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On Modeling Product Advertisement in Large Scale
Online Social Networks

Yongkun Li, Bridge Qiao Zhao, and John C.S. Lui∗ Fellow, IEEE, ACM

Abstract—We consider the following advertisement problem
in online social networks (OSNs). Given a fixed advertisement
investment, e.g., a number of free samples that can be given
away to a small number of users, a company needs to determine
the probability that users in the OSN will eventually purchase
the product. In this paper, we model OSNs as scale-free graphs
(either with or without high clustering coefficient). We employ
various influence mechanisms that govern the influence spreading
in such large scale OSNs and use the local mean field (LMF)
technique to analyze these online social networks wherein states
of nodes can be changed by various influence mechanisms. We
extend our model for advertising with multiple rating levels.
Extensive simulations are carried out to validate our models
which can provide insight on designing efficient advertising
strategies in online social networks.

Index Terms—Local mean field (LMF), online social networks,
product advertisement, viral market

I. INTRODUCTION

IN recent years, advertising has become a major commercial
activity in the Internet. Traditionally, advertisements are

broadcast oriented, e.g., via TV or radio stations so as to
reach as many people as possible. With the development of the
Internet, new advertisement models emerge and blossom. For
example, Google provides the targeted advertisements: when
a user searches for information, related advertisements, either
products or services, are returned together with the search re-
sults. Such targeted advertisement can enhance the success rate
for selling products. In recent years, online social networks
(OSNs) offer another new way of performing advertisement.
In OSNs, users are logically grouped together by one or more
specific types of interdependency such as friendship, values,
interests, ideas, . . ., etc. Since the dependency is quite strong,
if one user decides to purchase a product, he/she may influence
his/her friends, and thereby increases the possibility of sales.
With the success of OSNs such as Facebook and Myspace,
advertising on OSNs is receiving more attention.

To advertise on OSNs, a company first applies advertising
strategies, either traditional or Internet-based, targeted or non-
targeted, so as to attract a small fraction of users to pur-
chase the product. Based on this initial fraction of buyers,
a cascade of word-of-mouth influence by users is triggered,
and eventually large fraction of users may decide to purchase
the product. The aim of our paper is to model advertisement
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in OSNs. In particular, given a small fraction of users who
have purchased the product, what is the influence spread
of such a cascade in OSNs and at the steady state, what
is the fraction of users in this OSN that will eventually
purchase the product? Predicting the final fraction of buyers is
important for companies since one can use this result to design
efficient advertising strategies so as to maximize their revenue.
However, this is not an easy task since various factors make
the analysis difficult. The first important factor is the topology
of OSNs which are very different from traditional random
graphs. The second important factor is that the mechanism that
determines whether a user will purchase a product is unknown.
Several conventional models such as the independent cascade
model and the linear threshold model [1] characterize such
mechanisms, and we will employ them in our analysis later.
Thirdly, realistic OSNs are usually large in size (e.g., with over
ten million nodes), which makes the analysis complicated.

The contributions of this paper are:

• We use local mean field (LMF) to estimate the influence
in large social networks. Using the LMF, one can concen-
trate on the correlation structure of local neighborhoods
only, so that one can easily derive the statistical properties
of the underlying graphs.

• We formally analyze various influence mechanisms and
propose a framework to find the final fraction of buyers
under a given mechanism for large social networks. We
also validate our models via extensive simulations.

• We extend the analysis to scale-free graphs with high
clustering coefficient and propose a framework to quan-
tify the influence in such networks.

• We extend our framework to allow users to have multiple
levels of ratings on a product and also show its effective-
ness via simulation.

The outline of this paper is as follows. In Section II, we model
the underlying OSN as an infinite scale-free random graph and
introduce the LMF model, then we present several influence
models and estimate the final fraction of buyers. We also
validate our analysis via simulation and reveal various factors
that affect the influence spreading. In Section III, we consider
a more realistic social network which has high clustering
coefficient and extend the local mean field model to analyze
it. In Section IV, we generalize the three influence models
to deterministic model and probabilistic model. In Section V,
we extend our framework to allow multiple levels of rating
on a given product. Related work is given in Section VI and
Section VII concludes the paper.
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II. BASIC MODEL

In this section, we study the influence spreading in OSNs.
As stated before, users who have purchased a product can
also influence their neighbors or friends. Our goal is to study
what is the fraction of users that will purchase the product at
the steady state? It is important to point out that the outcome
depends on how users influence each other. In the following,
we consider three influence mechanisms in OSNs.

A. Modeling Social Networks as Scale-free Random Graphs
For simplicity of presentation, we model the underlying

OSN as an infinite scale-free [2] sparse “random” graph
G(V,E). By “infinite sparse random graph”, we mean the limit
of a series of graphs (see [3] Sec. 3.3), that is, G(n) : n→∞
where G(n) is an n-node random graph with fixed degree
distribution. In later section, we also extend the model for
graphs with high clustering coefficient. In scale free graphs,
the fraction of nodes that have k neighbors, denoted by P0(k),
is proportional to k−γ for large values of k, or P0(k) ∝ k−γ ,
where γ is a positive constant value1. Note that for a realistic
OSN (e.g., Facebook), the number of users is in the order of
106 or larger, thus the infinity assumption is justified.

Each user is represented as a node in G(V,E), and if node
i decides to purchase a product, it may also influence its
neighbors to purchase. The tight dependency among nodes
makes the analysis difficult, e.g., if nodes a and b have a
common neighbor, say node c, then the purchasing behaviors
of nodes a and b are not independent with each other as node c
may affect their decisions. In general, dependency may occur
even if nodes are multiple links away from each other. This
type of multi-nodes interaction is generally difficult to solve
exactly due to the combinatorics generated by the interactions
when summing over all possible influences.

To overcome this problem, we decouple the influence for
each node. Consider a node i in graph G(V,E), all influence
to it comes from its neighbors or component Ci. To compute
the total influence to node i, we can reshape Ci into a tree-
like graph Ti rooted at i and consider influence algorithms on
this transformed graph. We call Ti the local field of node i.
To compute the average influence on an arbitrary node, one
direct approach is to estimate the influence spreading on all
|V | local fields, and then take their average. Another approach,
which is what we take, is to use a random graph to represent
the mean of all |V | local fields, then estimate the influence
spreading only on this random graph. This random graph has
probability 1/|V | to take shape Ti, and we call it the local
mean field (LMF) of G. The construction of LMF of G can
be described as follows. We model it as a tree with root node
r which has deg(r) neighbors, say v1, v2, . . ., vdeg(r), where
deg(r) follows the same distribution with graph G, i.e., P0(k),
and all other nodes follow the degree distribution of kP0(k)∑

kP0(k)
.

Based on the above construction, the influence spreading in G
can be approximated by the influence spreading in the LMF,
and the accuracy is guaranteed by the following proposition.

Proposition 1: Let G be an infinite sparse random graph
with asymptotic degree distribution, then for an arbitrary node

1The typical value of γ is in the range of 2 < γ < 3.

r, the local topology of the component rooted at r can be
modeled as a tree with high probability.

Remark: The local field of a node in an arbitrary finite graph
usually contains loops and the local mean field can be very
complex. However, for an infinite sparse random graph, the
local fields can be approximated as trees with high probability.
This result can be proven by using local weak convergence [4],
and Lelarge et al. also show such approximation in [5], [6].
The basic idea is that, for an infinite sparse random graph
G, the exploration of the successive neighborhoods of a given
vertex can be approximated by a Galton-Watson branching
process [7] as long as the exploration is local. Intuitively,
this is because for an infinite sparse random graph, there only
exists a small number of cross edges, moreover, the influence
spreading through the cross edges is negligible comparing to
the total influence, so the local topology can be approximated
as a tree. Due to a recursive tree structure, the influence to
the root node r is independent between any two sub-trees. We
can then easily analyze the overall influence by all nodes to
the root r. Since any node in a given G can be chosen as the
root, the performance measure (e.g., average influence from
all nodes to the root) can be applied to any node in graph
G. Therefore, the average influence spreading in G can be
approximated by the average influence spreading in the LMF.

To construct the LMF rooted at node r, we first need to
obtain the degree distributions of the root node r and its
children nodes. For a LMF tree rooted at r, deg(r) follows
the same power law distribution with G, or:

Prob[deg(r) = k] = P0(k) =
k−γ

ζ(γ)
, k = 1, 2, . . . (1)

where ζ(γ) =
∑∞

k=1 k
−γ is the Riemann zeta function. We

can also derive the degree distribution of any descendant node
of r. The result is summarized in the following lemma.

Lemma 1: For an infinite random power law graph, the
probability that a descendant node has degree k is:

P1(k) =
k1−γ

ζ(γ − 1)
, for k = 1, 2, . . . (2)

Proof: Consider a descendent node b whose parent is node
a, which we denote as a ∼ b, we have:

P1(k)=Prob[deg(b) = k|a ∼ b]=
Prob[deg(b) = k, a ∼ b]

Prob[a ∼ b]

=
Prob[deg(b) = k, a ∼ b]∑∞
k=0 Prob[deg(b) = k, a ∼ b]

. (3)

To determine Prob[deg(b) = k, a ∼ b], we will take G(V,E)
as G(n+1) and let n → ∞. We use the fact that G(n+1) is
a random graph, which means that the neighbors of a given
node v are evenly distributed over V −{v}. Since n = |V |−1,
then for node b, it has Ck

n ways to choose k neighbors, and
Ck−1

n−1 of them choose a as a neighbor, hence:

Prob[deg(b) = k, a ∼ b]

Prob[deg(b) = k]
=

Ck−1
n−1

Ck
n

=
k

n
. (4)

Substitute (1) and (4) into (3), we have:

P1(k)=
Prob[deg(b) = k] kn∑∞
k=0 Prob[deg(b) = k] kn

=
k1−γ

ζ(γ − 1)
, k = 1, 2, . . .
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Thus, the degree distributions of the descendants of node r all
follow a shifted power-law distribution P1(k).
Now the local mean field is completely determined, and in the
following sections, we will use it to study several influence
mechanisms.

B. q-Influence Model

Suppose a company provides free samples as advertisement
to ρ < 1 fraction of users. Users receiving the free sample
will buy the product by their own will with probability p+,
while users who do not receive the free sample may also buy
the product by their own will with probability p−. We assume
p+ > p−. Users who buy the product can also influence their
friends (e.g., neighbors in the social network) to purchase with
probability q. Our goal is to derive the fraction of users that
will eventually purchase the product.

To address the above problem, let us first define some
random variables. Let ϕi be the Bernoulli random variable
indicating whether node i decides to purchase the product by
his own will (e.g., without the influence of other nodes), then
ϕi has the parameter µ where

µ = ρp+ + (1− ρ)p−. (5)

Let θij be the Bernoulli random variable indicating whether
node i can influence his neighbor j to purchase the product.
Under the q−influence model, if node i buys the product, then
node i can make his neighbor j also purchase the product with
probability q. Clearly, we have P{θij = 1} = q.

Let us first illustrate how nodes can influence other nodes
via a deterministic example. Consider a finite tree with a
pre-defined root r and all known variables ϕi and θij . For
node i, if ϕi is 1, obviously, it buys the product; if i has
a neighbor j such that ϕj = θji = 1, i will also buy the
product. If neither of these two conditions hold, i may still
buy the product if there is a path i − i1 − i2 . . . − ik such
that ϕik = θikik−1

= . . . = θi1i = 1. Otherwise, i will not
buy the product. Therefore, to compute the final state of the
root node r (i.e., whether node r will purchase the product or
not), we can update the states of all other nodes in this tree
in a bottom-up manner. That is, we can determine the state ϕi

of any leaf node i. Given the values of ϕi in the leaf nodes,
we can determine the state of their parent nodes based on the
influence model. It is important for us to point out that in this
derivation, we only care about the final state of the root node.
Moreover, we can ignore the influence propagating down the
tree, i.e., the influence from the root node to the leaf node.
Specifically, for node i and its child node j, we only need to
count the influence from node j to node i, and we can ignore
the influence from node i to node j. The rationale is that if the
influence from j to i comes from j’s parent node i, but not its
child nodes, then it implies that node i has already purchased
the product, i.e., ϕi = 1. Obviously, the influence from j to
i gives no contribution to node i so it can be ignored. This
fact will be shown by the equivalence of the Monte Carlo
algorithm and the enhanced algorithm in Section IV-A.

We generalize the above intuition in an infinite-depth ran-
dom tree. Let X indicate whether the root node r finally

buys the product, cld(a) be the set of children of node a, Yi

indicate whether a non-root node i buys the product only due
to the influence of the advertisement and its descendants, then
X = Yr. Based on the definition of the q-influence model, we
have the following relationships:

1− Yi = (1− ϕi)
∏

j∈cld(i)
(1− θjiYj) (6)

1−X = (1− ϕr)
∏

j∈cld(r)

(1− θjrYj). (7)

In effect, Yi sums up all influence from all descendant nodes
of node i, and X sums up all influence from the subtrees.
Consider X , Yi as Bernoulli random variables with mean
E[X], E[Yi], then we can prove that (6) and (7) have a desired
solution, and E[X] is the final fraction of buyers. To derive
E[X], we first present the following theorem.

Theorem 1: For the infinite local mean field tree, all Yi, i ̸=
r are identically distributed. If Yi and Yj are at the same depth,
then they are also independent of each other.

Proof: Intuitively, since the local topology can be mod-
eled as a tree, we only consider the influence that comes from
the subtrees, if Yi and Yj are at the same depth, they must be
independent. On the other hand, since we consider the local
mean field tree, which is the average of all local trees, all
Yi, i ̸= r must be identically distributed. For the reason why
infinite sparse random graphs and the associated local fields
can be treated as trees, please refer to [3], [4].

By Theorem 1, we can let Yj ∼ Y for all j ̸= r. To solve
(6) and (7), we take expectation on both sides and we have:

1− E[Yi] = (1− µ)E

 ∏
j∈cld(i)

(1− θjiYj)


1− E[X] = (1− µ)E

 ∏
j∈cld(r)

(1− θjrYj)

 .

To derive the expectation term on the right hand side, note
that θji and Yj that share the same parent are all independent
of each other, and we condition on the node degree:

E

 ∏
j∈cld(i)

(1− θjiYj)

 =
∞∑
k=0

P1(k + 1)

ik∏
j=i1

E[1− θjiYj ]

=
∞∑
k=0

P1(k + 1)(1− qE[Y ])k (8)

E

 ∏
j∈cld(r)

(1− θjrYj)

 =
∞∑
k=1

P0(k)

rk∏
j=r1

E[1− θjrYj ]

=

∞∑
k=1

P0(k)(1− qE[Y ])k. (9)

Here ij is the jth child of node i, and we use Theorem 1 in
(8) and (9). P1(k) is the probability that a descendant node
has degree k and P0(k) is the probability that the root node
has degree k. We finally obtain the recursive distributional
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Fig. 1: Deterministic example for m−threshold model, m = 2.

equation (RDE) for the q-influence model:

1− E[Y ] = (1− µ)

∞∑
k=0

P1(k + 1)(1− qE[Y ])k (10)

1− E[X] = (1− µ)

∞∑
k=1

P0(k)(1− qE[Y ])k. (11)

The performance measure, E[X], is the fraction of users that
will eventually purchase the product. One can easily show that
the solution of the above equations does exist and the valid
value of E[X] is the smallest non-negative solution of (10) and
(11). Moreover, this value can be easily computed by standard
iterative method. We will prove a generalization of this claim
in Section IV-B.

C. m-Threshold Influence Model

In the m−threshold influence model, a user will buy the
product either by his own will, or when at least m of
his friends (or neighbors) have purchased the product. To
illustrate, consider a deterministic example on a finite tree in
Fig. 1. As before, let the random variable ϕi = 1 if node i
decides to purchase by its own will and ϕi = 0 otherwise.
In this deterministic example, the value of ϕi is shown and
labeled in the figure. Suppose we set the threshold m = 2,
then node v1 will buy the product under the influence of node
v4 and v5. Also, the root node r will buy the product under
the influence of node v1 and v2. In general, to compute the
state of the root node under the m−threshold influence model,
we can apply the same bottom-up updating algorithm.

We still employ the same notations X , cld(a) and Yi to
represent the same meanings as before, and we have Yi ∼ Y
for all i ̸= r. By the definition of the m-threshold influence
model, we have the following relationships:

1− Yi = (1− ϕi) · 1

 ∑
j∈cld(i)

Yj < m

 (12)

1−X = (1− ϕr) · 1

 ∑
j∈cld(r)

Yj < m

 . (13)

Here the Bernoulli random variable 1[
∑

j∈cld(i) Yj < m]
indicates whether less than m friends of node i have con-
tributed influence to i. Local mean field method can also be
applied to (12) and (13) so as to compute the state distribution
of the randomly chosen root node. Taking expectation on both

rv1 v2v4 v5 v6 v70 01 1 1v3 0 0 0 (η=0.6)0 1 (η=0.5)0 0 (η=0.6)0 1 (η=0.5)
Fig. 2: Deterministic example for majority rule model.

sides of (12) and (13), we have:

1− E[Yi] = (1− µ)Prob

 ∑
j∈cld(i)

Yj < m


1− E[X] = (1− µ)Prob

 ∑
j∈cld(r)

Yj < m

 .

To derive the probability term on the right side of the above
equations, we can condition on the number of children nodes:

Prob

 ∑
j∈cld(i)

Yj<m

= ∞∑
k=0

P1(k+1)

min{m−1,k}∑
j=0

Cj
kE[Y ]j(1−E[Y ])k−j

Prob

 ∑
j∈cld(r)

Yj<m

= ∞∑
k=1

P0(k)

min{m−1,k}∑
j=0

Cj
kE[Y ]j(1−E[Y ])k−j .

So the final recursive distributional equation (RDE) for the
m−threshold mechanism is:

1−E[Y ]

=(1−µ)
∞∑
k=0

min{m−1,k}∑
j=0

P1(k+1)Cj
kE[Y ]j(1−E[Y ])k−j(14)

1−E[X]

=(1−µ)
∞∑
k=1

min{m−1,k}∑
j=0

P0(k)C
j
kE[Y ]j(1−E[Y ])k−j .(15)

In other words, E[X] is the fraction of users in the social
network that will eventually purchase the product. Again, the
above equations have solution(s) and the smallest non-negative
one gives the valid value of E[X].

D. Majority Rule Influence Model

In the majority rule influence model, a user will buy the
product either by his own will, or if over η fraction of his
friends have bought the product. Fig. 2 shows a deterministic
example of a finite tree under the majority rule model. As
before, ϕi indicates whether node i decides to purchase by its
own will. In this deterministic example, the values of ϕi are all
known and labeled in the figure. If we define the majority as
50%, according to the initial condition, v1 will be influenced
to purchase the product since half of his friends, v4 and v5,
have bought the product. Also, the root node will be influenced
to purchase the product as half of its friends (e.g., v1) have
purchased the product.
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According to the definition of the majority rule influence
model, and by using the same notations as before, the follow-
ing equations hold for the majority rule influence model:

1− Yi = (1− ϕi) · 1

 ∑
j∈cld(i)

Yj < η deg(i)

 (16)

1−X = (1− ϕr) · 1

 ∑
j∈cld(r)

Yj < η deg(r)

 . (17)

Here the Bernoulli random variable 1[
∑

j∈cld(i) Yj <

η deg(i)] indicates whether the fraction of i’s friends that have
purchased the product is less than the majority line η. In the
example of Fig. 2, if we raise the majority value η from 50%
to 60%, then v1 and r will not be influenced anymore. To
see this, when two of the four neighbors of v1, v3 and v4 are
activated, so η = 0.5 and this activates v1 but when η = 0.6,
no activation will occur. To solve X , we take expectation on
both sides of (16) and (17):

1− E[Yi] = (1− µ)Prob

 ∑
j∈cld(i)

Yj < η deg(i)


1− E[X] = (1− µ)Prob

 ∑
j∈cld(r)

Yj < η deg(r)

 .

To derive the probability term on the right side, we condition
on the number of children:

Prob

 ∑
j∈cld(i)

Yj < η deg(i)


=

∞∑
k=0

P1(k + 1)

⌈η(k+1)⌉−1∑
j=0

Cj
kE[Y ]j(1− E[Y ])k−j

Prob

 ∑
j∈cld(r)

Yj < η deg(r)


=

∞∑
k=1

P0(k)

⌈ηk⌉−1∑
j=0

Cj
kE[Y ]j(1− E[Y ])k−j .

The final recursive distributional equation (RDE) for the
majority rule influence model is:

1−E[Y ]

= (1−µ)
∞∑
k=0

⌈η(k+1)⌉−1∑
j=0

P1(k + 1)Cj
kE[Y ]j(1−E[Y ])k−j (18)

1−E[X]

= (1−µ)
∞∑
k=1

⌈ηk⌉−1∑
j=0

P0(k)C
j
kE[Y ]j(1−E[Y ])k−j . (19)

Again, E[X] is the final fraction of buyers.
Intuitively, the three influence models may play different

role under different situations, i.e., some influence model may
be better than the others in certain cases. In particular, the
q−influence model exhibits more independence since one node

can influence the purchase behavior of another node, or a
node’s purchase behavior can be independently influenced by
all his neighbors. On the other hand, the m−threshold model
and the majority model allow more dependency: one is only
influenced when more than a specific number of his neighbors
decide to do the purchase. In other words, these two models
allow one to capture more network externality effect.

E. Performance Evaluation

In this subsection, we will evaluate the performance of
the influence models presented in previous subsections. The
local mean field model assumes an infinite scale-free random
graph without self-loops and duplicate edges. To evaluate
its effectiveness, we first need to generate a random graph
with sufficiently large number of nodes so as to approximate
the infinite condition. Here we propose a technique that can
generate a finite random graph (without self-loops or duplicate
edges) for any degree distribution.

Our approach has two steps: degree allocation and random-
ization. In the first step, we generate |V | numbers according
to a given distribution. If the sum is not even, discard them
and generate again. Otherwise, assign one number to one
node and take it as its degree. We order the nodes from the
highest degree assignment to the lowest and add edges to
them one by one. For node v with degree assignment nv ,
we randomly choose nv nodes that have not reached their
assigned degree and connect them to v. Repeat the above
process until every node has reached its assigned degree. In
the randomization step, we randomly shuffle two edges for
5D rounds where D is the total degree of the graph. In each
round, we randomly choose two edges (a, b) and (c, d), and
shuffle them into (a, d), (c, b) or (a, c), (b, d). Obviously, such
operation does not change the total degree of any node or the
degree distribution of the whole graph.

In general, a node v is in generation i of node r if v
has distance i to r. As we see from Lemma 1, the degree
distribution P1 of the first generation may be different from
the original degree distribution P0 of graph G. Fig. 3 shows
the degree distribution of the first five generations for two
power law random graphs. Both graphs have 10000 nodes and
exponent γ = 3. Fig. 3(a) shows the distributions of graph with
minimum degree of one and average degree of 1.37. Fig. 3(b)
has minimum degree of two and average degree of 3.19. Both
graphs are randomized. From Fig. 3(a), one can observe that
(a) nodes in generation 1 to generation 4 all follow the same
shifted power law distribution P1(k) according to Lemma 1,
(b) both graphs have a dominating fraction of minimum degree
nodes. In the following, we validate our theoretical results of
the three influence models using the two power law random
graphs in Fig. 3. In each simulation, we generate 10 graph
instances with 10000 nodes and for each graph instance, we
simulate the influence spreading process and compute the final
fraction of buyers for 1000 times. Then we take the average
of all the 10000 values as E[X].

1) q-Influence Model: Fig. 4 shows the simulation as well
as theoretical results by (10) and (11). The horizontal axis
µ (or from (5)) is the initial fraction of users that purchase
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Fig. 3: The degree distribution by generations of two power law random
graphs. (a) Power law random graph with minimum degree of one. (b) Power
law random graph with minimum degree of two.
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Fig. 4: Impact of q influence model in random scale-free graph. (a) Graph
with minimum degree one. (b) Graph with minimum degree two.

the product, and the vertical axis E[X] is the final fraction
of buyers. In each figure, there are five simulation curves and
five theoretical curves corresponding to different q values from
0.1 to 0.9. First of all, we can see that the theoretic results fit
very well with the simulation results. In both figures, when q
is very small, say 0.1, E[X] almost equals µ, which means
that mutual influence among users is very weak. When q
becomes large, the fraction of final buyers rises up quickly
as µ increases, then they saturate the network and eventually
every node will purchase the product. We also observe that
E[X] is much higher in Fig. 4(b) because the underlying
graph has a higher average degree, which indicates that the
more connected network is easier for the influence to diffuse.
We observe the outbreak behavior in high degree graph, i.e.,
even if an infinitesimal value of µ (µ ≈ 0) can still entice a
large fraction of users to purchase (large value of E[X]). This
observation agrees with the result in [8] that the percolation
threshold for scale-free graph is zero.

2) m-Threshold Influence Model: Fig. 5 shows the simu-
lation as well as theoretical results by (14) and (15). In each
figure, there are three simulation curves and three theoretical
curves corresponding to different m values from 1 to 3. In both
graphs, when m = 3, E[X] almost equals µ, which means that
mutual influence among users is very weak. This is because
in both figures, most nodes have degree of one or two, so the
threshold m = 3 is rarely reached. For fixed m, the curve is
higher in Fig. 5(b) where the power law graph has a higher
average degree. In Fig. 5(a), about 80% nodes have degree
one, threshold m = 2 is still too high for influence to diffuse.
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Fig. 5: Impact of m−threshold influence model in random scale-free graph.
(a) Graph with minimum degree one. (b) Graph with minimum degree two.
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Fig. 6: Impact of majority rule influence model in random scale-free graph.
(a) Graph with minimum degree one. (b) Graph with minimum degree two.

When m = 1, the m-threshold model is equivalent with q-
influence model where q = 1. The jump of E[X] from 0 to
about 0.1 near µ = 0 suggests that the giant component in the
low degree scale-free graph takes up about 10% of the total
population. In Fig. 5(b) where over 60% of nodes have degree
two, a threshold that is higher than two severely restricts the
influence diffusion among users. However, we also observe
the outbreak behavior when m = 1.

3) Majority Rule Influence Model: Fig. 6 shows the simu-
lation as well as theoretical results by (18) and (19). In each
figure, there are three simulation curves and three theoretical
curves corresponding to majority factor η of 10%, 50%, and
90%. We can see that the theoretic results fit very well with
the simulation results. In both figures, even when η = 0.9,
the curve is obviously above the 45 degree line, which means
that there is still considerable mutual influence in the network.
In the low degree graph (Fig. 6(a)), the three curves are very
close to each other while in the high degree graph (Fig. 6(b)),
they are widely separated. While the η = 0.5 and η = 0.1
curves are higher in the high degree graph than in the low
degree graph, η = 0.9 curve is lower in the high degree graph.
Again, we observe outbreak behavior in Fig. 6(b).

To show the efficiency of our model, we compare the time
cost of running the simulation and solving the model (See
Table I). In Table I, the parameters for simulation are as
follows: |V | = 10000, |E| ≈ 24000, µ = 0.05, the minimum
degree of the graph is two. For each simulation, we run 10
graph instances and 1000 times for each instance and take the
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TABLE I: Computational overheads.

cases time (ms)

q-model simulation 48348
q = 0.3 theory 31

m-threshold simulation 43657
m = 5 theory 32

majority rule simulation 44969
η = 0.7 theory 41

average value. It is important for us to state that computing
E[X] by our mathematical model is more than 1000 times
faster than simulation for all influence models. Moreover, if
the graph size is very large, then estimating the influence via
simulation becomes more computationally expensive, while
using our model has the clear computational advantage.

In summary, the RDE framework is very accurate for scale-
free random graphs under all influence models we have stud-
ied. Since the outbreak behavior appears in all cases, to design
efficient advertisement strategies, a company may offer a little
more free samples so as to trigger the outbreak behavior, which
can help the company to achieve a higher revenue. This short
of free samples allocation will he useful for OSNs wherein
users interact frequently, e.g., via the Power Tweet in Twitter.
Here we only consider the scale-free characteristic of OSNs
and derive various implications. In the next section, we will
take into account another important feature of OSNs to make
our model more realistic.

III. SCALE-FREE GRAPH WITH HIGH CLUSTERING
COEFFICIENT

In OSNs, two common friends of a user are usually friends
of each other. This implies that graphs of OSNs usually exhibit
high clustering. In this section, we extend our methodology to
analyze scale-free graphs with high clustering property. We use
the definition which was first proposed by Watts and Strogatz
in [9] to characterize the clustering coefficient.

Definition 1: The clustering coefficient of a graph G(V,E)
is

c =
1

|V |
∑
v∈V

tv
kv(kv − 1)/2

(20)

where kv is the degree of node v, and tv is the number of edges
in the neighborhood of node v. For the above definition, we
ignore nodes with degree of one.

Obviously, the scale-free graph with high clustering coef-
ficient cannot be modeled as a tree. For infinite scale-free
graph, the depth of a local tree is infinite. So the influence
that comes from the neighbors in the same generation can be
approximated by the influence that comes from the children
in the next generation. We call the edge between sibling
nodes as the cross edge. For example, in Fig. 7(a), node b
connects with j children of a’s. To approximate the influence
to b, these j siblings can be taken as b’s children. Based on
this fact, we construct another new tree, the local mean field
tree, to approximate the influence spreading in the original
graph. The way of constructing such new tree is shown in
Fig. 7(b). To compute the degree distribution of descendent

(a) (b)

Fig. 7: Graph with high clustering coefficient and its tree approximation. (a)
Graph with high clustering coefficient. (b) LMF tree approximation for node
b.

nodes in the local mean field tree, we first need to determine
the probability that a cross edge appears. Since the local mean
field is the average of all local trees, when we construct the
local mean field, we can use the clustering coefficient of
the graph to represent a random node’s clustering coefficient.
In other words, one can assume that all cross edges appear
with probability c. We use this approximation to compute the
degree distribution of descendent nodes in the corresponding
LMF tree and analyze the influence spreading in the new
tree structure. In essence, due to the cross edges, the degree
distribution of the descendant nodes in the LMF tree does not
follow shifted power law any more, and we can compute it as
follows. Consider a descendant node b whose parent is node
a (see Fig. 7(b)), we have:

P (deg(b) = k|deg(a) = m)

=

min(k−1,m−1)∑
j=0

p(b
j∼ a) · p(deg(b) = k|deg(a) = m, b

j∼ a)

=

min(k−1,m−1)∑
j=0

(
m−1
j

)
cj(1−c)(m−1−j)

p0(k)
(k−j−1
n−j−1)
(kn)

∞∑
k=1

p0(k)
(k−j−1
n−j−1)
(kn)

=

m−1∑
j=0

(
m−1
j

)
cj(1−c)(m−1−j) k(k−1)...(k−j)k−γ

∞∑
k=1

k(k−1)...(k−j)k−γ

where b
j∼ a means b connects j edges with the children of

node a. We summarize the results in the following lemma.
Lemma 2: For an infinite scale free graph with clustering

coefficient c, the probability that a descendant node in the
LMF tree has degree k is:

P1(k) =
∞∑

m=1

m−γ

ζ(γ)

m−1∑
j=0

(
m− 1

j

)
cj(1− c)(m−1−j)

× k(k − 1) · · · (k − j)k−γ

∞∑
k=1

k(k − 1) · · · (k − j)k−γ

, k = 1, 2 . . . . (21)

Note that when the clustering coefficient c = 0, (21) becomes
the shifted power law. Now the local mean field of scale-
free graph with high clustering coefficient is completely de-
termined. One can use the LMF model defined in Section II-B
(10) and (11), Section II-C (14) and (15), and Section II-D (18)
and (19) to analyze the influence spreading in infinite scale-
free, high clustering graph by using (21) to substitute P1(k).
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Fig. 8: Impact of the q−influence model in scale-free graph with high
clustering coefficient. (a) Minimum degree 3. (b) Minimum degree 5.

A. Performance Evaluation

In this subsection, we present the performance evaluation
of the extended models presented above. Note that there is a
body of work on topology generation, see, e.g. [10], [11].
In [10], the authors propose a method which is based on
preferential attachment to generate scale free graphs with
high clustering coefficient. In [11], the authors propose using
Kronecker graphs which naturally obey common network
properties to model networks. In this paper, we use the
GLP model presented in [10] to generate a scale-free graph
with high clustering coefficient, then run simulation in the
generated graph to validate our model. To further show the
accuracy of our model, we also run simulation in realistic
social networks. We are interested in the relationship of the
performance measure, E[X], and the clustering coefficient c.
In our simulation, we generate two types of scale-free graphs
which have a minimum degree of 3 and a minimum degree of
5 respectively. Since ρ, the probability of a randomly chosen
node will receive the free sample, is usually small, we fix
µ = 0.05.

1) Performance of the q-Influence Model: Fig. 8 shows the
simulation as well as theoretical results by the RDE, (10) and
(11), which uses P1(k) presented in (21). The horizontal axis
c is the clustering coefficient of the graph, and the vertical
axis E[X] is the final fraction of users that will eventually
buy the product. In each figure, there are two sets of curves
corresponding to different q values from 0.1 to 0.3. Firstly, we
can see that the theoretic results fit well with the simulation
results. We also observe that E[X] is much higher in Fig. 8(b)
because the underlying graph has a higher average degree.
This indicates that high degree networks, which are more
connected, are easier for the influence to diffuse. Moreover,
we can see that when the clustering coefficient increases, the
influence E[X] also increases, but slower for high clustering
coefficients. At last, we see that even an infinitesimal adver-
tisement (µ = 0.05) can still lead to high E[X].

2) Performance of the m-Threshold Influence Model: Fig.
9 shows the simulation as well as theoretical results by the
RDE, (14) and (15), but use P1(k) presented in (21). In each
figure, there are two sets of curves corresponding to different
m values. We can see that the theoretic results correctly
characterize the shape of the simulation results curve. For fixed
m (m = 7), the curve is higher in Fig. 9(b) where the power
law graph has a higher average degree. Again, we can see that
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Fig. 9: Impact of the m−threshold influence model in scale-free graph with
high clustering coefficient. (a) Minimum degree 3. (b) Minimum degree 5.
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Fig. 10: Impact of the majority rule influence model in scale-free graph with
high clustering coefficient. (a) Minimum degree 3. (b) Minimum degree 5.

the influence measure E[X] increases with c. Similar with the
q influence model, we also observe that small µ can lead to
high E[X].

3) Performance of the Majority Rule Influence Model: Fig.
10 shows the simulation as well as theoretical results by the
RDE, (18) and (19) that uses P1(k) presented in (21). In each
figure, there are two sets of curves corresponding to majority
factor η of 30%, 50%. We can see that the curves of the
theoretic results and simulation results have the same tendency
of variation. In both figures, when η = 0.5, E[X] almost
equals to µ, which means that the mutual influence among
users is very weak. Again, we observe even low µ can still
lead to high E[X] when η = 0.3. Unlike the q-model and m
threshold, when the clustering coefficient c increases, the final
fraction of buyers E[X] decreases. And E[X] almost keeps
the same for high clustering coefficient c.

In summary, inspired by the local mean field model for
scale-free random graph (without high clustering coefficient),
we extend the model for scale-free graph with high clustering
coefficients, and the extended model can accurately predict the
influence spreading in online social networks.

4) Model Validation on Realistic Networks: To further
show the accuracy of our extended model, we also provide
the performance evaluation on two realistic social networks
with different clustering coefficients which are Arxiv GR-QC
(General Relativity and Quantum Cosmology) collaboration
network [12] and Arxiv AstroPh (Astro Physics) collaboration
network [13] and the clustering coefficients are 0.53 and
0.63 respectively. Fig. 11(a) shows the results of Arxiv GR-
QC collaboration network and Fig. 11(b) corresponds to the
case of Arxiv AstroPh collaboration network. In both figures,
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Fig. 11: Performance evaluation on real social networks. (a) Arxiv GR-QC
collaboration network where c = 0.53. (b) Arxiv AstroPh collaboration
network where c = 0.63.

the horizontal axis, µ, is the initial fraction of users who
buy a product and the vertical axis is the final fraction of
buyers, E[X]. For both cases, We plot the impact of q
influence model, m-threshold influence model and majority
rule influence model in the same figure, and for the case
of Arxiv GR-QC network, the corresponding parameters are
q = 0.25, m = 4 and η = 0.5, and for the case of Arxiv
AstroPh network, the corresponding parameters are q = 0.25,
m = 5 and η = 0.5. The results show that our model can
indeed provide a good approximation even for real networks.

IV. GENERALIZED INFLUENCE MODELS

In the following, we present two generalized influence
models, namely, the deterministic influence model and the
probabilistic influence model. They subsume the previously
discussed influence models.

A. Deterministic Influence Model

In this subsection, we formalize the product advertising
problem on general graphs and define a class of influence mod-
els characterized by a 0-1 valued mutual influence function.
This influence model is a generalization of the m-threshold
and majority rule influence model we discussed in Section II.

Given a graph G(V,E), each node in V has two states,
influenced or not influenced. We represent the node v’s state by
a 0-1 random variable Xv and Xv = 1 means v is influenced.
Suppose there is a background source such that every node is
influenced by it independently with probability µ. Every node
can also be influenced by its neighbors according to the mutual
influence function f(n, k), which indicates whether a node will
be influenced by its neighbors when k of its n neighbors are
influenced. For example, f(n, k) = 1[k ≥ m] characterizes
m-threshold influence model while f(n, k) = 1[k ≥ ηn]
describes the majority rule influence model. One may design
more complex influence models, say f(n, k) = 1[k >

√
n].

We assume f(n, k) is monotone, that is, f(n, 0) ̸= 1 and
f(n, k) ≤ f(n, k + 1). One interesting question is, given
an influence model, what is the probability that a randomly
chosen node is influenced?

To answer this question, we first start with a simple exam-
ple. Consider the tree shown in Fig. 12, the probability E[X1]
that node 1 is influenced can be determined using the Monte
Carlo method as follows:

12 34 5 678
Fig. 12: Example of a tree for Monte Carlo Algorithm.

Monte Carlo Algorithm
1) c←0
2) repeat for N rounds where N is sufficiently large:

a) initialize every node with state 0.
b) assign every node state 1 with probability µ.
c) repeat until no node changes state:

• for every node, update its state according to the
mutual influence function f(n, k).

d) if node 1 is influenced, c← c+ 1.
3) E[X1]← c/N .

The above algorithm follows the definition of E[Xv] and
determines the state of all nodes under each initial random
assignment. Then it takes the frequency of node 1 being
in state 1 as E[X1]. One may wonder if it is necessary to
determine the final state of all the other nodes in order to
determine the state of the root node. The answer is no, and
one can show that the following algorithm is equivalent to the
Monte Carlo algorithm.

Enhanced Algorithm
1) c←0
2) repeat for N rounds where N is sufficiently large:

a) initialize every node with state 0.
b) construct the shortest path tree for node 1, m is

the maximal depth.
c) for i = m, . . . , 0:

• for every node in generation i, assign it state 1
with probability µ. Update its state according to
the mutual influence function f(n, k).

d) If node 1 is influenced, c← c+ 1.
3) E[X1]← c/N .

Here we briefly explain why the enhanced algorithm is
equivalent with Monte Carlo algorithm. Let state 1 be the
influenced state and state 0 be the inactive state. Note that
the shortest path tree of a node is actually the component
that contains it. The two algorithms are almost the same
except that in the enhanced version, when updating the state
of non-root nodes, we do not count the influence from higher
generations. Although such omission may cause the final state
of some non-root nodes to have a lower value than that in
the Monte Carlo algorithm, but it does not affect the final
state of the root node. In case it does, then there must be
an active node A propagating its influence down the tree and
activate a descendant node B, and the activation of B should
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trigger another update up the tree to activate the root node.
However, if A is already activated once, then the influence
from B will have no impact since B can only influence the
root by activating A in a tree topology. Therefore, we can
safely ignore the influence from A to B when we only care
about the state of the root node.

Let random variable Yv be the state of node v after perform-
ing the enhanced algorithm for one round. Then Yv is the accu-
mulated influence at node v containing from its descendants.
It is important to note that the enhanced algorithm can be
formulated via the following iterative distributional equation:

1− Yi = (1− ϕi(µ))

1− f

deg(i),
∑

j∈cld(i)
Yj

 (22)

Here, ϕi(µ) is Bernoulli random variables with mean µ. It
means that a node is not influenced if and only if it is not
influenced by the background and not influenced by its neigh-
bors. Because we consider the infinite scale-free graph, for
all non-root node i, Yis are identically distributed, we denote
their expectations as E[Y ]. And we also let the Bernoulli
random variable X indicate whether the root node buys the
product. Taking expectation on both sides of (22), we have the
following recursive distributional equations (RDE):

1−E[Y ] = (1−µ)
(
1−

∞∑
n=0

P1(n+1)

×
n∑

k=0

Ck
nf(n+1, k)E[Y ]k(1−E[Y ])n−k

)
(23)

1−E[X] = (1−µ)
(
1−

∞∑
n=0

P0(n)

×
n∑

k=0

Ck
nf(n, k)E[Y ]k(1− E[Y ])n−k

)
. (24)

Here P1(n) is the degree distribution of descendant nodes
and P0(n) is the degree distribution of the root. Equation
(23) computes the accumulated influence along the shortest
path tree in a bottom-up manner. And E[X] is the expected
probability that a randomly chosen root will purchase a
product.

B. Probabilistic Influence Model

Under the probabilistic influence model, every node that
purchases the product will influence, or activate its neighbors
independently with probability q. The mutual influence func-
tion f(n, k), is the probability a node will be influenced when
k out of n neighbors are active. f is monotone if f(n, 0) ̸= 1
and f(n, k) ≤ f(n, k + 1). Unless we state otherwise, we
assume f to be monotonic function from now on. Here k is the
number of neighbors that successfully contributes influence.
The q-influence model we discussed in Section II is a special
case of the probabilistic model with f(n, k) = 1[k > 0].
When q = 1 and f is 0-1 valued, probabilistic influence model
becomes the deterministic model we discussed before.

As before, let Yi be the influence accumulated at node i,
θij indicates whether a node i contributes influence to node j.

Using similar argument in Section IV-A, the following relation
holds for all i ∈ V :

1−Yi = (1−ϕi(µ))

1− f

deg(i),
∑

j∈cld(i)

θjiYj

 (25)

where ϕi(µ) is Bernoulli random variable with mean µ.
Equation (25) indicates that a node is not influenced if and only
if it is not influenced by the background and not influenced
by its neighbors. Again, for all non-root node i, Yi ∼ Y , and
we still let X be the random variable that indicates whether
the root node buys the product. Taking expectation on both
sides of (25), we have the following recursive distributional
equation (RDE):

1− E[Y ] = (1− µ)

(
1−

∞∑
n=0

P1(n+ 1)

×
n∑

k=0

Ck
nf(n+1, k)(qE[Y ])k(1−qE[Y ])n−k

)
(26)

1− E[X] = (1− µ)

(
1−

∞∑
n=0

P0(n)

×
n∑

k=0

Ck
nf(n, k)(qE[Y ])k(1− qE[Y ])n−k

)
. (27)

Here P1(n) and P0(n) have the same meaning as before.
E[X] computed at the root in (27) is the probability that a
randomly chosen node purchases the product, which equals to
the expected fraction of users that will buy the product in the
social network.

Denote E[X], E[Y ] as x, y respectively. Define function:

g(x) = 1−(1−µ)

×

(
1−

∞∑
n=0

P1(n+1)
n∑

k=0

Ck
nf(n+1, k)(qx)

k(1−qx)n−k

)
h(x) = 1−(1−µ)

×

(
1−

∞∑
n=0

P0(n)
n∑

k=0

Ck
nf(n, k)(qx)

k(1− qx)n−k

)
.

Then (26) and (27) reduce to:

y = g(y) x = h(y). (28)

Let yt be the average influence at time slot t and xt be the
fraction of influenced users at time slot t, then we have

x0 = y0 = µ yt+1 = g(yt) xt+1 = h(yt).

By the definition, we have E[X] = limt→∞ xt.
Theorem 2: Let µ, q ∈ [0, 1], f(n, k) be a monotone in-

fluence function, and Pi(k) be an arbitrary distribution. Then
the limit limt→∞ xt exists and it is the smallest non-negative
solution of (26) and (27).

Proof: First of all, both g(x) and h(x) are non-decreasing.
Consider the following weighted sum of f(n, k) in h(x):

n∑
k=0

Ck
nf(n, k)(qx)

k(1− qx)n−k
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where the weight of f(n, k) is the binomial term Ck
n(qx)

k(1−
qx)n−k. The total sum of the weights is

∑n
k=0 C

k
n(qx)

k(1−
qx)n−k = 1, a constant. So increasing x is in effect shifting
the weight from f(n, k) of smaller k to those of larger k.
Since f(n, k) is monotone, it increases with k while n is
fixed. Thus the weighted sum of f(n, k) doesn’t decrease
with x, hence h(x) is non-decreasing. Similar argument holds
for g(x). Secondly, it is easy to see that, for x ∈ [0, q−1],
y1 = g(µ) ≥ µ = y0. Thus by the monotonicity of g(x)
and mathematical induction, yt+1 > yt for all t ≥ 0. Hence
the series {yt} is non-decreasing. On the other hand, {yt}
is upper-bounded by 1, thus it must have a limit y∗ and
g(y∗) = y∗. We claim the y∗ is the smallest non-negative
solution of g(y) = y. Otherwise, suppose 0 ≤ y′ < y∗

and y′ = g(y′). Apparently y′ ≥ µ. By the monotonicity
of g(x), g(µ) = y1 ≤ g(y′) = y′ < g(y∗) = y∗. Apply
it repeatedly, we have yt ≤ y′ < y∗ for all t > 0. Thus
limt→∞ yt ≤ y′ < y∗, a contradiction.

Since limt→∞ yt exists and it is the smallest non-negative
solution of y = g(y), the limit limt→∞ xt = h(limt→∞ yt)
also exists and is the smallest solution of (26) and (27).

V. MULTI-STATE MODEL

In this section, we consider a more general advertising
problem. We assume that every user can be influenced by the
advertiser independently and has a personal rating about the
product ranging from 0 to t, where a higher value of rating
implies a higher preference on the product. The probability
that the users would have rating i is pi, which depends on
the quality of the product and the advertising strategy of the
company. We also assume pis are all known quantities in our
discussion. Without loss of generality, we assume every user
provides a rating on the product. If a user does not provide a
rating, we assume the user perceives the product with rating
0. Lastly, we define the concept of an acceptance line. An
acceptance line a implies that a user will only buy the product
if his/her rating of the product is above or equals to a.

Users can be influenced by the rating of their friends accord-
ing to the mutual influence function frs(n; k0, k1, k2, . . . , kt),
0 ≤ r, s ≤ t. The mutual influence function defines the
rule that a user updates its rating: if a node v with rat-
ing r has n friends, and ki of its friends give rating i,
then node v will change its rating to s with probability
frs(n; k0, k1, k2, . . . , kt). For convenience, let the integer vec-
tor k = (k0, k1, k2, . . . , kt) and we also write the mutual
influence function as frs(n;k). We define a partial order
on Nt in which (k0, . . . , ki, . . . , kj , . . . , kt) < (k0, . . . , ki −
1, . . . , kj + 1, . . . , kt). We say the social network is stable if
no one can change its rating according to frs. A user will buy
the product if when the social network is stable, its rating is
not lower than the acceptance line a. Again, we want to find
the fraction of users that will eventually buy the product.

Consider the following mutual influence functions:

f10(n; k0, k1) = 1[k0 > n/2] (29)
f01(n, k0, k1) = 1[k1 > n/2]. (30)

The above functions indicate a strict majority rule: a user will
have rating one if the majority of his friends have rating one

10 k0>n/2k1>n/2k1≤n/2 k0≤n/2
Fig. 13: State transition diagram of strict majority rule.43 210 1 11 1

(a)

43 210 1 0 11 0 1 0
(b)

Fig. 14: Example of rating update. (a) Stable case. (b) Unstable case.

and it will have rating zero if the majority of his friends have
rating zero. So if the acceptance line is a = 1, then a user will
buy the product only when the majority of its friends buy the
product. Note that this model is different from the majority
rule influence model we discussed in Section II. In the strict
majority rule, the influence from friends may cancel its initial
intention to buy the product due to the advertisement. The
rating transition diagram is illustrated in Fig. 13.

Consider a simple social network with four nodes as shown
in Fig. 14. Suppose we use the influence model defined by (29)
and (30). In Fig. 14(a), there are three users with rating one
due to the initial advertisement. Then the network goes to a
stable state where all users will give a rating of one. However,
when there are exactly two users with rating one initially, the
rating of all users will oscillate between zero and one, so the
social network is not stable. This is illustrated in Fig. 14(b).
In general, instability may occur if there is a loop of state
transitions in the mutual influence function, e.g., in the strict
majority rule model, the user can change rating from zero to
one, and then change back to zero. When social network is not
stable, we can not decide the final rating for some users. In the
rest of this section, we focus on a special class of influence
models that do not allow such a loop of transitions so that we
can always decide whether a user will purchase the product
or not under these influence models.

We define a class of monotonous influence models which
have mutual influence function in the following form:

fs,s+1(n;k) = 1− fs,s(n;k) (31)
fs,r(n;k) = 0, for r ̸= s, s+ 1, or kr = 0 (32)
fs,r(n;k) ≤ fs,r(n;k

′), if k < k′. (33)

That is, users’ rating never drops and when it increases, it can
only increase by one for each update and after the increment,
the rating should not exceed the highest rating of its neighbors.
Fig. 15 depicts the transition diagram.

We now extend the Algorithm in Section IV to determine
the probability that a node will eventually give a rating of s.

Monte Carlo Algorithm
1) for all 0 ≤ s ≤ t, cs ←0,
2) repeat for N rounds where N is sufficiently large:
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Fig. 15: State transitions for monotonous influence models.

a) initialize every node with state 0.
b) assign every node state (or rating) s with probabil-

ity ps.
c) repeat until no node changes state:

• for every node, update its state according to the
mutual influence function frs(n;k).

d) if node 1 is at state s, cs ← cs + 1.

3) Prob[X1 = s]← cs/N .

One can show that, for the monotonous influence models,
the Monte Carlo Algorithm always ends in finite steps. To
see this, in each round of step 2c, at least one node increases
its rating by one. Since the total rating of all nodes is upper
bounded by t|V |, the loop in 2c finishes in finite number of
rounds. For monotonous influence model on a tree topology,
ki means the number of children who have rating i. Again,
we have an equivalent algorithm which uses the shortest path
tree T1 to determine the state of node 1.

Enhanced Algorithm

1) for all 0 ≤ s ≤ t, cs ←0,
2) repeat for N rounds where N is sufficiently large:

a) initialize every node with state 0.
b) construct the shortest path tree T1 for node 1, m

is the maximal depth.
c) for i = m, . . . , 0:

• for every node in generation i, assign it state s
with probability ps. Increase its rating according
to the mutual influence function frs(n;k) until
it can not increase any more.

d) If node 1 is in state s, cs ← cs + 1.

3) Prob[X1 = s]← cs/N .

To prove the equivalence of the two algorithms above, one
can use similar arguments as those in Section IV-A. Suppose
we can not ignore the influence from upper generations when
updating the state of a node in the enhanced algorithm. There
must be a node A with rating l propagating its influence down
the tree and raises the rating of a descendant node, and this
update triggers a chain of updates up the tree. Since each
update can raise the states of nodes to at most l according to
(32), it can not change the state of A, thus has no impact on
the root. So the influence from a node to its descendants can
be ignored when calculating the final state of the root.

Based on this enhanced algorithm, we can calculate the
state distribution of a randomly chosen node by the following

10 k1+k2≥ηn 2k2≥ηnk2<ηnk1+k2<ηn
Fig. 16: State transition diagram of the 3-state majority rule.

iterative distributional equations (IDE):

Prob[Yg = s] =
t∑

r=0

Prob[ϕg=r]Prob[Yg = s|ϕg=r]

for g = m,m− 1, . . . , 0. (34)

Here random variable Yg is the state of a node in the
gth generation after the update in Step 2c of the Enhanced
Algorithm. Random variable ϕg is the initial state of a node
in the gth generation and ϕg ∼ ϕ for all g. Equation (34)
computes the distribution of each generation in a bottom-up
order. We consider the infinite scale-free graph, so m is infinite
and Yg ∼ Y for all 1 ≤ g ≤ m, and (34) reduces to the
recursive distributional equation (RDE):

Prob[Y = s] =
t∑

r=0

Prob[ϕ = r]Prob[Y = s|ϕ = r] (35)

Prob[X = s] =

t∑
r=0

Prob[ϕ = r]Prob[X = s|ϕ = r]. (36)

Here X = Y0 is the state of the root. The conditional
probability Prob[Y = s|ϕ = r] is determined by the degree
distribution of the underlying random graph and the influence
model. Although (35) and (36) are derived for trees, they also
apply to random graphs with high accuracy. In the rest of this
section, we will illustrate the utility of this methodology by
analyzing one particular monotonous influence model.

A. 3-State Majority Rule
Now we consider the 3-state majority rule model. It has

three states 0, 1, 2 and the acceptance line is a = 2. So the
fraction of users who buy the product is Prob[X = 2]. The
mutual influence function is as follows:

f01(n;k) = 1− f00(n;k) = 1[k1 + k2 ≥ ηn] (37)
f12(n;k) = 1− f11(n;k) = 1[k2 ≥ ηn] (38)
f22(n;k) = 1. (39)

In other words, a user will increase its rating by one if at least
η fraction of its friends give higher rating. The state transition
diagram is shown in Fig. 16.

To solve the RDE (35) and (36) for the 3-state majority
rule model, we only need to determine Prob[Y = s|ϕ = r]
and Prob[X = s|ϕ = r]. We show the derivation of Prob[Y =
s|ϕ = r], the probability that a non-root user at state r can
go to state s. The derivation for other Prob[X = s|ϕ = r] is
similar.

For 3-state majority rule, by definition, we easily get:

Prob[Y = 0|ϕ = 0] = Prob[k1 + k2 < ηn] (40)
Prob[Y = 1|ϕ = 0] = Prob[k2 < ηn]

−Prob[k1 + k2 < ηn] (41)
Prob[Y = 1|ϕ = 1] = Prob[k2 < ηn] (42)
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Prob[Y = 2|ϕ = 1] = 1− Prob[k2 < ηn] (43)
Prob[Y = 0|ϕ = 1] = Prob[Y = 0|ϕ = 2]

= Prob[Y = 1|ϕ = 2] = 0 (44)
Prob[Y = 2|ϕ = 2] = 1. (45)

To derive Prob[Y = 2|ϕ = 0], note that to go from state 0 to
state 2, it has to go through state 1 first. Thus we have:

Prob [Y = 2|ϕ = 0] = Prob[Ym = 1|ϕ = 0]

×Prob[Y = 2|Ym = 1, ϕ = 0]

= Prob[k1 + k2 ≥ ηn]× Prob[k2 ≥ ηn|k1 + k2 ≥ ηn]

= Prob[k2 ≥ ηn] = 1− Prob[k2 < ηn]. (46)

Now all we have to do is to derive Prob[k2 < ηn] and
Prob[k1+k2 < ηn] according to P1(k), the degree distribution
of the descendant nodes of the underlying random graph:

Prob[k1 + k2 < ηn] =

⌈ηn⌉−1∑
k=0

P1(n)C
k
n−1 (47)

×Prob[Y = 1, 2]kProb[Y = 0]n−1−k

Prob[k2 < ηn] =

⌈ηn⌉−1∑
k=0

P1(n)C
k
n−1 (48)

×Prob[Y = 2]kProb[Y = 0, 1]n−1−k.

Substituting (40)-(48) into (35) and (36), the resulting equation
contains only variables like Prob[Y = s] and Prob[X = s], and
can be solved by numeric methods.

B. Performance Evaluation
In this subsection, we validate the theoretical results in

Section V-A. Fig. 17 shows the simulation results as well as the
theoretical prediction by (35) and (36) for the 3-state majority
model we discussed in Section V-A. The underlying graph is
a randomized power law graph with a minimum degree of
two, γ = 3 and the degree distributions are shown in Fig.
3(b). In Fig. 17(a), the initial fraction of state two users p2
is fixed at 0.1. The horizontal axis is the initial fraction of
state one users p1 and the vertical axis is the probability. We
simulate the 3-state majority rule with three different majority
factor η = 0, 1, 0.5, 0.9. For each η, there are four curves in
the graph showing the simulation and theoretical results of
the final fraction of state one users Prob[X = 1] as well as
the fraction of the state two users Prob[X = 2]. Note if the
acceptance line is one, then the fraction of users that buy the
product is Prob[X = 1]+ Prob[X = 2]; if the acceptance line
is two, than the fraction of buyers is Prob[X = 2]. Fig. 17(b)
shows the same curve when p1 is fixed as 0.1 and p2 is the
horizontal axis. As we see from the figures, the theoretical
curves fit the simulation results very well. We observe that
when η is small, almost all users give the highest rating. When
η is about 0.5, rating one and rating two dominate the users
and when the initial fraction of rating two is large enough,
rating two finally dominates the whole network. So if η = 0.5
and the acceptance line is two, it is enough to ensure 20%
initial buyers in order to enjoy nearly 100% buyers.
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Fig. 17: Impact of the 3-state majority influence model. (a) p2 = 0.1. (b)
p1 = 0.1.

VI. RELATED WORK

Some of the related work on this problem concern with
epidemic spreading [8], [14] via the Susceptible-Infective-
Susceptible (SIS) or the Susceptible-Infective-Removed (SIR)
model. A body of physical literatures also discussed epidemic
spreading on topologies with geographical [15]–[17], commu-
nity [18], [19], and clustering [20] features for SIS or SIR
infection model with one source [2], [21] or Erdös-Rényi
graph. Results on the speed the epidemic spreads and dies
out are obtained. In this work, we consider more general
influence models and focus on the final fraction of users that
are influenced. Some researchers discuss specific influence
models via algorithmic perspective and design approximation
algorithms [22], heuristic algorithms [23] for restricted graphs,
or prove NP-hardness results of choosing the most influential
nodes [1] in social networks. Some researchers also study
the revenue maximization instead of influence maximization,
see, [24], [25]. Lastly, previous work of [3], [5] which study
security investment game provide local mean field analysis on
infinite random graphs. In [26], [27], the authors discussed m-
threshold, majority rule and the generalized influence model.
In this paper, we consider the spreading of the word-of-mouth
effect in viral market, and our objective is to estimate the final
fraction of buyers. Moreover, the underlying graph structure
we considered is scale free with high clustering coefficient,
which has very different properties from random graphs and
is also more challenge to analyze.

VII. CONCLUSION

We first propose a general analytical framework to model
various influence mechanisms on scale-free random networks,
then extend it for scale-free graphs with high clustering
coefficient and influence mechanisms with multiple rating
levels. We first discuss the probabilistic model, then we
present the deterministic threshold models. Based on these
influence models, we compute the expected fraction of users
who will eventually purchase the product by applying the
local mean field analysis. This metric is important for product
advertisement because it reveals the maximum profit that
the company can obtain. It also gives us the insights on
how to control word-of-mouth effect so as to maximize the
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revenue. We validate our theoretic analysis by carrying out
extensive simulations on scale free graphs with power law
degree distribution and high clustering coefficient. We show
that our models are very accurate and computational efficient
when compared with simulations. We observe that even with
a small initial investment of free samples (e.g., small value of
ρ), one can still induce large number of users to purchase
the product. We also find that clustering coefficient of the
underlying network enhances advertising for q-influence and
m-threshold model, but impedes advertising for majority rule
model. Lastly, our framework provides an important building
block to design and analyze different product advertisement
strategies in social networks.
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[1] D. Kempe, J. Kleinberg, and Éva Tardos, “Maximizing the Spread of
Influence Through a Social Network,” in KDD ’03. ACM, 2003.

[2] A.-L. Barabasi and R. Albert, “Emergence of Scaling in Random
Networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[3] M. Lelarge and J. Bolot, “A Local Mean Field Analysis of Security
Investments in Networks,” in NetEcon, 2008.

[4] D. Aldous and J. M. Steele, “The Objective Method: Probabilistic Com-
binatorial Optimization and Local Weak Convergence,” in Probability on
Discrete Structures, volume 110. Springer, 2004, pp. 1–72.

[5] M. Lelarge and J. Bolot, “Network Externalities and the Deployment of
Security Features and Protocols in the Internet,” in SIGMETRICS, 2008.
New York, NY, USA: ACM, 2008, pp. 37–48.

[6] M. Lelarge, “Diffusion and Cascading Behavior in Random Networks,”
ArXiv e-prints, Dec. 2010. [Online]. Available: http://arxiv.org/abs/
1012.2062

[7] K. B. Athreya and P. E. Ney, “Branching Processes,” in Die Grundlehren
der mathematischen Wissenschaften, Band 196. Springer-Verlag, 1972.

[8] R. Pastor-Satorras and A. Vespignani, “Epidemic Spreading in Scale-
Free Networks,” Phys. Rev. Lett., vol. 86, pp. 3200–3203, Apr. 2001.

[9] D. J. Watts and S. H. Strogatz, “Collective Dynamics of ’Small-world’
Networks,” Nature, vol. 393, pp. 440 – 442, 1998.

[10] T. Bu and D. Towsley, “On Distinguishing Between Internet Power Law
Topology Generators,” INFOCOM, 2002.

[11] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahra-
mani, “Kronecker Graphs: an Approach to Modeling Networks,” J.
Mach. Learn. Res., vol. 11, pp. 985–1042, 2010.

[12] J. Leskovec. General Relativity and Quantum Cosmology Collaboration
Network Dataset. [Online]. Available: http://snap.stanford.edu/data/
ca-GrQc.html

[13] ——. Astro Physics Collaboration Network Dataset. [Online]. Available:
http://snap.stanford.edu/data/ca-AstroPh.html

[14] A. Ganesh, L. Massoulie, and D. Towsley, “The Effect of Network
Topology on the Spread of Epidemics,” INFOCOM, 2005.

[15] L. Huang, L. Yang, and K. Yang, “Hollowing Strategies for Enhancing
Robustness of Geographical Networks,” EPL (Europhysics Letters),
vol. 72, no. 1, pp. 144–150, 2005.

[16] A. F. Rozenfeld, R. Cohen, D. ben Avraham, and S. Havlin, “Scale-free
Networks on Lattices,” Phys. Rev. Lett., vol. 89, no. 21, p. 218701, 2002.

[17] M. E. J. Newman, I. Jensen, and R. M. Ziff, “Percolation and Epidemics
in a Two-dimensional Small World,” Phys. Rev. E, vol. 65, no. 2, p.
021904, Jan 2002.

[18] X. Wu and Z. Liu, “How Community Structure Influences Epidemic
Spread in Social Networks,” Physica A: Statistical Mechanics and its
Applications, vol. 387, no. 2-3, pp. 623 – 630, 2008.

[19] G. Palla, I. Derenyi, I. Farkas, and T. Vicsek, “Uncovering the Overlap-
ping Community Structure of Complex Networks in Nature and Society,”
Nature, vol. 435, p. 814, 2005.

[20] S. Ni, W. Weng, S. Shen, and W. Fan, “Epidemic Outbreaks in Growing
Scale-free Networks with Local Structure,” Physica A: Statistical Me-
chanics and its Applications, vol. 387, no. 21, pp. 5295 – 5302, 2008.

[21] R. Cohen and S. Havlin, “Scale-Free Networks Are Ultrasmall,” Phys.
Rev. Lett., vol. 90, p. 058701, Feb 2003.

[22] E. Mossel and S. Roch, “On the Submodularity of Influence in Social
Networks,” in STOC ’07. ACM, 2007.

[23] M. Richardson and P. Domingos, “Mining Knowledge-sharing Sites for
Viral Marketing,” in KDD ’02. ACM, 2002.

[24] J. Hartline, V. Mirrokni, and M. Sundararajan, “Optimal Marketing
Strategies over Social Networks,” in WWW ’08: Proceeding of the 17th
international conference on World Wide Web. New York, NY, USA:
ACM, 2008, pp. 189–198.

[25] D. Arthur, R. Motwani, A. Sharma, and Y. Xu, “Pricing Strategies
for Viral Marketing on Social Networks,” in Internet and Network
Economics, ser. Lecture Notes in Computer Science, S. Leonardi, Ed.
Springer Berlin / Heidelberg, 2009, vol. 5929, pp. 101–112.

[26] M. Lelarge, “Diffusion of Innovations on Random Networks: Under-
standing the Chasm,” in WINE ’08: Proceedings of the 4th International
Workshop on Internet and Network Economics. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 178–185.

[27] ——, “Efficient Control of Epidemics over Random Networks,” in
SIGMETRICS 2009. New York, NY, USA: ACM, 2009, pp. 1–12.

Yongkun Li was born in China. He received the
Bachelor’s degree from the University of Science
and Technology of China, Hefei, China, in 2008, and
is currently pursuing the Ph.D. degree in computer
science and engineering at The Chinese University
of Hong Kong, Hong Kong.

His research interests lie in the theoretic topics
of interactive networks such as P2P networks and
online social networks.

Bridge Qiao Zhao received the B.S. degree in
computer science from Tsinghua University, Beijing,
China, and the M.Phil. degree in computer science
and engineering from The Chinese University of
Hong Kong, Hong Kong, and is currently pursuing
the Ph.D. degree in computer science at Standford
University, Stanford, CA.

John C.S. Lui (M’93-SM’02-F’10) was born in
Hong Kong. He received the Ph.D. degree in com-
puter science from the University of California, Los
Angeles, 1992. He is currently a Professor with the
Department of Computer Science and Engineering,
The Chinese University of Hong Kong (CUHK),
Hong Kong. He was the chairman of the Department
from 2005 to 2011. His current research interests
are in communication networks, network/system se-
curity (e.g., cloud security, mobile security, etc.),
network economics, network sciences (e.g., online

social networks, information spreading, etc.), cloud computing, large-scale
distributed systems, and performance evaluation theory.

Prof. Lui is a Fellow of the Association for Computing Machinery (ACM), a
Fellow of IEEE, a Croucher Senior Research Fellow, and an elected member of
the IFIP WG 7.3. He serves on the Editorial Board of IEEE/ACM Transactions
on Networking, IEEE Transactions on Computers, IEEE Transactions on
Parallel and Distributed Systems, Journal of Performance Evaluation and
International Journal of Network Security. He received various departmen-
tal teaching awards and the CUHK Vice-Chancellor’s Exemplary Teaching
Award. He is also a co-recipient of the IFIP WG 7.3 Performance 2005 and
IEEE/IFIP NOMS 2006 Best Student Paper Awards.


