 2 ["], and thus

’
<2 ["]

[q< (I (=)<) � q< (I (=�1)<)]⇠< = 0 2W
ln 2

�ALG= . (49)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

57:30 Bo Sun et al.

Case II. When item = is admitted, we have I (=)< = I (=�1)< +F=<,8< 2 ["], and thus’
<2 ["]

[q< (I (=)<) � q< (I (=�1)<)]⇠< =
’

<2 ["]

E⇠<
⇤

exp(I (=�1)< W/⇠<) [exp(F=<W/⇠<) � 1] (50a)

’

<2 ["]

E⇠<
⇤

exp(I (=�1)< W/⇠<)
F=<W

⇠< ln 2
(50b)

=
W

ln 2

’
<2 ["]

F=<q< (I (=�1)<) + EW

⇤ ln 2

’
<2 ["]

F=< (50c)

 W

ln 2
· E + EW

⇤ ln 2
· ⇤ =

2W
ln 2

�ALG=, (50d)

where Equation (50b) holds sinceF=<W/(⇠< ln 2) 1 based on the assumption, and Equation (50d)
holds because

Õ
<2 ["] F=<q< (I (=�1)<) E if item = is admitted, and the maximum number of

non-zero dimension is ⇤, i.e.,
Õ
<2 ["] F=< ⇤.

Thus, we can have ALG(I) = Õ
=2 [#] �ALG= � ln 2

2W
Õ
<2 ["] q< (I (#)

<)⇠< .
Based on the same arguments as Proposition 2, we can also show the value of o�ine algorithm

is upper bounded by

OPT(I) ALG(I) +
’

<2 ["]
q< (I (#)

<)⇠< . (51)

Finally, by combining Equations (47) and (51), the competitive ratio of Algorithm 4 is

OPT(I)
ALG(I)

ALG(I) + Õ
<2 ["] q< (I (#)

<)⇠<
ALG(I) 1 + 2W

ln 2
= $ (ln⇤). (52)

⇤

D IMPLEMENTATION OF DISCRETIZED DATA-DRIVEN ONLINE ALGORITHMS
Classical online algorithms are optimized for the worst-case instance; however, in practice, the
worst-case rarely occurs and the average-case performance of online algorithms is often even
worse than simple heuristics (e.g., greedy algorithms). Thus, this paper aims to propose a viable
data-driven online algorithm (DOA) to improve the average-case performance while still providing
worst-case guarantees. This approach generally consists of two steps: (i) constructing a class of
parameterized online algorithms, each of which has a bounded competitive ratio; and (ii) adaptively
selecting the online algorithm from the constructed algorithm class to optimize the average-case
performance. In this paper, the �rst step has been completed in Theorem 3. The threshold-based
algorithms have bounded competitive ratio V as long as the parameter of the threshold function is
selected from the parameter set �(V). In the following, we provide a viable approach for the second
step by discretization and show the average-case performance. Finally, we discuss the limitations
of this discretized DOA.

Algorithm implementation. In the experiments, we implement a discretized version of the DOA.
In particular, we discretize �(V) into �̃(V) with step size of 0.1. Let 3 denote the cardinality of the
discretized parameter set �̃(V) and [3] := {1, . . . ,3} denote the set of indices. In this discretized
problem, we can alternatively use index 8 2 [3] to represent the selected threshold function instead
of parameter W 2 �̃(V), and refer to 8 as an expert advice. Thus, we can restate the DOA as an
exponential weights algorithm (or Hedge algorithm) [14] in Algorithm 5. This algorithm selects
expert advice 8✓ (that is equivalent to the selection of a threshold function) at the beginning of each

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

The Online Knapsack Problem with Departures 57:31

Algorithm 5 Data-driven online algorithm (DOA) via Hedge algorithm

1: input: parameter set �̃(V) indexed by [3], learning rate a ;
2: output: parameter selection {8✓ }✓2 [!] ;
3: initialization: initial selection probability p1 := {?1,8 }82 [3] = [1/3, . . . , 1/3];
4: for round ✓ = 1, . . . , ! do
5: draw parameter 8✓ from probability distribution p✓ ;
6: observe reward r✓ := {A✓,8 }82 [3] and collect the reward A✓,8✓ ;
7: update p✓ by ?✓+1,8 =

?✓ ,8 exp(aA✓ ,8)Õ
92 [3] ?✓ ,9 exp(aA✓ ,9) ,88 2 [3].

8: end for

round ✓ 2 [!]. Then the rewards of all expert advices can be observed r✓ := {A✓,8 }82 [3] but only the
reward of advice 8✓ is collected by the algorithm.

Average-case performance. Following the classic results of the expert problem (e.g., Corollary 2.2
in [8]), the average-case performance of the DOA can be evaluated by the regret as follows.

L���� 7. Assume the per-round reward is bounded 0 A✓,8 Ā ,8✓ 2 [!], 8 2 [3] and the learning
rate is set to a =

p
2 ln3/(Ā 2!), the regret of Algorithm 5 is

E

266664
max
82 [3]

’
✓2 [!]

A✓,8 �
’
✓2 [!]

A✓,8✓

377775
 Ā

p
2! ln3 . (53)

Since the regret is sublinear in the number of rounds !, the average reward of Algorithm 5
approaches the reward obtained by the algorithm with a �xed threshold function selected in
hindsight as ! ! 1.
Note that the regret is logarithmic in 3 and depends on the granularity of discretization and

system parameters. In more detail, 3 = d 3̂1X e ⇥ · · · ⇥ d 3̂ X e, where X is the step size of discretization
and 3̂: is the length of the :-th coordinate of the original parameter set �(V). Based on Theorem 3,
3̂: can be upper bounded by

3̂: = ln 2 ·min
⇢ (V � 4)

6
,
⇠:
Y:

�
� (V � 1)Z: + 2,

✓ (V � 1)Z:
2
p
2

exp
✓ (V � 1)Z:

2

◆◆

 ln 2(V � 1)
6

1 + 1

U:\:

�
,

where Z: := � ln 2/(6U:\:) and, (·) is the Lambert, function. This upper bound increases
linearly in the target competitive ratio V and decreases in the knapsack parameter U:\: since the
knapsack with large U:\: dominates the worst-case ratio and thus gives less �exibility for parameter
tuning. Let 3̄ = max:2 [] 3̂: . Then the cardinality of the discretized set �̃(V) is upper bounded by
3 (3̄/X) . Therefore, the regret of the DOA can also be upper bounded by Ā

p
2! ln(3̄/X), which

is sublinear in the number of knapsacks but increases when a �ner grained step size X is chosen.

Limitations of implementing the discretized problem. Algorithm 5 is based on the discretization
of the original parameter set �(V). The discretized problem can more accurately approximate the
original problem by adopting a smaller step size X while this will result in a larger parameter set
3 and thus a slower speed of learning the threshold function based on the regret bound (53). In
this paper, we choose to set X = 0.1 to balance the approximation accuracy and learning speed in
our numerical tests. In the problems with large 3 , it may become even computationally di�cult to

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

57:32 Bo Sun et al.

obtain the full information feedback (i.e., the reward of all possible expert advice r✓) in each round.
We can resort to the EXP3 algorithm [2] that only requires bandit information feedback (i.e., the
reward of the selected parameter A✓,8✓) in such settings.

An alternative implementation of DOA is to design online learning algorithms to directly learn the
parameter W from the original continuous parameter set �(V). However, it is challenging to provide
theoretical regret bounds in this setting. Particularly, the regret analysis requires understanding the
special properties (e.g., Lipschitz-continuous) of the per-round reward (as a function of the selected
parameter W). The per-round rewards of our online knapsack problem are in general piecewise
Lipschitz functions, which su�er linear regret bounds without additional conditions [9]. Thus, it
remains an open question to design sublinear regret online learning algorithm from the original
continuous parameter set. A promising direction is to follow recent works on data-driven algorithm
designs via online learning [3, 4] that identify additional properties (e.g., dispersion) of the reward
function to improve the regret analysis.

Received August 2022; revised October 2022; accepted November 2022

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 57. Publication date: December 2022.

