
DCAR: Distributed Coding-Aware Routing in
Wireless Networks

Jilin Le∗ John C.S. Lui∗ Dah-Ming Chiu+
∗Computer Science & Engineering Department

+Information Engineering Department
The Chinese University of Hong Kong

Email: {jlle,cslui}@cse.cuhk.edu.hk, dmchiu@ie.cuhk.edu.hk

Abstract—Recently, there has been a growing interest of using
network coding to improve the performance of wireless networks,
for example, authors of [1] proposed the practical wireless
network coding system called COPE, which demonstrated the
throughput gain achieved by network coding. However, COPE
has two fundamental limitations: (a) the coding opportunity is
crucially dependent on the established routes; (b) the coding
structure in COPE is limited within a two-hop region only. The
aim of this paper is to overcome these limitations. In particu-
lar, we propose DCAR, the Distributed Coding-Aware Routing
mechanism which enables (1) the discovery for available paths
between a given source and destination, and (2) the detection for
potential network coding opportunities over much wider network
region. On interesting result is that DCAR has the capability
to discover high throughput paths with coding opportunities
while conventional wireless network routing protocols fail to do
so. In addition, DCAR can detect coding opportunities on the
entire path, thus eliminating the “two-hop” coding limitat ion in
COPE. We also propose a novel routing metric called Coding-
aware Routing Metric (CRM) which facilitates the performance
comparison between “coding-possible” and “coding-impossible”
paths. We implement the DCAR system in ns-2 and carry
out extensive evaluation. We show that, when comparing to
the coding mechanism in [1], DCAR can achieve much higher
throughput gain.

Keywords: network coding, wireless networks, routing.

I. Introduction

In the past few years, network coding is becoming an emerg-
ing communication paradigm that can provide performance
improvement in throughput and energy efficiency. Network
coding was originally proposed for wired networks, and the
throughput gain was illustrated by the well-known example of
“butterfly” network [7]. Recently, there is a growing interest
to apply network coding onto wireless networks since the
broadcast nature of wireless channel makes network coding
particularly advantageous in terms of bandwidth efficiencyand
enables opportunistic encoding and decoding.

In [1], the authors proposed COPE, the first practical net-
work coding system for multi-hop wireless networks. Figure1
shows the basic scenarios of how COPE works. In Figure 1(a),
there are five wireless nodes. Suppose node1 wants to send
a packetP1 to node2 and this packet needs to be relayed by
nodeC; and node3 wants to send another packetP2 to node
4 wherein nodeC also needs to relay this packet. The dashed
arrows1 99K 4 and 3 99K 2 indicate that4, 2 are within the
transmission ranges of1, 3 respectively. Under this scenario,

nodes4 and2 can perform “opportunistic overhearing”: when
1 (3) transmitsP1 (P2) to nodeC, node4 (2) can overhear
the transmission. When nodeC forwards the packets, it only
needs to broadcast one packet,(P1 ⊕ P2), to both 4 and 2.
Since4 and2 have already overheard the necessary packets,
they can carry out the decoding by performingP2⊕(P1⊕P2)
or P1⊕ (P1⊕P2) respectively, thereby obtaining the intended
packet. In this case, it is easy to see that there is a reduction
in bandwidth consumption because nodeC can use network
coding to reduce one transmission.

(a) Coding scenario with oppor-
tunistic overhearing.

(b) Coding scenario without op-
portunistic overhearing.

(c) Hybrid scenario.

Fig. 1. Basic coding scenarios in COPE [1].

It is interesting to point out that network coding can also
be used when there is no opportunistic overhearing, and this
scenario is illustrated in Figure 1(b). In this case, the source
node1 (2) needs to send a packetP1 (P2) to its destination
node2 (1). Since each source is also a destination node, it has
the necessary packets for decoding upon receiving the encoded
packetP1 ⊕ P2. Again, instead of four transmissions when
network coding is not used, one only needs three transmissions
and thereby reducing the bandwidth consumption. Last but
not least, Figure 1(c) shows ahybrid form of coding which
combines the former two cases, namely, some packets for
decoding are obtained via opportunistic overhearing while

2

other packets are obtained by the fact that the node is the
source of that packet. Under this scenario, instead of requiring
eight packet transmissions, networking coding can reduce it to
five transmissions: four for transmitting a packet to nodeC,
and one for nodeC to encode four packets and to transmit
the encoded packet.

In essence, COPE takes advantage of the “broadcast nature”
of the wireless channel to perform “opportunistic overhearing”
and “encoded broadcast”, so that the number of necessary
transmissions can be reduced. However, COPE has two fun-
damental limitations which we illustrate as follows. Let us
elaborate on these further.

The first limitation is that whether network coding is
possible (or we called the “coding opportunity”) is crucially
dependent on traffic pattern. In other words, network coding
is possible only when there exists certain “coding structure”
that is similar to the ones shown in Figure 1. In COPE,
network coding functions as a separate layer from the MAC
and network layers. If one uses the shortest-path routing,
or some recently proposed ETX-like routing [2], [3], the
potential coding opportunity may be significantly reduced.To
illustrate, consider the example in Figure 2 where there are
two flows to be routed. Without consideration on potential
coding opportunities, the disjoint paths shown in Figure 2(a)
may very likely be chosen. On the other hand, if we use a
coding-awarerouting decision as shown in Figure 2(b), node
3 has the opportunity to perform network coding. In this
example, coding-aware routing will result in a higher end-
to-end throughput for both flows if we assume a two-hop
interference model, i.e., the interference range is about twice
the transmission range under the 802.11.

(a) Routing without coding consider-
ation.

(b) Routing with coding considera-
tion at node3.

Fig. 2. Example: effect of routing decision on the potentialcoding
opportunity.

The second limitation of COPE is that itlimits the entire
coding structure within atwo-hop region. To illustrate, con-
sider the example as depicted in Figure 1(a). COPE assumes
that the transmitters for opportunistic overhearing (i.e., node
1, 3) are the one-hop predecessors of nodeC, and that the
intended receivers (i.e., node4, 2) are the one-hop successors
of node C. These assumptions may unnecessarily eliminate
coding opportunities in a wireless network with flows that
traverse longer than two hops. To illustrate, consider the
scenario in Figure 3 where two flows1 → 2 → 3 → 4 and
5 → 3 → 6 → 7 intersect at node3. Node 3 can encode
packets from these two flows and broadcast the encoded
packets to both node4 and6. Although node6 cannot perform
the necessary opportunistic overhearing for decoding, it can
forward the encoded packet to node7, where the opportunistic
overhearing and decoding can take place. The important point

is, both the opportunistic overhearing and decoding can be
several hops away from the coding node (i.e., the node that
encodes packets). If these generalized coding opportunities can
be detected, we can further enhance the bandwidth efficiency
and throughput.

Fig. 3. Example: the generalized coding scheme.

The above limitations raise some challenging and interesting
questions, for example, is it possible to incorporate considera-
tion on potential coding opportunities into the route selection?
Can a routing scheme examines beyond two hops to discover
more coding opportunities? How to evaluate and compare the
performance of a coding-possible path (we refer to a “coding-
possible path” as a path where certain encoding and decoding
nodes exist) and a coding-impossible path? To answer these
questions, we revisit the system design of practical network
coding system, and propose a novel wireless routing system:
Distributed Coding-Aware Routing(DCAR). The contributions
of our work are:

• We propose a distributed routing mechanism that can
concurrently discover the available paths and potential
coding opportunities.

• We formally define the generalizedcoding conditions,
in which the practical network coding can occur. These
conditions help us to design algorithms which an look
beyond two hops and detect more coding opportunities.

• We propose a unified framework, which we called the
“coding-aware routing metric” (CRM), to evaluate the
performance of a path, may it be a coding-possible path
or coding-impossible path.

• We implement the DCAR routing system in ns-2 and
carry out extensive evaluation showing the performance
gain over COPE and conventional routing.

The outline of our paper is as follows. In Section II, we
describe the “Coding+Routing Discovery” which combines the
detection processes of available paths and potential coding
opportunities. This new discovery mechanism removes the
“two-hop” limitation of COPE, and makes it possible to per-
form coding-aware route selection. In Section III, we formally
introduce the coding-aware routing metric, which quantifies
the potential benefit of “coding-possible” paths, and facili-
tates the comparison between “coding-possible” and “coding-
impossible” paths. The overall system design of DCAR is
presented in Section IV. Simulation results are presented in
Section V Related work is given in Section VI and finally,
conclusion is given in Section VII.

3

II. The “Coding+Routing” Discovery

It is important to point out that the limitations of COPE,
in particular the “coding-oblivious” route selection and the
“two-hop” coding scenario, are mainly due to the “separation”
between its coding discovery process and the routing discovery
process. In COPE, each node initiates some active or passive
detection for coding opportunities based on theestablished
route, therefore, routes in Figure 2(a) may be chosen instead
of the routes with coding opportunity in Figure 2(b). On
the other hand, because the coding detection is made only
based on local information, the coding structure is inevitably
limited within a region with short hops from the coding
node. This observation leads us to a combine solution of
“coding+routing” to overcome the above discussed limitations.

A. Assumptions

We first state the underlying assumptions we use in this
paper. We refer to a “coding node” as a node which encodes
packets, e.g., nodeC in Figure 1 or node3 in Figure 3. A
“coding structure” is a collection of nodes and flows including
the necessary transmitters for opportunistic overhearing, the
coding node, the intended receivers which decode packets,
and the necessary relaying nodes connecting the flows. The
structures shown in Figure 1 and Figure 3 are all examples of
coding structures. We consider coding structures as the basic
building blocks for general networks which use the network
coding paradigm.

Throughout this paper, we focus on the inter-flow coding
fashion similar to the ones used in COPE [1]. The philosophy
is to make sure every encoded packet must be decoded by
the intended receiver, as opposed to proposals for randomized
and intra-flow coding [13]–[15]. By far the inter-flow coding
in COPE is the most practical and realizable application
for network coding. In the rest of this paper, unless we
state otherwise, we consider a stationary multi-hop wireless
network.

B. General Coding Conditions

In order to discover paths with potential coding opportunity,
we need to first state thenecessaryand sufficientconditions
in which network coding can occur. To formally define this
concept, we introduce the following notations. Leta denote
a node, and letN(a) denote the set of one-hop neighbors
of nodea. Let F be a flow1 and we usea ∈ F to denote
that nodea is along the flowF . Let U(a, F) denote the set
of all upstream nodesof nodea in flow F , and letD(a, F)
denote the set of alldownstream nodesof node a in flow
F . For example, in Figure 3, we haveU(3, F1) = {1, 2},
U(3, F2) = {5}, D(3, F1) = {4} and D(3, F2) = {6, 7}.
Generally, when two flowsF1 and F2 intersect at a node,
say nodec, packets of these two flows can be encoded for
transmission at nodec if and only if the coding conditions
are met. The definition of coding conditions is specified as
follows:

1In the remaining of this paper, unless we state otherwise, werefer to
“paths” and “flows” interchangeably.

Definition 1: Coding conditions for two flows, sayF1 andF2,
which intersect at nodec, are:

1) There existsd1 ∈ D(c, F1), such thatd1 ∈ N(s2), s2 ∈
U(c, F2), or d1 ∈ U(c, F2).

2) There existsd2 ∈ D(c, F2), such thatd2 ∈ N(s1), s1 ∈
U(c, F1), or d2 ∈ U(c, F1).

Lemma 1: Assuming perfect channel condition and schedul-
ing (e.g., no packet loss or collision), the above conditions are
the necessary and sufficient conditions for any proper coding
and decoding to occur.
Proof: To ensure that the destinations of both flows get
their respective “native” packets, there must exist some
downstream nodes (i.e.d1 ∈ D(c, F1) and d2 ∈ D(c, F2))
which can extract the “native” packets included in the
encoded one. For example, in Figure 3, we have4 ∈ D(3, F1)
such that4 ∈ N(5) and 4 ∈ U(3, F2). Without loss of
generality, let us considerd1. It must haveP2 before it
receives the encodedP1 ⊕ P2, and there are only two ways
for d1 to obtainP2: either by the fact thatd1 can overhear
the transmission ofP2 by some node inU(c, F2) (i.e.,
d1 ∈ N(s2), s2 ∈ U(c, F2)), or by the fact thatd1 itself
has transmittedP2 (i.e., d1 ∈ U(c, F2)). Without these,d1

cannot extractP1 out of the encoded packet. This proves
the necessity of the coding conditions. On the other hand,
assuming perfect channel condition and scheduling, either
way can letd1 receivesP2 before it receives the encoded
packet, therefore, this proves the sufficiency of the coding
conditions.

Remark: Note that we assume perfect channel condition
and scheduling in the above coding conditions. In practice
some opportunistic overhearing may beunsuccessful, either
due to channel fading or due to packet collision at the link
layer. To cope with such effect in practice, we only select
those neighboring nodes which have a high probability of
overhearing (say greater than0.8) in the coding judgement.
The details will be presented in the following sections. For
more than two intersecting flows, the common node in these
intersecting flows needs to check that the above conditions
hold forany twoof the intersecting flows in order to determine
whether it can encode packets of these flows all together.

The importance of the above coding conditions is that
each node can “individually” and “distributively” determine
whether it can play the role of a coding node or not when it
has the following information:

1) Thepath information: U(c, F) andD(c, F) for any flow
F relayed by nodec.

2) Thewho-can-overhear information: N(a) for each node
a ∈ U(c, F), for any flowF relayed by nodec.

In the following subsection, we present a distributed algorithm
to gather the above information and to concurrently realize
coding and routing discovery.

C. Distributed “Coding+Routing” Discovery

Let us now describe how to discover the available path(s)
for a new flow initiated into the wireless network, and at the
same time, detect the potential coding opportunities of the

4

paths. The detection for coding opportunity is based on the
conditions described in Section II-B. Note that when we detect
a path with coding opportunity (and we call this thecoding-
possible path), we do not impose the requirement that the new
flow has to take this path as its routing outcome, instead, we
have another module which will evaluate the benefit of each
path and to make the final path selection. In Section III, we
will present this in full detail.

For each nodea in a wireless network, it maintains a list
of all its one-hop neighbors (i.e.,N(a)) and thepacket loss
probabilities of all its outgoing links. These information can
be collected by periodically sending probing messages as in
[2], or by estimating the loss probability based on previously
transmitted traffic. We useP (a, b) to denote the packet loss
probability on the linka → b whereb ∈ N(a).

When a new flow arrives to the wireless network, the source
node of this new flow activates thecoding+routing discovery
processwhich has the following steps:

Step 1. The source nodes initiates the route discovery
by broadcasting theRoute Request (RREQ) message. The
RREQ contains the following information:

• One-hop neighbors of the source node, which have high
overhearing probabilities, i.e.{a|a ∈ N(s), P (s, a) >

threshold}. The threshold value can be predefined by the
network designers or operators. We believe a threshold
value greater than 0.7 will be sufficient. Unless we
state otherwise, in our ns-2 implementation, we set the
threshold to 0.8.

• The path that it has traversed, as any source routing does.

Step 2.Upon receiving aRREQ, an intermediate node, say
nodec, first checks whether theRREQ has already traversed
through itself. If so, nodec discards theRREQ to prevent
loop; otherwise nodec performs the following:

• Temporally storing the RREQ, which contains the
“who-can-overhear” information for the new path. In
other words, nodec stores the list of overhearing nodes
that can perform “opportunistic overhearing” when the
upstream nodes transmit.

• Updating the “who-can-overhear” information. Nodec

appends its high quality neighbors into theRREQ, such
that the list gradually enlarge when theRREQ travels
through the network.

• Re-broadcasting the updatedRREQ to discover remain-
ing path to the destination node.

Step 3. When a RREQ reaches the destination node, the
destination replies with theRoute Reply (RREP) message
using the reverse path back to the source node. TheRREP is
a unicast message that contains the “path” information.

Step 4. Upon receiving aRREP, an intermediate node, say
nodec, compares the upstream path contained in theRREP
with the paths in its temporally storedRREQs. If there is
a match, then it has obtained both the “path” and “who-can-
overhear” information for the new path. Each node also main-
tains the “path” and “who-can-overhear” information for all

the existing flows relayed by itself. Given these information,
nodec can check whether the new flow can be encoded with
some existing flow(s) using the coding conditions stated in
Section II-B. If there is coding opportunity, nodec marks its
link as “coding-possible” in theRREP.

Step 5. When the RREP(s) return to the source node,
a routing decision is made based on the potential coding
opportunities and the benefit of each available paths (which
we will present in Section III), and the source node begins to
send data packets on the selected path.

Step 6. When the first data packet reaches an intermediate
node, say nodec, it stores the “who-can-overhear” and “path”
information for the selected path, while discarding other
temporally stored information.

In summary, the key differences from conventional DSR
path discovery include:

• RREQ contains one-hop neighbors and link qualities.
This is to inform intermediate nodes the overhearing
information along the path.

• Each node temporally stores RREQs during the discovery
phase. This is to facilitate the matching with RREPs
received later.

• Each node maintains overhearing and path information
for all flows passing it. This piece of information is
used to decide whether a new flow can be encoded with
existing ones.

D. An Illustrative Example

We use the simple wireless network in Figure 3 to illustrate
how the “coding+routing” discovery works. Suppose the flow
1 → 2 → 3 → 4 (i.e. flow F1) is an existing flow, and Figure
4(a) shows the information for the existing flowF1 stored at
node3. Now we wants to find a path for the new flow5 → 7,
the discovery process goes as follows:

Flow F1

Path: 1 2 3 4
Who can overhear: 7

(a) Information stored at node3 for
the existing flow.

Temporally stored
RREQ

Path: 3 5
Who can overhear: 4

...7

(b) Information contained in the
temporally storedRREQ at node3.

Fig. 4. An example of the data structures maintained at the coding node.

1) Node5 initiates the discovery by sendingRREQ, and
adds its high quality neighbors3, 4 into theRREQ.

2) When node3 receives theRREQ, it temporally stores
the “who-can-overhear” information (i.e. node 4 can
overhear the transmission of the upstream nodes) and
the “upper” path. The data structure is shown in Figure
4(b): the “upper” path is5 → 3 and the overhearing node
is 4. Node3 then updates the overhearing information
(i.e. adding node2, 6 into the list) before rebroadcasting
the RREQ.

5

3) Suppose oneRREQ reaches node7 through the path
5 → 3 → 6 → 7, node7 replies with RREP, which
contains the complete node list on the entire path.

4) When node3 receives thisRREP, it matches the path
5 → 3 → 6 → 7 with its temporally storedRREQ
information as shown in Figure 4(b), and discovers that
the new path can be encoded with the existing flow1 →
2 → 3 → 4, thus marking the link3 → 6 as “coding-
possible” in theRREP.

5) The RREP finally returns to the source node5 with
information of potential coding opportunities.

E. Overheads of Distributed Coding+Routing Discovery

Before we proceed to the next section, let us quantify the
complexity and overheads of this distributed coding+routing
discovery process. In general, we exploit on the flooding of
RREQ messages to help intermediate nodes to collect the
“who-can-overhear” information, and useRREP messages to
inform the wireless nodes of the “path” information. There-
fore:

• Overhead due to flooding ofRREQ: this overhead is as-
sociated with any on-demand routing like DSR [16], [17]
or AODV [18]. There have been several optimizations
for reducing the flooding overhead [17]–[19], however,
the reduction in flooding overhead comes with a cost
of a reduced set of available paths. In DCAR, there
is a clear tradeoff between the flooding overhead and
the amount of potential coding opportunities discovered.
In particular, one can pre-define a constant message
overhead by setting a properTTL value for theRREQ.

• Storage overhead at intermediate nodes: as required by
the discovery process, each node (denoted bya) needs
to store its one-hop neighborsN(a) and corresponding
packet loss probabilitiesP (a, b) for all b ∈ N(a). Each
intermediate node along an existing flow also needs to re-
member the “path” information and “who-can-overhear”
information for this flow. Suppose each node’s ID or
packet loss probability takes4 bytes of storage, letDEG∗

denote the maximum node degree of the wireless net-
work, and letNF ∗ denote the maximum number of flows
traversing a node, then the constant storage overhead (in
bytes) at one node will not exceed

8×DEG∗+4×NF ∗×[(TTL−1)×DEG∗+TTL], (1)

where TTL is the pre-defined time-to-live value in
RREQ.
Let us provide some explanation to Equation (1): the
first component refers to the storage overhead for one-
hop neighbors and corresponding packet loss probabil-
ities, while the second component refers to the storage
overhead for existing flows. SinceTTL is an upper bound
on the path length, therefore the number of upper-stream
nodes along a flow is at mostTTL− 1, and the number
of overhearing nodes is at most(TTL− 1) × DEG∗.
It is important to note that each node also needs to
temporally store the “path” and “who-can-overhear” in-

formation for a newly found path. Because we use a “soft-
state” [20] approach to handle such storage, they do not
contribute to the constant overhead.

• Overhead for the extra length in theRREQ packet:
this overhead corresponds to the number of overhearing
nodes of previous hops. Using the above notations, such
overhead (in bytes) will not exceed

4 × (TTL− 1) × DEG∗. (2)

Note that these communication and storage overheads are
included in our ns-2 implementation. The tradeoff is of course
whether we can improve the system performance (e.g., in-
crease throughput or reduce bandwidth consumption) with
these overheads. We will answer this important question in
Section V.

III. Defining Coding-Aware Routing Metric

In the previous section, we presented the distributed al-
gorithm to discover both available paths as well as their
potential coding opportunities. Another challenging question
is how to choose a good path among these available choices.
Note that one should not always choose a path with coding
opportunity because a coding-possible path may not provide
the best possible performance: it may already be congested,
or it may take too many hops to reach the destination and
consume more network resource. In other words, there may
exist some “coding-impossible” paths with higher throughput
or lower delay. The essential issue in path selection is to
design a goodrouting metricwhich can be used to quantify the
merit betweencoding-possibleandcoding-impossiblepaths. In
the following, we first review some existing routing metrics,
and then present the proposed Coding-aware Routing Metric
(CRM).

A. Brief Review of Current Routing Metrics

For wireless networks, there are basically two types of
routing metrics proposed: thetopology-basedmetrics and
load-basedmetrics. We briefly review some representative
metrics and their associated algorithms here:
(1) Hop-count based routing: The minimum hop count rout-
ing is probably the most often used topology-based routing
algorithm due to its simplicity and ease of implementation.
However, in wireless networks, hop-count based routing can-
not guarantee to find a high-throughput path since it does
not take link interference, fading channel and traffic load into
consideration.

(2) ETX-based routing: ETX (Expected Transmission Count)
routing [2] chooses the path with the minimal number of ex-
pected successful transmissions. It is a topology-based routing
algorithm and is most effective when there is significant packet
loss due to channel fading. LetL denote the path, letl ∈ L

denote a link on the path, and letPl denote the packet loss
probability on link l, then the routing metricMETX(L) for
link l is computed as

METX(l) =
1

(1 − Pl)
.

6

which accounts for the expected number of transmissions fora
successful packet transmission. ETX for the pathL is simply
the sum of ETX for all of its links:

METX(L) =
∑

l∈L

METX(l)

and the pathL∗ is selected when its measureMETX(L∗) is
the minimum among all available paths. ETT [3] (Expected
Transmission Time) extends ETX by taking into account the
packet size and data rate on the link. We do not further discuss
this metric because we focus on single-rate networks.

IRU (Interference-aware Resource Usage) [4] further takes
into account the number of interfering neighbors of each link.
In a single-rate network, the performance metricMIRU (L)
of the pathL is computed as

MIRU (L) =
∑

l∈L

METX(l) × Nl,

whereNl is the number of interfering neighbors of linkl.

(3) Load-Based Routing[5], [6]: These routing mechanisms
take into account the current interfering traffic when making
a routing decision. To make a proper decision, the required
information typically includes the “channel busy time” and
packet loss probability sensed by each node on the path.
Despite of the increased accuracy in estimating the potential
throughput, such approach may also bring substantial overhead
since nodes in the same interference region may sensedifferent
channel states, and the fact that links on the new path may
interfere with each other, i.e.,self-interference. Additionally,
such approach usually requires nodes to be aware of the
throughput of existing flows, and requires the wireless card
to report the “channel busy time” to higher protocol layers,
which may not be feasible in practice.

B. Desirable Properties of Coding-aware Routing Metric

Let us first consider what routing metric is suitable for the
coding-aware route selection. Suppose there are some existing
flows in the wireless network, and we want to find a path
for a new flow. Some of the potential paths may have coding
opportunities while some may not. For proper path evaluation,
we impose the following two desirable properties onto the
coding-aware routing metric:

1) The metric should take into account the “free-ride”
benefit of thecoding-possiblepaths: if a new flow can
be encoded with some existing flows, it can “free-ride”
on the bandwidth used by the existing flows.

2) The metric should begeneralin quantifying the merits
for both coding-possible paths and coding-impossible
paths. In other words, the interpretation of “free-ride”
benefit for coding-possible paths should betransferable
to the performance measure for coding-impossible paths.

For the first desirable property, a coding-aware routing met-
ric must take into account the existing traffic load information
in making the evaluation because the saving in the “free-
ride” bandwidth is crucially dependent on the existing traffic.
The technical difficulty of this requirement is that typically, a

node does not know the actual throughput of on-going flows.
For the second desirable property, we face another technical
challenge on how to compare the performance measure of
coding-possiblepaths versuscoding-impossiblepaths. In the
following, we show how to tackle these two technical issues.

C. Assumptions on Encoded Transmission

First, it is important for us to clarify our assumptions
on the encoded transmission. Using the coding conditions
we specified in Section II-B, a node can decide for each
flow, which other flow(s) to encode with. The local coding
relationship can be complicated. For example, flow1 may be
able to encode with flow2, while flow 2 can encode with3,
but flow 1, 3 cannot be encoded with each other. The question
is to choose which flows to encode, upon each channel access
opportunity. One approach is to encode as many packets as
possible to maximize the bandwidth efficiency, however, the
problem of finding the maximum number of flows to encode
can be reduced to theMaximum Clique Problem[10], which
is NP-complete (we will present the detail in Section III-F).
Instead, we use around-robin encoding scheme: whenever
having an opportunity to transmit, the node randomly picks
one flow, and encode as many flows as possible with the
chosen packet. Although finding the maximum flows to encode
with a given flow is itself NP-complete, it is established in [12]
that the number of flows that can encode with one given flow
is bounded by a small number (ranging from4 to 7), thus the
computational overhead is insignificant.

Once the node has decided on the set of packets to encode, it
has to perform theencoded broadcasting. The encoded packet
is supposed to be broadcasted to multiple receivers, however,
since there is no ACK for broadcast packet in the 802.11
standard, we use the “pseudo-broadcast” technique [1]—the
encoded packet is unicasted to one of the receivers while this
transmission can be overheard by other intended receivers.The
chosen unicast receiver is responsible for sending ACK back
to the coding node. In the round-robin coding scheme, we
randomly pick the unicast receiver among all the intended
ones.

D. Interpreting the “Network Coding” Benefit

Let us illustrate the benefit of network coding To achieve
this, consider the following simple example so as to gain the
intuition: suppose a node has an on-going flow, and it finds out
that a new flow traversing through it has a coding opportunity
with the on-going flow, then what is the potential benefit
on this the coding-possible link? If the current bandwidth
consumption of the on-going flow at the node isB1, then
in the best case, the node only needs to useB1 bandwidth as
long as the throughput on the new flow (denoted byB2) does
not exceedB1, because all the new traffic can “free-ride” on
(or be encoded with) the existing traffic. IfB2 > B1, then the
node needs to consumeB2 bandwidth to deliver all the traffic.

The above interpretation the network coding benefit is
intuitive, however, one needs to know the throughput of the
on-going traffic to determine the benefit, and as we discussed
previously, this is difficult to obtain in practice. Now let

7

us consider another approach to quantify the benefit:by
examining the buffered queue length of the node. Intuitively,
the average queue length can be an indicator for how busy
the node is (and therefore how much free-time is left) and the
delay for incoming traffic. Suppose the queue length of the
node isQ1 before the new flow is initiated. Without network
coding, there areQ1 packets ahead of those packets for the
new flow. However, when coding is used, the new flow actually
seezero packets ahead in the queue, because its packets can
always be encoded with the existing ones! In short, if using
average queue length as an indicator, the actual calculation
of the queue length need to be “modified” in case there is a
coding opportunity. In what follows, we present how to modify
the queue length in the general case so that we can quantify
the benefit of network coding on an existing encoding path.

E. Feasibility of Using Queue Length as Routing Metric

The above consideration leads us to investigate the feasibil-
ity of using queue length as the coding-aware routing metric.
One immediate question would be the stability issue: with
dynamic traffic the queue length may change too frequently
to be a good measure of available bandwidth. To visualize to
the queue size, we set up a 15-node random wireless network,
and add a few random UDP flows. In Fig. 5 we plot its
queue length statistics over 60 seconds. The curves shown
include the instantaneous queue length every one second, the
average queue length in the last 5 instant values and 10 instant
values respectively. Clearly, the instantaneous queue length
varies significantly over time (with a variance of19.48 in this
case). However, after averaging the last few instant valuesthe
variance drops dramatically (variance1.23 for 5 average and
0.32 for 10 average). This implies that theAverage Queue
Lengthcan be a much more stable and accurate measure of
bandwidth availability. Therefore, we use theAverage Queue
Length at Each Nodeas the starting point, andmodify the
queue length to account for various benefits of using network
coding.

Fig. 5. Queue length statistics in a sample wireless node.

F. Modified Queue Length

For a considered node, we modify the calculation of its
queue length according to the coding relationships. For exam-
ple, if two flows withaveragequeue lengthQ1 andQ2 can be

encoded together, then their total contribution in the modified
queue length should bemax{Q1, Q2}. However, when there
are more flows intersecting at one node, the modification
becomes less obvious. To assist the analysis for the general
case, we first introduce “coding graph” as an analytical tool
to represent the coding relationships.
1) Coding Graph. A coding graph is an undirected graph,
with each vertex representing a flow relayed by the considered
node. For the existing flows, each verticesi is associated with
a valueQi, which is equal to its average number of packets
in the queue. An edge between two vertices indicates that
these two flows satisfy the coding condition. Consequently,
if a subgraph of the coding graph is acompletegraph, then
the vertices (i.e. flows) in this subgraph can be encoded all
together.

(a) Thestablecase. (b) Thedynamiccase.

Fig. 6. Examples of coding graph for the considered nodec.

Note that we differentiate betweenStablecase andDynamic
case in the above graph. AStablecoding graph is used to
represent the local coding relationship betweenexistingflows.
It is effectively average number of packets a node sees in
its own queue based on current traffic, and can be used to
calculate the modified queue length based onexistingflows.

A dynamiccoding graph is more focused on the coding
relationship between apotentialnew flow and existing flows.
It takes into account the “free-ride” benefit as the effective
queue lengths “seen” by the new flow can be reduced if it
can be encoded with some existing flow(s). With the dynamic
coding graph we are trying to examine the average number of
packets (in the queue) thatcan notbe encoded with the new
flow.

Figure 6 shows two examples of the coding graph for
a considered node, in thestable case anddynamic case
respectively. In stable case (Figure 6(a)), there is no new
paths (or flows) to be added. In dynamic case (Figure 6(b)),
there is a new path2 to be examined, which we represent by
vertexx.

2) Modified Queue Length in Stable Case.First of
all, if there is no edges in the coding graph (i.e. no coding
opportunity), then the modified queue length is simply the
sum of average queue lengths for all flows. If there exists
some edges, we know that for acompletesubgraph (i.e. a
clique) of the coding graph, their total contribution in the
modified queue length should be the maximal queue length

2Here by “new path” we mean one of the possible new flows that could be
formed from source and destination.

8

among them. The larger the clique is, the more we can reduce
in the modified queue length. Upon each transmission, finding
the maximum cliquein the coding graph can help us encode
the maximum number of packets, however, themaximum
clique problemis NP-complete [10]. To reduce computational
cost, we can calculate the modified queue length based on
the round-robinencoding scheme. Let the considered node be
nodec, we useMQs(c) to denote the modified queue length
of nodec in the stable case. The calculation steps are shown
in Fig. 7.

Calculation of modified queue length (stable case):
1: Remove all vertices with zero queue length and

their corresponding edges.
2: Initialize MQs(c) = 0, vertex setV = ∅.
3: Randomly pick vertexi among remaining vertices.
4: Find out the maximal complete subgraph that containsi.
5: Add vertices of the subgraph intoV .
6: Add maxi∈V {ni} into MQs(c).
7: Remove all vertices inV and their edges.
8: ResetV = ∅.
9: Repeat Step 3-8, until all vertices are removed.

Fig. 7. Calculation of modified queue length under the stablecase.

Base on Fig. 7, one can observe that Step 3-8 mimics
the round-robin coding scheme: randomly pick one flow
and encode with as many flows as possible. Because the
maximum number of flows that can be encoded with a given
flow is bounded by a small number [12], the computational
cost in each iteration is insignificant. Using Figure 6(a) asa
example, suppose we choose vertex2 in the first iteration, and
choose vertex3 in the second iteration, the resultingMQs(c)
will be max{Q2, Q5, Q6} + max{Q3, Q4} + Q7 + Q1 or
max{Q2, Q5, Q6} + max{Q3, Q7} + Q4 + Q1.

3) Modified Queue Length in the Dynamic Case.In
this case, we examine the the average queue length “seen”
by packets from the new flowx. We useMQd(c) to denote
the modified queue length of nodec in the dynamic case.
The calculation of the modified queue length for the dynamic
case is depicted in Figure 7.

Calculation of modified queue length (dynamic case):
1: Initialize MQd(c) = 0.
2: Remove vertexx and all the vertices that are adjacent

to x, and their corresponding edges.
3: For the rest of the graph, go through the same

calculation as in the stable case.

Fig. 8. Calculation of Modified Queue Length under the dynamic case.

Compared to the stable case, the difference is that we treat
all flows that can be encoded with the new flow as “non-
existing”, because an incoming packet of the new flow can

“override” on the transmission for any of these existing flows.
For example, in Figure 6(b), we first remove vertexx, 1, 2, 3, 4
and all their edges from the graph, and the resultingMQd(c)
is max{Q5, Q6} + Q7.

G. MIQ: Modified Interference Queue Length

The modified queue length of a node, however, is not
sufficient to estimate its available bandwidth in the wireless
network, because a node with very short queue length can
still be congested if its interfering nodes have a lot of packets
to send. LetI(c) denote the set of nodec’s interfering nodes.
We defineMIQ(c), the “modified interference queue” length,
with

MIQs(c) = MQs(c) +
∑

i∈I(c)

MQs(i), (3)

MIQd(c) = MQd(c) +
∑

i∈I(c)

MQs(i), (4)

where MIQs, MIQd are the MIQ values in stable and
dynamic cases respectively. For evaluating a new path, we
should useMIQd(c).

Essentially, we model the considered nodec and its inter-
fering nodes as a virtual queueing system, with the wireless
channel around them as a service center which needs to serve
packets for nodec and all its interfering nodes. TheMIQ

value indicates how busy the channel is and the delay for
an incoming packet. Furthermore, theMIQ value for a node
represents itsprivate view of the channel status, which may
vary significantly from node to node.

H. CRM: Coding-aware Routing Metric

For each linkl on a pathL, let MIQd(l) be the dynamic
MIQ value of the transmitter onl, and letPl denote the packet
loss probability onl. TheCRM metric of link l is calculated
as:

CRMl =
1 + MIQd(l)

1 − Pl
. (5)

Intuitively, CRMl corresponds toexpected number of trans-
missionsfor successfully transmitting the existing packets as
well as one incoming packet for the new flow3. We use the
dynamicMIQ value on linkl because the path to be evaluated
is for the new flow. For the metric of the entire pathL, we
define theCRM values as:

CRML =
∑

l∈L

CRMl. (6)

Compared to routing metrics we reviewed in Section III-A,
CRM incorporates topology, traffic load and interference
information together in a unified manner. By using the “mod-
ified interference queue length(MIQ)” as the indicator for
channel status,CRM does not require the wireless card to
report “channel busy time” to higher layers, and also does not
need to be aware of the actual throughput of existing flows.

3Note that this is an approximation, because the packet loss probabilities
for different outgoing links may vary.

9

More importantly,CRM provides aunifiedmeasure for both
coding-possible and coding-impossible paths.

The message overhead ofCRM lies in that it requires
neighboring nodes to communicate “modified queue length”
with each other to compute theMIQ value, and it also
needs the packet loss probability on each link. In our ns-2
implementation, we let each node broadcast HELLO message
periodically within its one-hop neighbors, and piggyback its
modified queue length into the HELLO message. Periodical
HELLO exchange has been widely adopted by most of the
routing protocols [2]–[6] reviewed in Section III-A. In this
sense, DCAR does not impose more message overhead on
these existing protocols.

IV. Implementation Details

We now present the implementation details of DCAR in ns-
2. We modified the DSR routing agent [22] in ns-2 to include
the “coding+routing” discovery and path selection functions.
We also modified the Interface Queue to include encoding
and decoding functions. The overall architecture of DCAR is
shown in Figure 9.

The DCAR routing agent maintains a list of one-hop
neighboring nodes and the corresponding link qualities (i.e.
packet loss probabilities) by periodically broadcastingHELLO
messages (the HELLO interval is set to 0.5 second in our
ns-2 implementation). When sending theHELLO, each node
piggybacks its “Modified Queue (MQ)” length as well as its
one-hop neighbors and their MQ lengths. In this way, each
node can obtain the queue length information of itstwo-hop
neighbors. Because the carrier sensing range is approximately
two times of the transmission range in 802.11, we define the
“interfering nodes” (I(c)) to be the two-hop neighbors of a
node (c). In theHELLO message, each node also piggybacks
the number ofHELLO messages it receives from its neighbor
in the last5 seconds to let its neighbors examine the reverse
links.

Transport Layer

DCAR Routing Agent

Relayed flows

1) Overhearing List
2) Route

Neighbors

1) ID;
2) Link quality
3) Modified queue
 length

Source
Routes

Coding
Graph

Round-robin
Coding

Overhearing
Buffer

Decoding

Classifier

Interface
Queue

Wireless MAC

RRE/RREP
Processor

Fig. 9. DCAR architecture.

The RREQ/RREP processing is essential for the “cod-
ing+routing” discovery. We have already presented how to find

potential coding opportunities in Section II, and the calculation
of CRM (Coding-aware Routing Metric) is done on a link
by link basis when theRREP travels back to the source
node. In particular, when an intermediate node receives a
RREP (in Step 4 in Section II-C) and finds the potential
coding opportunity, it calculates the CRM and records it into
the RREP. When theRREP(s) return back to the source,
the source node chooses the path with the minimum CRM
value and starts to transmit data packets along the path. Once
an intermediate node receives the data packet, it records the
“overhearing” and “path” information of the new flow into the
list of “Relayed Flows”. Based on the list of relayed flows, the
DCAR agent updates the “Coding Graph”, which represents
the local coding relationship among the relayed flows. For
proper decoding, the system also maintains a circular buffer
for the overheard packets and packets it has transmitted.

In the interface queue, we maintain a separate queue for
each flow. The advantages of such queueing structure are : 1)
the congestion of one flow will not cause buffer overflow for
other flows; 2) it facilitates the round-robin coding. For the
queue of each flow, we update the average queue length every
second. We also add the encoding and decoding functions
into the interface queue. Whenever there is an transmission
opportunity, around-robin encodingtakes place and several
packets may be cleared out of the queue. For the encoded
packets, we use similar packet formate as in COPE [1].
Whenever we receive a packet, we first check whether it is
a native or encodedpacket using the “Classifier”, and then
forward it up to upper layers or decode it accordingly. For
all the opportunistically overheard packets, we store themin
a circular “Overhearing Buffer” for future decoding usage.

V. Performance Evaluation

We now present the simulation results. We implement the
DCAR and COPE [1] system under ns-2. There are three
main differences between DCAR and COPE: 1) DCAR takes
potential coding into consideration of route selection, while
COPE separates routing with potential coding; 2) COPE uses
ETX [2] as the routing metric4 while DCAR uses CRM;
3) COPE limits the coding structure within two hops while
DCAR eliminates such limitation.

The goals of our simulation are to evaluate the effectiveness
of CRM in finding high-throughput path with coding oppor-
tunities, and to quantify the benefit of DCAR over COPE.
Throughout the study, we use 802.11b and UDP traffic sources.
The transmission range of each wireless node is set to250 and
the carrier sensing range is set to550. When a new flow is
to be added, we allow3 seconds for the “coding+routing”
discovery to find the available paths. Once a flow decides on
one path, it uses the path towards the end of the simulation
time. The TTL value of RREQ is set to5.

A. Results from Illustrative Scenarios

Simulation 1. Bidirectional flows: We first study the simple
scenario shown in Figure 2. We start a flow from node1 to

4Our COPE implementation uses DSR with ETX as routing metric.

10

node 2, and then add the new flow2 to 1. The flows are
given the same traffic load. Whether a coding structure can be
formed depends on the route selection for flow2 to1. Under
COPE or ETX, the path2 − 3 − 1 and2 − 4 − 1 are almost
of same quality. However, under DCAR, a reverse path for
the previously added flow will be more favorable because the
intersecting node can have a much lowermodified queue length
after accounting for the “free-ride” benefit.

We vary the offered load and plot the resulting end-to-end
throughput in Figure 10. Three types of system are considered:
DCAR, COPE, and ETX routing without network coding. We
observe that DCAR always chooses the intersecting paths for
both flows, while the routes chosen by COPE (and ETX) vary
between the disjoint and intersecting patterns. The throughput
gain of DCAR tends to be more significant when the offered
load increase, resulting in a20% gain for the new flow and a
12% gain for the total throughput over COPE.

100 200 300 400 500
80

100

120

140

160

180

200

220

Offered load (Kbps)

T
hr

ou
gh

pu
t o

f n
ew

 fl
ow

 (
K

bp
s)

DCAR
COPE
ETX

(a) Throughput of the new flow from2 to 1.

100 200 300 400 500
150

200

250

300

350

400

450

500

Offered load (Kbps)

T
ot

al
 th

ro
ug

hp
ut

 (
K

bp
s)

DCAR
COPE
ETX

(b) Total throughput.

Fig. 10. Results from the topology in Figure 2.

Simulation 2. Generalized coding:Here we observe the ef-
fectiveness of DCAR in overcoming the “two-hop limitation”.
We compare the performance of DCAR and COPE using the
topology shown in Figure 3. In this case, the routes chosen by
DCAR and COPE are the same, however, COPE can not detect
the potential coding opportunity at node3, because it misses
the fact that node7 can perform opportunistic overhearing and
decoding. Therefore node3 becomes a bottleneck in COPE.

For each offered load, we repeat the simulation 10 times,
varying the arrival orders of flow5 → 7 and flow1 → 4. The
resulting average throughput of both flows is plotted in Figure

11. The throughput gain by the generalized coding scheme
ranges from7% to 16% in this scenario.

100 200 300 400 500
80

100

120

140

160

Offered load (Kbps)

T
hr

ou
gh

pu
t (

K
bp

s)

DCAR
COPE

(a) Flow from5 to 7.

100 200 300 400 500
80

100

120

140

160

Offered load (Kbps)

T
hr

ou
gh

pu
t (

K
bp

s)

DCAR
COPE

(b) Flow from 1 to 4.

Fig. 11. Results from the topology in Figure 3.

Simulation 3. “Wheel” topology: It is interesting to study
how DCAR works in a “wheel” topology as shown in Figure
12(a), where a central node (0) is surrounded by six nodes
(1 to 6) evenly distributed along the cycle. Each node along
the cycle can reach everyone else except for the node on the
opposite end of the diameter (e.g. node1 can reach everyone
else except for4, vice versa). We let each node along the cycle
starts a flow to the node at the opposite end of the diameter.
The “wheel” structure is a generalized model for any coding
structure in COPE, and has been well studied in [12]. There
are plenty of coding opportunities in this scenario, not only at
the central node0 but also at other nodes. For example, if two
flows 1 → 4 and2 → 5 use the paths1− 3− 4 and2− 3− 5
respectively, then node3 can also encode packets.

In the simulation, we vary the traffic load and arrival order
of each flow, and plot the average throughput in Figure 12(b).
We can see that DCAR typically offers higher throughput
than COPE, but the gain is not as significant as the previous
scenarios. The underlying reason is that even if the paths are
randomly chosen between available shortest paths, there are
still many coding opportunities at the surrounding nodes as
we discussed.

B. Results from Mesh Networks

Simulation 4. Grid topology: Now we consider larger-scale
networks. We construct a4 by 4 grid topology where each

11

(a) ”Wheel” topology.

0 1 2 3 4 5
0

100

200

300

Flow index

T
hr

ou
gh

pu
t (

K
bp

s)

DCAR
COPE

(b) Throughput of each flow.

Fig. 12. Results from a “wheel” topology.

node can only reach its northern, southern, eastern and western
nodes. There is a rich set of spatial reuse as well as coding
opportunities in this example. The simulation is of 10 rounds.
At each round, we randomly add5 flows (each with 2 to 5
hops) into the network and repeat the process for3 times. We
plot the average end-to-end throughput achieved by DCAR,
COPE and ETX respectively in Figure 13(a). Not surprisingly,
the gain by DCAR tends to be larger with higher offered load.
In Figure 13(b), we make the network even more congested
by adding10 flows in each round, the results also reveal the
potential of offering higher throughput by DCAR.

Simulation 5. Random topology: We compare DCAR and
COPE in a15-node random topology as shown in Figure
14(a). The average node degree is3.2. We randomly pick8
flows (each with 2 to 5 hops) and vary their arrival orders and
loads in each round. The average throughput for each flow is
plotted in Figure 14(b). Because there is a rich set of coding
opportunities and available paths, DCAR achieves substantial
throughput gains over COPE.

Simulation 6. Fraction of Encoded Traffic: It is interesting
to examine how many traffic are actually encoded in DCAR
and COPE. In this simulation, we randomly add flows into
both the grid and the15-node topology, and count for the
total data packets transmitted in all links accordingly. For a
native packet, we consider it as one unit of traffic; while for
an encoded packet withn native packets, we consider it asn

1000 1500 2000 2500 3000 3500 4000 4500
700

800

900

1000

1100

1200

1300

Average offered load (Kbps)

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

K
bp

s)

DCAR
COPE
ETX

(a) Results by adding5 flows.

20 40 60 80 100 120
3

4

5

6

7

8

Average offered load (Kbps)

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

K
bp

s)

DCAR
COPE
ETX

(b) Results by adding10 flows.

Fig. 13. Results from a grid topology.

units of traffic. The fractions of encoded traffic (in grid and
random topology) are shown in Figure 15. We can see that
the random topology usually has more coding opportunities,
mainly because of the increased chances for opportunistic
overhearing.

Simulation 7. Routing Overhead: In here, we quantify the
overheads of DCAR. As discussed in previous section, the
overhead of DCAR includes flooding of RREQ messages and
the periodic exchange of HELLO messages. However, both of
these are also needed for ETX or any other recently proposed
link-state routing mechanisms, e.g., [4]–[6]. Therefore,they
should have similar routing overhead in terms of packet counts.
However, because DCAR piggybacks extra information into
the routing control messages, it has a higher overhead com-
pared to ETX in terms of total bytes of routing messages.
To quantify these overheads, we carry out simulation study
and in Figure 16, we plot the normalized routing overhead
both in number of packets and in bytes. The way we compute
the overhead is to sum up all the RREQ, RREP and HELLO
messages (in bytes or in packet counts) transmitted in all links
during whole simulation time. It is interesting to note thatthese
results confirmed our intuition: DCAR needs about20 ∼ 30%
more bytes, but similar number of routing messages compared
to ETX. Although DCAR requires more bytes in communi-
cation, the gain we have is in the improvement of end-to-end
throughput and reduction in bandwidth consumption.

Simulation 8. Fraction of Different Types of Coding Struc-
tures: It is interesting to observe how many coding structures

12

(a) 15-node random topology.

0 1 2 3 4 5 6 7
0

100

200

300

400

500

Flow index

T
hr

ou
gh

pu
t (

K
bp

s)

DCAR
COPE

(b) Throughput of each flow.

Fig. 14. Results from a 15-node random topology.

Grid 15−node random
0

0.2

0.4

0.6

0.8

F
ra

ct
io

n
of

 E
nc

od
ed

 T
ra

ffi
c

DCAR

COPE

DCAR

COPE

Fig. 15. Contribution of encoded traffic in different settings.

are formed within two-hop (as in COPE), and how many
are beyond two-hop (allowed by DCAR), and furthermore,
how many are due to opportunistic overhearing. During the
simulation with the random topology, we analyze each formed
coding structure and differentiate them into three categories:
1) without opportunistic overhearing; 2) with overhearingand
within two-hop; 3) with overhearing and beyond two-hop. The
fraction of these three types of coding structures are plotted
in Figure 17.

C. Remarks on the Results

In simulation 4 and 5, we have been using flows with2
to 5 hops, as we found that the with more than5 hops the

Overhead in Bytes Overhead in Packet Counts
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
or

m
al

iz
ed

 R
ou

tin
g

O
ve

rh
ea

d

DCAR

ETX
ETXDCAR

(a) Grid.

Overhead in Bytes Overhead in Packet Counts
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
or

m
al

iz
ed

 R
ou

tin
g

O
ve

rh
ea

d

DCAR

DCAR
ETX

ETX

(b) 15-node random.

Fig. 16. Routing overhead.

DCAR COPE
0

0.2

0.4

0.6

0.8

1

P
er

ca
nt

ile
 o

f C
od

in
g

S
tr

uc
tu

re
s

No overhearing

Overhearing
within 2 hop

Beyond 2 hop

No overhearing

Overhearing
within 2 hop

Fig. 17. Percentile of different types of coding structures(in 15-node random
topology).

flow throughput become very bad and there is no visible
difference with or without network coding. This is due to
scalability problem of 802.11 in multi-hop environment and
has been studied extensively in the literature [24]. DCAR
proposed in this paper is MAC-independent, but does rely
on the MAC layer to provide low-collision connections. With
more scalable MAC protocol in future, we expect DCAR to
offer performance gains in bigger network with longer flows.

We have applied several empirical values in the simulations,
e.g., the “good link” assumption of above0.8 overhearing
rate, the3 seconds waiting time in discovery phase, etc. These
are the values a network designer can tweak based on traffic
and channel conditions. There are clearly trade-offs behind
these numbers: with lower overhearing threshold, one can

13

find more links and potentially more coding opportunities,
but these come with higher chance of transmission failure.
With longer waiting time in discovery phase, one can find
more potential paths, but these come with increased delay and
reduced timeliness of flow status. How to adjust these values
online remains an open question.

VI. Related Work

The concept of network coding is first proposed in [7].
Since then, there are various studies concerning theoretical
limitations and practical applications of network coding.Au-
thors in [25] show the practical and security issues of batch
content distribtion via network coding in wired networks. For
multiple unicast sessions in wireless networks, authors of[23]
show that the throughput gain is upper bounded by1+∆

1+∆/2

in 1D random networks, and upper bounded by2c
√

π 1+∆
∆ in

2D random networks, where∆ is a parameter characterizing
the intensity of interference, andc = max{2,

√
∆2 + 2∆}. It

is conjectured in [23] that the throughput gain is also upper
bounded by 2 in 2D random networks.

Recently, authors of [1] propose COPE, the first practical
XOR coding system and demonstrate the throughput gain
via implementation and measurement. COPE utilizesinter-
flow coding and uses ETX [2] as its routing layer. Based on
COPE, authors of [8], [9] introduce the concept of coding-
aware routing and formulate the max-flow LP with coding
considerations, however, their work is a centralized approach
and assumes perfect link-scheduling. Authors of [11] propose
a complex optimization framework for adaptive coding and
scheduling. Authors of [12] study limitations of COPE under
practical physical layer and link-scheduling algorithms,pro-
pose the concept of coding-efficient link-scheduling for prac-
tical network coding. In [13], the authors implement aintra-
flow random coding system and demonstrate the throughput
gains for lossy wireless networks.

Compared with former works, DCAR falls into the category
of inter-flow coding. It is the first practical coding-aware
routing system, and adopts a more generalized coding scheme
by eliminating the “two-hop” limitation in COPE.

VII. Conclusion

We propose DCAR, the first distributed coding-aware rout-
ing system for wireless networks. DCAR is an on-demand
and link-state routing protocol, it incorporates potential coding
opportunities into route selection using the “Coding+Routing
Discovery” and “CRM” (Coding-aware Routing Metric).
DCAR also adopts a more generalized coding scheme by
eliminating the “two-hop” limitation in COPE [1]. Extensive
evaluation under ns-2 reveals substantial throughput gainover
COPE achieved by DCAR. In our work, we proposed to
use average queue length as an estimator. Our current work
includes the optimal control on queue length averaging and
responsiveness of traffic changes in routing decisions. One
possible future direction of this work is how to provide
resiliency and to guarantee network coding opportunity in the
face of link/node failure.

Acknowledgement:we like to thank the anonymous referees
for providing useful and insightful comments. This reseachis
supported by RGC Grant 415708.

REFERENCES

[1] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard and J. Crowcroft.
XORs in the Air: Practical Wireless Network Coding.Proceedings of
ACM SIGCOMM, pp. 243-254, 2006.

[2] D. Couto, D. Aguayo, J. Bicket and R. Morris. A High-Throughput Path
Metric for Multi-Hop Wireless Routing.Wireless Networks, 11(4), pp.
419-434, 2005.

[3] R. Draves, J. Padhye and B. Zill. Routing in Multi-Radio,Multi-Hop
Wireless Mesh Networks.Proceedings of ACM MOBICOM, pp. 114-128,
2004.

[4] Y. Yang, J. Wang and R. Kravets. Designing Routing Metrics for Mesh
Networks.Proceedings of WiMesh 2005.

[5] Y. Yang and R. Kravets. Contention-Aware Admission Control for Ad
Hoc Networks.IEEE Transactions on Mobile Computing, 4(1), pp. 363-
377, 2005.

[6] T. Salonidis, M. Garetto, A. Saha and E. Knightly. Identifying High
Throughput Paths in 802.11 Mesh Networks: a Model-based Approach.
Proceedings of ICNP, pp. 21-30, 2007.

[7] R. Ahlswede, N. Cai, S. Li and R. Yeung. Network Information Flow.
IEEE Trans. on Informaion Theory, 46(4), pp. 1204-1216, July 2000.

[8] B. Ni, N. Santhapuri, Z. Zhong and S. Nelakuditi. Routingwith Oppor-
tunistically Coded Exchanges in Wireless Mesh Networks.Poster session
of SECON 2006.

[9] S. Sengupta, S. Rayanchu and S. Banerjee. An Analysis of Wireless
Network Coding for Unicast Sessions: The Case for Coding-Aware
Routing.Proceedings of INFOCOM, pp. 1028-1036, 2007

[10] R.M. Karp. Reducibility Among Combinatorial Problems. Complexity
of Computer Computations.New York: Plenum, 85-103.

[11] P. Chaporkar and A. Proutiere. Adaptive Network Codingand Schedul-
ing for Maximizing Throughput in Wireless Networks.Proceedings of
ACM MOBICOM, pp. 135-146, 2007.

[12] J. Le, JCS Lui and DM Chiu. How Many Packets Can We Encode?
- An Analysis of Practical Wireless Network Coding.Proceedings of
INFOCOM, pp. 371-379, 2008(under submission to IEEE Transactions
on Mobile Computing).

[13] S. Chachulski, M. Jennings, S. Katti and D. Katabi. Trading Structure
for Randomness in Wireless Opportunistic Routing.Proceedings of SIG-
COMM, pp. 169-180, 2007.

[14] T. Ho, R. Koetter, M. Médard, D.R. Karger and M. Effros.The Benefits
of Coding over Routing in a Randomized Setting.IEEE International
Symposium on Information Theory (ISIT) 2003.

[15] P. A. Chou, Y. Wu and K. Jain. Practical network coding.Proceedings
of Allerton Conference on Communication, Control, and Computing
(Allterton) 2003.

[16] D. Johnson, D. Maltz and J. Broch. DSR: The Dynamic Source Routing
Protocol for Multihop Wireless Ad Hoc Networks.Ad Hoc Networking.
Chapter 5, pp. 139-172, Addison-Wesley, 2001.

[17] D. Johnson, Y. Hu and D. Maltz. The Dynamic Source Routing Protocol
(DSR) for Mobiel Ad Hoc Networks for IPv4. http://www.ietf.org/rfc/
rfc4728.txt,RFC 4728.

[18] C. Perkins, E. Belding-Royer and S. Das. Ad hoc On-Demand Dis-
tance Vector (AODV) Routing. http://www.faqs.org/rfcs/rfc3561.html,
RFC 3561.

[19] S. Das, C. Perkins and E. Royer. Performance Comparisonof Two On-
Demand Routing Protocols for Ad Hoc Networks.Proceedings of IEEE
INFOCOM 2000.

[20] D.D. Clark. The Design Philosophy of the DARPA InternetProtocols.
Proceedings of ACM SIGCOMM, pp. 106-114, 1988.

[21] The Network Simulator, NS-2. http://www.isi.edu/nsnam/ns/.
[22] Bryan’s NS-2 DSR FAQ. http://www.geocities.com/bj hogan/.
[23] J. Liu, D. Goeckel and D. Towsley. Bounds on the Gain of Network

Coding and Broadcasting in Wireless Networks.Proceedings of IEEE
INFOCOM, pp. 1658-1666, 2007.

[24] S. Xu and T. Saadawi. Does the IEEE 802.11 MAC Protocol Work
Well in Multihop Wireless Ad Hoc Networks?.IEEE Communications
Magazine,39(6), pp. 130-137, June 2001.

[25] Qiming Li, D.M. Chiu, JCS Lui. On the Practical and Security Issues
of Batch Content Distribution Via Network Coding.International Con-
ference on Network Protocols (ICNP), pp. 158-167, 2006.

14

Jilin Le received the B.Eng degree in Electrical
Engineering from Peking University, and the M.Phil
degree in Computer Science from the Chinese Uni-
versity of Hong Kong. His research interests include
wireless networks, network protocols and applica-
tions.

John C.S. Lui received his Ph.D. in Computer
Science from UCLA. He is currently the chairman
of the Computer Science & Engineering Department
at the Chinese University of Hong Kong. His re-
search interests span both in systems as well as
in theory/mathematics with the emphasis on the
robustness, scalability, and security issues on the In-
ternet. John received various departmental teaching
awards and the CUHK Vice-Chancellor’s Exemplary
Teaching Award, as well as the co-recipient of the
Best Student Paper Awards in the IFIP WG 7.3

Performance 2005 and the IEEE/IFIP Network Operations and Management
(NOMS) Conference. He is an associate editor in the Performance Evaluation
Journal, IEEE-TC, IEEE-TPDS and IEEE/ACM Transactions on Networking.
John was the TPC co-chair of ACM Sigmetrics 2005 and the General Co-chair
for ICNP 2007.

Dah-Ming Chiu received the B.Sc degree in Elec-
trical Engineering from Imperial Collage, University
of London, and the Ph.D degree from Harvard
University, in 1975 and 1980 respectively.

He was a Member of Technical Staff with Bell
Labs from 1979 to 1980. From 1980 to 1996, he was
a Principal Engineer, and later a Consulting Engineer
at Digital Equipment Corporation. From 1996 to
2002, he was with Sun Microsystems Research Labs.
Currently, he is a professor in the Department of
Information Engineering in The Chinese University

of Hong Kong. He is known for his contribution in studying network
congestion control as a resource allocation problem, the fairness index, and
analyzing a distributed algorithm (AIMD) that became the basis for the con-
gestion control algorithm in the Internet. His current research interests include
economic issues in networking, P2P networks, network traffic monitoring and
analysis, and resource allocation and congestion control for the Internet with
expanding services. Two recent papers he co-authored with students have
won best student paper awards from the IFIP Performance Conference and
the IEEE NOMS Conference. Recently, Dr Chiu has served on theTPC of
IEEE Infocom, IWQoS and various other conferences. He is a member of
the editorial board of the IEEE/ACM Transactions on Networking, and the
International Journal of Communication Systems (Wiley).

