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Abstract

1 Introduction

hi this pal)er, wc are concernd with bounding the Hlean

response time (and thereby the moan nunlbcr of cus-

tomers in the sysklu) of the n~znin~un? e.zpec{cd delay

routing lmlicy (a natural gmleralizatlioll of tile short-

est queue routing policy ), ‘Ilw syst,enl Ulldcr study hafi

1( servers, where 1( z 2. Each server has an infinik

capacit] queue and service rates are exponentially dis-

tributed with rate ,LLi, i = 1,2, . . . . Ii. WJithout( loss of

generality, we assume /L1 > /iz ~ ~ /LK. ‘~l]e job

arrival process is Poisson with rate A. ~Jpon arrival, the

job joins (he quclw with’ mini Inal expected unfinished
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(rather than joiuing the server with lninimulu expected

delay ). The analysis approach involwxl treating o]le of

the queues as having a bounded capacity so that! the

tlransitiou rate matrix fqr the modified systent could

be expressed ill a nlatrix-g6’0111 (3tric form [19]. Grass-

rnan [10] studied the same probkl] ) with A- = 2 and

solved for transielltl and sleady state behavior. Ilalfiu [O]

stu(lied the two servers prol)lenl and used a linear l)ro-

gralllmillg technique 10 t-olnI)uLe hounds 011 the lneau

number of customers in tile systelu. Blanc [2] studied

the joiu the shortest, qlleut? problem witlfl all arl.)il]rary

nunlber of het<erogmeous servers. He proposed an ap-

proxilll at ion method which was base(l on power seri(w

expansions and recllrsioll which required a substantial

c(~l~i~~tltat.iollal effort. NelsoII aild Phililm [ 17, 18] pro-

j>osed aa approximation for the mean rcslx~nse tilnc

with A- homogeneous servers. More il]llmrt}antly, tile

iippr OXi Illatiou allowed gelleril] iuteramivzd MI(I service

time distrihuliom. Avrilzer [1] studied a clylmnic load

bakmf-iug algorithm which used threslkold policy in all

asynmlet,ric distributed systenl. TIM result, was ouly

al)plica ble to two distinct tylws of servers and a small

class of threshold sizes, no formal I)roof was given on

how 10 obtain perforlnance bouu(ls. None of the work

cited ahcm> treated more (<lMMI two servers aud sinlultla-

ueollsly provided rrror bouuds.

‘-1’116’HEl,lOr COU ~rj ]JUtrhl of this I)iiper iS a COnljJUt!a-

tion algorithm that ( 1 ) allows more than Ii ~ 2 servers,

(2) allows hetfmgemous servers, (3) iucludm scheduling

based 011 (Iucue lengths aud service rates (thus, a gener-

alization of joining the shorlfesll qut=uc) a]ld (4) }>rovidcs

error hounds. ‘1’he bouncfillg Inelllmc]ology also allows

one to tradeoff accuracy and coml~ut,atioual cost, as will

Lm drumnstrated.

III Sectllou 2, we ddinf forlnally the quelleillg sys-

tem we are analyzing. h Sections 3 alltl 4, we prcsel}t

hfarkov models wllicll providf’ ul)pcr and lower bounds

ou the nlea]l respouse ti]ne, and we formally I)rovc that

these nlodified modf>ls do provide bounds. Ill this pa-

per, we show how we call further reduce t hc state space

hy luo)pillg silnilar states. hl Sect,ioll 5, we J)resenll two

numerical examples and show tfmtl the lJouuds are ill-

deed iight. ( !onc] usious are I)rmcnted ill Sectiou 6.

2 Minimum Expected Delay

Routing Model

We cousidcr a systen~ with ~i ~ 2 servf’rs, each with

its own iufinite capacity queue WI(I exponential servicf?

rate IIz, i = 1,2?, ...,1{, whcrr //1 ~ p~ ~ ~ f!ll{.

The ,job arrival process is Poisson with rate A. Let ni (f )

be tile nulllbcr of custolners at the ith server at tilllc

t. Let [r,(t) = ( 1 + n, (f ))/; L,, which is the expected

s=
1) =

[:*(.9) =

?ta(s) =

H*(S) =

1{(’) =

The (Jllf?-ski) t$ransiiliou l~rf}l)ill)ilifit’s for a &IV(II htalf’

[,s=//l, . . .. l/)... ., tl~] are:

,5 4 S+(J [{; = u*(s)}h A (%)

,y —
S-{? 1 {n, > O}hp; (:])

Ii

S — s 1 –h[A+~l{7?, >()}//,] (1)

1 –h[A+~l[?t, > ()}j/,] = ~ 1{)/,=:0}//;/) (5)

]=J 7={

Let 1) IN 111(-transition I)rol)al)illty Ill;itlrix for tfl~ Lrlills-

forllled (Iiscr(?l(-titl]t’ !lIarkov cllaill; wc call ~~l)laill tfl<’

141. ~’erformance Evaluation Review, Vol, 20, No. 1, June 1992



steady state pml)al)ility, at, I(ast (Il](wre(ically, I)y solv-

ing the follow il]g hyst(’in of liutar (v[uatiolls:

;P = F {1)/(1 -T< = 1— (6)

()[ COI.IM(’, I,asml on tllc slate dmcril~tloll, 7 is a 1(-

(Iiltlcusiollal wctor w]] icll is illfinit(’ ill each (litllcllsioll.

The exact soilltifm (0 this IJroljlf’iil has I)eell f’oul]d tlllls

far to be illlractabl(’.

IIL gtvleral, tile orlgillal l)rohlel]) (lofx Ilot I)ossess a

closed forlll solutiol}, al]cl il is ilnpossible t,o solve tl]e

prol)leill ll[llll(’~i Ciill~ due to its state space cardinalitly.

Since the Markov cbaiu lacks sl)vcial strllrlure, tfTcll-

ui(lues such as thr IIltitrix-g(?(>tl)t’tlric lIIetJLods do not, ap-

ply iu gelL(’ral. One natural way to al)l)roach this proh-

lcm is 10 con.s{7 uct auotll(r nlodel lllat closely Imuuds

tlIc perforumuce 0[ the original l)rol~lmu and at the SM]]C

tLnle, has rithcr a kuown closed forln SOlU(lLOU or at least,

is cffirimtly (?Vi3iLldlk’ hy numerical nlet 110(1s.

An iluportimt olmrratiol~ is that the motivation for

using nlininlun~ expeckd (If’lay l)olicy is to balance the

workload amoug all sx>rw>rs in the systclns. Gusidcr a

system of two servers with mlual s~rvic(> rates in which

tl]c current stak is [5, l]. g’lle Jjllrpos{’ of usiug t,llc rollt-

IIlg I)olicy is to I>alal)cc the systf’1)1 as [nuch as possil}le;

tfl;refurc it 1s reasot]al)lr to assullle tilatl zi highly lLullal-

aucml stak(e.g., [h, 1]) has a lnucll smaller proimhillty

mass than a halauced state (i. e., [:1, ;]] ). ‘J’his crucial

insight provides the ratioual for collstructling two knoLl-

ifiecl v(’hions of the original Illo(lel which can be shown

to hol IuLJ t hc nl(’all res])olm tillle of the origiual systf’111.

1]) both cases we reJ~r(w’ut tl)e exact I)ehav]or (tratlsi-

t<LOnrates) for [JIf? Iltost “lml)lilar” states. ‘l’lIt’ jlumlwr

of staks ill tflllc most l~oI)ular slllm>t is a funct]ioll of

tfle accur:ioy dmnalldccl au(l c[>llll~lltatioll:il cost one is

vvillillg to pay. ~~l]t’1] t he systlcul loaves tl)is su]met we

lllO(lifJ’ the ~ehaVIOL’ Of tilt’ SYSklll ill sLIch i] Wtiy that

(a) the nlodifiml systetll lms au eflici~ut sollltion nn(l (1))

tfle nlodifiecl lnodel behavior cau Iw showu to bouud tllc

behavimr of tl~e original lnodcl.

In the following two sect, ions. we pres(’llt two Markov

models which can J~rovidc au ul)pcr l)ound and a lower

hound mean rmlml)s( tlinlc. Wc also I)resent numeri-

Cid procedures for efflcit I]t,ly solving tllesf’ two lnodifie(l

1TIOCL?1S.

3 Upper Bound Model

In this section, we constrict, a modified M arkov mode’i,

Al,,, which provides an upper lmlincl for the Iuean r(!-

spousc tinlc and tll(, mean JILIIIIII(Jr of custoltlcrs of {he

original nloflel, ,1/. For i Ile uj)lwr ho[lnd model MU,

we assu Inr that we 1]ave the salnc systcnl configura-

tion, murlcly (hat the job arri~al l)roccss is I)oisso]l witlt
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?=~ IL

II =

(’, =

d =

?I,,,u(.$)=

l(s) =

for all servers i, i = (), 1, . . . . Ii ill stiite s.

Nok that /(s) is the dt’p[l] of rt~cllrsio]l of

jol~ suslwllsions ill state s.

We trarlsform this c(~lltillll{jus-tiltle Markov mode]

into a disc rete-tinle hl arkov rhaiu with tllf~ sam P u]li-

fonnization paranletlfx h wll ich wc usfxl iu lhc orig-

inal model M. The one-step tra,rlsitioli probal)i Iiti(s

of the discrete-time Llarliov chain for a given state

[.’s= ?l, , . .,71,,.., n ~] are:

s— s + Ct, l{i = H*(.4)}hA (7)

s — .s—f~ 1 {?1, > ()}1 {71,,7 (,,,(.$) – ~~! <4

1{11~ ‘(l(,S)– l)L’i >()}/1/(~ (8)
~.

s — s l–h[A+~l {7/, >()} I{lf,,l(,,,.(.s) –?),, <d}

1=]

l{)?i – (1(.S) – I)C’, >()]~(~] (!))

Not(~tll~ltfortrallsitioll s- —s-–(,,, tllf second indicator

flmctiou rf>ffects that a,job carlllotr (Iclmrt if it violat<cs

t<l)cllltlxill] Lllll,l(`gr[,e( )fil~ll)al[lllc( I)(,rll~it{{\(l. Tllctbirxl

in(licator function reficcis tllai :ijol) callllot (1(’pilrt if it

is ill a suslwlldcd state. \Vr are now ill a Iwsilioll to
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for all t ~ 0 M]CI for all s E S,,

Basfd ml the definition of the om-stf’p cxpeclatlioll

operator 011 the original I]lodel M and trlle Ilppcr bound

lnodel IU,4, we have the fol Iowillg rf’laliomship for ally

state s E St’:

1<

(!i’;,-~”’)f(.s) == ~ 1 {((w >0) A (nn,u(s-w =d)) I

?=1

((?/, >O)A(?/, -(~(.s)-l)({= O)))

pjh[f(.s) – $(s-ci )] (J5)

where the syII~lJol “A” is tile logicnl AND and “1” is

the logical OR operator. Substit,at,illg Vt(s) for j(s),

it follows easily that Equation ( 14) is satisfied if the

following conditions are satisfied:

Theorem 1

3.2 Computational algorithm for solv-

ing the upper bound model

so = set of stat,f;s with 17, < C“’j, j“ = 1, 2, ., K.

s~ = Setl of slates with i(j ~ ?l, ~ ( ~ + 1 )[-~,

j=l,2, ..., I: and for 7’~ 1.

Ps,,+ = trausitim prol)ability ma(rix from statrs ia

& t,o stales in Sj

The tramitio]l rate matrix 1],, has th( foru] <Iepict,ed iu

Figure 1.

This is a block tridiagonal t,ra]lsitiou prohal)ility Ina-

trix and therpfore represents a quasi-hi rtl]-dmth pro-

cess. By aggregating each partition S~, we call forln a

hirt,h-death process. Next,, we show how to ol}taill the
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hncar fqaalions:

—— il ~

= 1

111 i-ach (olllponc7)t,

ha.5 thf WIUC o~ 1.

s gaucu

that is:

ii(s

Proof: Let us partition the state space SU = {S: US~’}

Wllt?l’(> S; = U’~~lSj and S;’ = A’tt — c$~. T1lCK is 0111~”

a siogle ret$uru state in ~-~, which is Si(C”’0), fronl the

states in S:’. Based on Tll~orenl 2, the modification

of Eqlmtion (17) provides tht’ col~ditiol)al skwly state

probability, giw~n the system is ill S:. Now partition

the state sljacc $ = {’!/ U S7} where S) = Uj~[)Sj.

Note lhat there is only one ret,uru state ill Si, which

is st(n*(si- l (C:(l))). Again, based ml Theorem 2, the

modification of equation (18) and equation (19) lJro-

vides the conditional state prolmbility wctor, given t,l]e

systff’lll is in state Si. m

A,) = Fr(s(,((’,))) A h

S[)lviug this chain, we IJave:

[

L
7r*(.so) = 1 +

/[11!/!/ 1

[
7r*(s/) = 1 +

,(I(,(,GI:: (2) k:)(:)

for i= I,2, . . (21)

,=1

X’(..z) = ~ i(..)ii(.,)

‘l’lIt’ll W’e lla\”(’;
!>

,Y,l = !~(SI))rr’(S[l)+~ [;~f(.s, )+i( ‘(I
1

ir’(.s, )(’12)

1=1

;\T,, = i’(.s,,)~’(.$,)) + i~(s,, )(l – T*(.$,))) -t

( ‘[IA(]— P fl:l:l
., T+(.’((,)

(Its.i,.v– AH,(,)“
(23)

1{,,== ,\lL//\ (’21)
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[Tsing tfle sllak’

easy (,0 dIow that

r(’l)liciltiol) Wl)lli(luc frolll [10], it iti

we call tlrausfor~u lfle lllodel AZ into

f~igur( 1: ‘1’riillsitioll rnt(; iuatrix for ,111.
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Figure 6: Transition rate lliatrix for Af~

(whic]l has tile sarnc &lwctfxl llunlljer ‘of custon]ws ai

the origilla[ ulodel, Al) to th(’ lower I) OLIIICI iuode] A1l

sillc(’ they have silllilar t ramitiml structures. Not,c that,

in the lower I)otmd model Af~, the Syst<cm operates i u

the jidl serulrf 7nmlc when it is in states oi, i > 1. ‘“llhat

is2:

Figllrc 7: Trallsitiol] r;itr tuatlrix for I(]wtr l)tJIIJI(l ltl!~(lol.

‘(LS(’)[QS(lS()+(:’’JS()J”L)‘;1=“

147. Performance Evaluation Review, Vol. 20, No. 1, June 1992



where ;(S’(l ) is tile sleady state prol)ahility vector, given

the systmrl is in &. W’e call uow apply exact aggrega-

llion: tile aggregated }lrocess is (Iepictld in Figure 8.

Figure 8: Aggregate 0 ail] for lower lmuIid model

‘he trausi(lion rates for the aggregated chain are:

*
Us,),a, —

—
d I$J )~S(, ,.k-,~ i=l, . . . . .. f+l+l

*
!Jat>a,+, =A, i~l

*
!Jal ,,<(, = /lJ

*

{

E;=l Pi
4’d,, a,-1 —

— i=2,3, . . ..l(

//” otherwise

where p* = ~~=~ ~li

Solving the chaiu, we have:

7r*(.W)) =

r (.’f+l j (’f+] i

* ‘$l[A’’f+’-&{J”,., )*
J=l k =,j

cf+J

1

–1

( ~ !/;,,7,-1) -11
k=,1

(~!?: k,ak_l)-’] i=l,...,:,f+l+l

(27)

(28)

k =j

A i_,-L(~[~(-f+]-j((~,/*o,,,)
T*(({i) = T(#so)(F)’ .s,

j=] k =j

Toohtaiuthe IIleall lltlllll)c:r ofcllstfolllt:rs ill tlw sys-

tem, Nl, and the nleaa response tlinle 1/1, let

fi(so)= ~ 7’(s)i(s)

s ES,,

‘1’’lleu we have:

C,,

/.=1

7’K,r, = x ‘~kr
IE’T’7

W’e call al~])ly this IIotioll

deltiy rou( it)g prol)lelll.

1,(’( ,/ lW tile IIUIIIIM’1’ of
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such as sl = [3, 4, 2, 1] and Sz = [r!, 3, 2, 1] into t,he same
. “..

partition since tile 1~, i = 1,2,3 for lwt,h ~t,atcs arc:

11 = {(4, 1),(:3, l)};l~= {(2,1 )}:1:+= {(1,1)}

It is not, diflicult to sw tllatl 11](’ condition for lunllml3il-

ily is satisfied aud vw call greatly rfduce 1$1Ie state space

of the nlode] (Ill at needs to lx’ solved.

5 Numerical Example

111this section, wc l)rwwnt two exall)l)les to illustrate

tile hollll(lillg algorit,lml.

‘lhr systf’111 we collsidor in oltr Iirst ma])kplc co])sis(,s

of four 1101Iloge}leous smvcrs. To vary tfle sys(f’11] uli-

lizatiol~ p frolll (), 1 to ().9, w(’ fix tile input, arrival rate

at 4.0 and vary tho service rates for al I s(~rvers. ~oJ.

this exal)ij)lo, we set, d = .1. l’or p = 0.1 to ().7, we set

(’[ = ~, fol” () = ().8, WC S(’t C!, = 9 :lJld fOr () = ().\), WC Sf,t

( ‘i = lo. T: II)Ic 1 illustrates the ul)})er and lmvr lmIInd

mean response tillle as a fllnclliou of systelll Iltlilizil(ioll.
3 is defil)t~cl to ‘)e ItU+ HIPercentage error ~ x 1o()%. Not,t,

that [he I.,ountls aro very tight.

The secoild system wc col]sider has four hct,erogt’-

neous servers with III = 10, flz = 9, pa = 8 aud /14 = 6.

‘~o vary the systelll utilization from ().1 (0 0.9, we fix

the sc’rvice rates for all sfmwrs and vary the input ar-

rival rate. We set d = 6, and for p = 0.1 to ().7,

we set (~ =< 9,8, 715 >. For p = 0.8 t$o t).!), we set

(~ =< 12, 11, 10,8>. Table 2 illastratles the \Il)per an(l

lower boun(l meal) response tiJue.

To illuslrah’ the tradeoff Ixt$weeu compu Latioual cost

aud accuracy of the bo(inds Let us consider the ho-

mogeneous qlieueil),g systmn in the first< cxaulplc. By

fixing the sysh’HI utilizatio}l at 0.9 and increasing (he

number of states gmerate(ll we see the illlpro~-enwnt, of

the bounds 00 the recall responsf> t,inle. The result is

illustrated in Table 3.

6 Conclusion

.Joining the sllorkwt quruc load halancil]g is appealing

to study not ouly due 10 it’s siluplicit<y ia ilnplelllcn-

tatlion, hut also due to the fact illilt it is (llrorctically

difficult to analyze I)ccause the arrival lJrocess is state

dependent and therefore no closed for}n solution exits

in gel) eral. Also dut’ to the fact that each server has all

infiuite cajmci ty queue, (11(>slate sj)ace car(l inal ity of

the N’farkov model is ijlfiuik al]cf it l,)ecoInes iill])ossibl(>

to generate t<h(’ cati rc stat<> space 10 analyze the Is! arkov

model ntllll(-,ri (ally. We hale plwsd(d a 11 apJJroacll to

bound the moan r(xl)onsc tillle and the meau nullllm

Appendix: Proof for Theorem 1

{

[(

r(s) - ~A/)l{,j = t)”(s) }~”’’’ (f,;)+)+
j=]

{/)j > ()}/4)/) \”’’’ s.(,)))) +

1<

}

p,hl-’’’f))fk)–k~ 1{7/j=() }/f,,/li”’’’~)~) -
j=l,,j#/

l“’]’(.s –(,)

}

{[)(s-)(s-(,)]+
‘1If tile spread in bounds is less tl,a]l < l(J-G, w leave LIIF

entries for the hprcad of the bouII(ls and perrcntage error I)hnk.
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&i21LEa
0.1 175
0.2 175

0.3 17.5
().4 175
0.5 175
0.6 17.5
0.7 175
0.8 2’45
().9 280

system

[Jt,iliza,t, ion

0,1

0.2
0.3
0.4
().5
(1.6
0.7
().8
~:)

IkspoNse l’i Inc

IIl)pcr Bolllld

(’).100074
().201692
(),309L77
().431.42!)
0.57WW
0.773178
1.001225
1.56W28
2.807S03

Ikspor]sc ‘rill~t>

T,OW’I’ 1)01111(1

().2016!)2

0.:10s.557
0.1:1112!)

().b7$l()(jX
(1.772967
1.05(;777
J .~.119.xl
‘2.752(;49

ReSpOIMe Tillle

LTpper !dOUll(i

0.10%573

0.107718
0.113167

0.120737
0.131729
0.148.537
O.li(jtiiu
0.230285
o.39123’i

Ihpollsr I’iul(

I,OWI’ lk)un(l
——

() 103301

o.loil:jri

0.11285!)

0.120305
0.131086
0.1177U1
0.17 +6X)
o.22bi82
o.372:\8h

Sl)r(w[l (}I
1)()(!11(1s.———-—

0.()()()()12
0.0002 I 1
().()0-1-11s
0.014!)78
(). ii fi151—.—

Spl’(’a(l Ot’
Bollll(is

————

0.000272

().0( )02s:)

U.()()O:1O8
(),000 1:12
().()()0(;1:3
().()OU8:M
0.002250
0.0015(0:1
().o188h2

Pm’tll(agl’

EI’rf.)1’

().()()1():)‘X
0.() 13(i-1 ‘X$

().21()()0 %

().379:11 ‘x’

2. OIXN:I x

L,=[

1
T“’’’s.q–fj)j) +

L

–l{n, -1 = o}//,hI-’n(fl)l) 1

. .

which is &I(>ilt(,l’ 1 hall (-11’ (Y]ll:ll [() (),

[
A// (l’’] f(. s+f,) – l“’’’(.$– (,+(,)

1
? ()

L J

It is clear that the first [] term is greater than mm. By
[

~ A)l{j=*(.s)}l’’Ji(<s+ c,l)-\]J1(.i-+,,)

thir(l, fourth and fifth []
)=i,J#/

1tile i n(luction hypothesis, the

tcrllls are greater than zero,

150.

It remains to prove that which is grf;itler (1112111or e(l\Ial 100.
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4 !3 245 2.927385 2.62.1671 ().30271 ‘1 5.15228 (;4

4 10 280 2.8(5780:3 2.75261!) 0,1 151&l 2.0.1883 ‘x

5 12 518 2.790852 2.760:;58 ().0:101! ).1 o.fi 1!):12 ‘k

Case 4: for slate s, i D n“(s) and for state s– (,,
i + ‘71”(S—t,). This case is obviously ilupossihlc=. ~
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