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Abstract—Internet traffic flow measurement is vitally important
for network management, accounting and performance studies.
Cisco’s NetFlow is a widely deployed flow measurement solution
that uses a configurable static sampling rate to control processor
and memory usage on the router and the amount of reporting
flow records generated. But during flooding attacks the memory
and network bandwidth consumed by flow records can increase
beyond what is available. Currently available countermeasures
have their own problems: 1) reject new flows when the cache is
full—some legitimate new flows will not be counted; 2) export
not-terminated flows to make room for new ones—this will ex-
haust the export bandwidth; and 3) adapt the sampling rate to
traffic rate—this will reduce the overall accuracy of accounting,
including legitimate flows. In this paper, we propose an entropy
based adaptive flow aggregation algorithm. Relying on informa-
tion-theoretic techniques, the algorithm efficiently identifies the
clusters of attack flows in real time and aggregates those large
number of short attack flows into a few metaflows. Compared to
currently available solutions, our solution not only alleviates the
problem in memory and export bandwidth, but also significantly
improves the accuracy of legitimate flows. Finally, we evaluate our
system using both synthetic trace file and real trace files from the
Internet.

Index Terms—Data summarization, information theory, net-
work monitoring, traffic measurement.

1. INTRODUCTION

RAFFIC measurement and monitoring are crucial to op-
T erating IP networks, because network administrators need
to have a good understanding of how their networks are used and
misused. Some existing systems operating on relative low traffic
links can perform complex security analysis to reveal malicious
activities [1], [2], or simply capture packet (header) traces to
be analyzed offline. SNMP counters [3] are a simpler solution
more widely deployed on the high-speed links, but they only re-
port the total amount of traffic transmitted on the measured link.
Flow-level measurement, such as done in the Cisco’s NetFlow,!
offers a good compromise between scalability and complexity
since it can offer detail information about the traffic crossing the
network.
The ever-increasing speeds of transmission links and high
volume of traffic present great challenges for flow measure-
ment. The first challenge is at the point of measurement. For
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high-speed interfaces, the processor and the flow memory of
the router cannot keep up with the high packet rate. Another
problem is that the volume of complete measurements of all
traffic requires too many resources, both in the bandwidth re-
quired to transmit the flow records to the collector, and the re-
sources needed to store and process the records at the collector.

These scalability issues motivate using some form of data
reduction. A standard solution is to perform packet sampling.
In Cisco’s sampled NetFlow, the router forms flow reports from
a sampled substream of all packets passing through it. The
problem is that the sampling rate of Cisco NetFlow is usually
set manually by network operators according to the normal
traffic volume in their network. When there is an anomaly in
the network, such as DoS attacks, worm spread, aggressive port
scans or flash crowds, which generates a large number of small
flows, the surge in the number of small flows may overwhelm
the router memory and the export bandwidth to the collector.

Current countermeasures to the above problem include the
following. 1) Reject new flows when the cache is full. In this
case, legitimate new flows will not be accounted for and the op-
erator will lose the flow data. 2) When the cache is full, export
the flow records more aggressively for those non-terminated
flows so as to make room for new ones. The implication of this
action is that the export bandwidth demand will be very high
and may run into trouble at the collector or the way to the col-
lector. 3) Estan et al. in [4] propose a method of adapting the
sampling rate to traffic. This algorithm guarantees a stable flow
cache and export bandwidth even under severe DoS attacks. But
under DoS attacks the sampling rate will decrease to a very low
level, which results in poor overall accuracy in per flow counting
including legitimate flows.

Our solution is to implement adaptive flow aggregation when
the router is running low on memory resource. Note that attacks
usually have some common patterns: DoS attacks often have the
same destination IP address, while worm spreads have the same
source IP address. If we dynamically aggregate the large number
of such small flows into a few flows, then we can alleviate the
problem of memory shortage under attacks. Compared to other
countermeasures, our method has several advantages:

* We do not need to decrease the sampling rate drastically
under attacks, neither would we reject new legitimate flows
because the cache is full. So we significantly improve the
accuracy of legitimate flows.

* Without aggressively exporting the records of non-termi-
nated flows so as to make room for new ones, we avoid
overwhelming the collector.

* Using the flow aggregation results, we can provide network
administrators some useful information to detect DoS at-
tacks and worm spreads.

Therefore, the objective of our system is to identify and

aggregate the abnormal flows while keeping legitimate flows
unaffected when the router is running low on memory under
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abnormal conditions. In more detail, it can be stated as follows.
1) Identify traffic clusters that contain packets of abnormal
traffic, and retain as many key attributes as possible when
merging the flows in these clusters to metaflows. 2) Pick out
the normal flows mixed with abnormal traffic in the identified
clusters. 3) Obtain as high accuracy as possible when estimating
flow statistics of any aggregates of the traffic.

In this paper, we propose an entropy based adaptive flow ag-
gregation algorithm, which meets these requirements satisfacto-
rily. Based on the concept of entropy from information theory,
we keep track of different traffic clusters and use an index, the
Aggregation Priority Parameter (APP), to indicate each cluster’s
priority for aggregation. An efficient algorithm is used to iden-
tify those clusters as well as pick out some large normal flows
belonging to the identified clusters.

The rest of the paper is organized as follows. We describe
background and related work in Section II. In Section III, we
provide the definition of the cluster as well as the properties of
those clusters that we choose to do flow aggregation. We de-
scribe the data structure we use in Section IV. Then, we present
the entropy based flow aggregation algorithm in Section V and
provide some analysis in Section VI. Experimental evaluation
based on the proposed method is presented in Section VII. The
conclusion is given in Section VIII.

II. BACKGROUND AND RELATED WORK
A. NetFlow

NetFlow, first implemented in Cisco routers, is the most
widely used flow measurement solution today. Flows are de-
fined by seven keys: source and destination IP address, protocol,
source and destination port, type of service and input interface.
Routers running NetFlow maintain a “flow cache” to keep
active flows passing through it. When a packet arrives at the
router, the router determines if this packet belongs to an active
flow in the cache. If yes, relevant fields (number of packets,
number of bytes, timestamp of the last packet, etc.) of this flow
are updated. If not, the router inserts a new flow record into the
flow cache. The router will terminate a flow in its cache if any
one of these criteria are met: 1) the interpacket time within the
flow exceeds the inactive timer (15 s is the default); 2) this flow
record had creation time before the current active timer (30 min
is the default); 3) observation of TCP flags (FIN or RST); 4) the
flow cache is full. For those terminated flows, their records will
be exported using UDP to collectors for future analysis.

For high-speed interfaces, Cisco introduced sampled Net-
Flow.2 To the problem of NetFlow generating too much data,
Cisco’s solution is to implement router-based flow aggre-
gation.3 Different aggregation schemes summarize NetFlow
data on the router before the data is exported to the collector,
resulting in lower bandwidth requirement. The IETF working
group IPFIX (Internet Protocol Flow Information eXport) also
recommends aggregating similar flows into one metaflow [5].
Compared to these predefined aggregation schemes, our goal is
to dynamically find flows which form a cluster and aggregate
these flows in real time.

zhttp://www.cisco.com/en/US/docs/ios/ 12_0s/feature/guide/12s_sanf.html

3http://www.cisco.com/en/U S/docs/ios/12_0t/12_0t3/feature/guide/netflow.
html
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B. Related Work

Recently, a number of studies have investigated flow mea-
surement. Estan ef al. in [6] present algorithms that automati-
cally identify large flows. In [7], Choi et al. use adaptive sam-
pling to guarantee that the variance introduced by the variability
of packet sizes does not exceed a predefined limit. The problem
of estimating flow distributions using packet sampling has been
studied in [8] and [9]. There are some flow analysis and visual-
ization tools, such as Flowscan [10] and CoralReef [11].

To deal with traffic surges that exhaust the resources during
abnormal situations, Estan et al. propose adaptive NetFlow [4]
which adapts the sampling rate to traffic. They divide the Net-
Flow operation into measurement bins. They do not terminate
flow records during the bin, but terminate all active flow records
at the end of the bin. They use a maximum sampling rate at
the beginning of each bin, which is determined by the router’s
CPU capability. During the measurement bin, they dynamically
decrease the sampling rate until it is low enough for the flow
records to fit into memory.

Traffic characterization and summary have also being studied
in a number of works. Estan et al. [12] describe a method of
traffic characterization that automatically groups traffic into
minimal clusters of conspicuous resource consumption. In-
stead of using individual flows or other predefined aggregates,
they dynamically define multidimensional traffic clusters, so
that any meaningful aggregate of individual flows is a traffic
cluster. The difference with ours is that their objective is to
present a good traffic report to the network manager, and their
system can be considered as a post-processing system instead
of a real-time one. In [13], Keys ef al. present a system that
computes multiple summaries of IP traffic in real time, to
produce several kinds of hog (sources or destinations that send
or receive many packets, bytes or flows) reports. This system
only provides traffic summaries, but does not keep any original
flow information as Cisco NetFlow does.

Information-theoretic concepts and approaches have been
used to examine a wide variety of networking issues such as
traffic matrix estimation [14] and intrusion detection [15].
Xu et al. in [16] use data mining and information-theoretic
techniques to build behavior profiles of Internet backbone
traffic. In [17], Gu et al. develop a method to detect network
anomalies by comparing the current network traffic against
a baseline distribution. The baseline distribution is estimated
by maximum entropy estimation. Liu et al. in [18] develop an
information-theoretic framework to examine the difference in
information content when measurements are made at either the
flow level or the byte count level, and determine the benefits of
compressing traces captured at a single monitoring point.

III. CLUSTER

A. Defining Clusters

Our mechanism intends to protect NetFlow from over-
whelming the memory and the export bandwidth due to rapid
increases in traffic from one or more traffic aggregates which
we call clusters. The first issue we have to address is how
many distinct fields are used in constructing traffic clusters?
We choose five fields typically used to define a flow: source
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IP address, destination IP address, protocol, source port, and
destination port. For simplicity, we regard these five fields
as four keys: {srcIP, dstIP, srcPort (plus protocol), dstPort
(plus protocol)}, because port numbers are meaningful only
when combined with protocol type. For example, we use
“dstPort = 80, TCP” to represent “dstPort = 80 and protocol
= TCP”. Individual flows are defined by unique values for
each of these four keys, while clusters are defined by unique
values for some of these key values. In other words, values for
these keys can be a single value, or all possible values (we use
* to denote this). For example, a cluster with values {srcIP =
*,dstIP = 210.0.0.3, srcPort = x, dstPort = 80, TCP} repre-
sents all web traffic to the server with IP address 210.0.0.3.

The justification for choosing these four keys to define clus-
ters is that these four keys are consistent with commonly used
keys to define a flow. Additionally, this definition is sufficient for
the existing NetFlow data applications such as network planning
and application monitoring. Among these four keys, the port
numbers and the IP addresses have different sensitivity for the
aggregation process. The reason is as follows. First, almost all
DoS attacks, worm spread, port scan, and flash crowds have ei-
ther a common srcIP or dstIP, but do not always have a fixed port
number. Second, some network applications with a well-known
port number such as web traffic with port 80 are always big clus-
ters in the network, but we have no reason to aggregate them
to a single flow because they are normal traffic and we aim to
maintain more detailed information about these for accounting
purposes.

Clusters are flows with the same value in some combina-
tions of these four keys. We illustrate this using some exam-
ples. In a Smurf attack [19], the attacker sends a forged ICMP
packet to a broadcast address and all receivers respond with a
reply to the spoofed IP address (the victim). The cluster for this
type of traffic can be represented by ICMP packets to the same
dstIP (the victim). In the spreading of the MS-SQL server worm
[20], the infected machine will craft and send packets (usually
using the same srcPort) to randomly chosen IP addresses on port
1434/UDP. A cluster for this type of worm packets will have
the same srcIP (the infected computer) plus the same dstPort
(1434/UDP) and the same srcPort. One can find packets of DoS
attacks often have a common dstIP (sometimes with a common
dstPort). Packets of worm spreads often have the same srcIP
(sometimes with a common dstPort). Packets of port scans usu-
ally have a common dstIP (sometimes with a common srcIP).
Besides these flooding attacks, another network behavior which
may cause NetFlow to run out of memory is flash crowds. While
its purpose is quite different from DoS attacks, from the network
operator’s perspective, these two cases are quite similar. Similar
to the DoS attack, a cluster can be defined for packets with the
same dstIP (and maybe with the same dstPort).

Based on the above analysis, we regard srcIP and dstIP as
more important than the other two keys. So for defining clus-
ters we only consider combinations which at least contain the
same srcIP or dstIP. In other words, we would not consider a
cluster which only has the same srcPort, and/or the same dst-
Port. Among the 16 arbitrary combinations of four keys, we
would not consider a) clusters with no key or b) clusters with all
four keys, and we also ignore the cases like c) clusters that only
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TABLE 1
COMBINATIONS OF FOUR KEYS AND SOME EXAMPLES
combinations examples
srcIP most worms
dstIP smurf attack ([19])

srcIP + dstIP
srcIP + srcPort

most portscans

response from syn flooding victim;
response from flash crowds web server
W32/Blaster worm ([21])

N/A

syn flooding attacks ([22]);

WWW flash crowds

response from non-IP-spoofing syn flooding
non-IP-spoofing syn flooding attacks
MS-SQL server worm ([20])

DNS flash crowds

srcIP + dstPort
dstIP + srcPort
dstIP + dstPort

srcIP + dstIP + srcPort
srcIP + dstIP + dstPort
srcIP + srcPort + dstPort
dstIP + srcPort + dstPort

have srcPort, d) clusters that only have dstPort, and e) clusters
that only have srcPort plus dstPort. Finally, we get 11 combi-
nations. These combinations and their corresponding examples
are shown in Table I.

B. Properties of Desired Clusters

After describing what constitutes clusters, we discuss some
properties of the desired clusters, which are related to the ob-
jectives of our flow aggregation algorithm. In this section, we
discuss these objectives in detail, and thus derive the properties
of the clusters that we choose. We use the concept of entropy
to express these properties and propose our entropy based flow
aggregation algorithm.

1) Identify Clusters Containing Abnormal Traffic: We intend
to protect NetFlow from overrunning resources under abnormal
traffic. So the first objective is to identify clusters containing
those abnormal traffic. Anomaly detection is an interesting topic
for its own sake. We are not trying to construct a system to detect
anomalies, but protect NetFlow under anomalies by aggregating
flows most likely containing those abnormal traffic. We have
described in Section III-A that we focus on clusters of 11 kinds
of combinations. Other properties of the clusters that contain
abnormal traffic include: 1) the number of flows in the clusters is
usually large enough to be a problem; 2) the size of the flows (the
number of packets or bytes) is often much smaller than normal
flows; and 3) some keys other than the fixed value, such as srcIP
in DoS attack traffic, dstIP in worm spreading traffic and dstPort
in port scan traffic, are often randomly or uniformly distributed.
The first objective of flow aggregation is to identify clusters with
these properties.

2) Retain as Many Key Attributes as Possible: When we per-
form flow aggregation, if we merge all flows in the big cluster
with a fixed srcIP/dstIP into one metaflow, we only retain one
of the key attributes (the fixed srcIP/dstIP) for these flows, and
no longer keep track of the other three key attributes. Merging
flows will cause accuracy loss in flow measurement for those
key attributes that are not retained. If we can find a smaller and
more specific cluster in this big cluster, we can retain more key
attributes. For example, in Fig. 1, cluster A is a big cluster with a
fixed srcIP, while cluster B is a smaller and more specific cluster
which contains worm spreading traffic from this host. If we
choose cluster B (worm spreading traffic) instead of cluster A
(total traffic) to do aggregation, we keep track of not only the
srcIP but also the dstPort. We define level 1 (L1) cluster as the
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srclP = 137.8.6.5
dstPort = 1434

srclP = 137.8.6.5

Cluster A (L1)
N=100

Cluster B (L2)
N=280

srcIP = 137.8.6.5
dstIP = 138.0.0.2
dstPort = 1434

srclP = 137.8.6.5
dstPort = 80

Fig. 1. Example of clusters. NV is the number of flows in each cluster.

biggest cluster which has either the same srcIP or dstIP, such as
cluster A, define level 2 (L2) clusters as the clusters which have
fixed values in two dimensions, such as cluster B and E, and de-
fine level 3 (L3) clusters as the clusters which have fixed values
in three dimensions such as cluster D. The higher the level of
the clusters chosen for aggregation, the smaller the loss in accu-
racy.

3) Pick Out the Larger Flows: If there are several big flows
(in terms of bytes or packets) in the identified cluster, we would
pick them out. The first reason is that the size of attack flows is
often much smaller than that of normal flows, so the big flows in
the identified cluster may be normal flows. Secondly, as stated in
[23], the omission or inclusion of a bigger flow can have a large
effect on estimated total traffic. So we would pick out the big
flows from the identified cluster and let them retain all the four
key attributes. Because some flows or higher level clusters are
picked out, the concept of cluster is extended to the remaining
flows in the original cluster. For example, in Fig. 1, large flow C
and L3 cluster D are picked out from L2 cluster B, the remaining
flows in cluster B can also be considered as a cluster F' :=
B-C-D.

4) Maintain High Accuracy for Most Aggregates: Network
operators are often uninterested in a single flow, but interested
in the aggregates of some flows. For instance, they would like to
know how much web traffic is on their link, or which hosts gen-
erate the most traffic. These aggregates or clusters often have
some significant attributes such as the top applications (port) or
hosts (IP). One method to maintain high accuracy for the ag-
gregates that network operators are interested in is to avoid ag-
gregating large flows, as mentioned above. From another point
of view, in the clusters that are aggregated, no flow should be
significant or stand out from the rest; all flows are nearly indis-
tinguishable.

IV. DATA STRUCTURE

First, we take fprobe [24] as an example to illustrate the
data structure in ordinary NetFlow process. Fprobe is a
libpcap-based tool that collects network traffic data and emits
it as NetFlow flow records towards the specified collector. The
data structure used to store active flows in this software is a
hash table, in which flows are indexed by hash values of their
flow ID. The number of flows is often larger than the length of
the hash table (in fprobe, there are two choices for the length,
256 and 65536), so two or more flows can be computed to the
same hash value. A linked list is used to store flows of this kind
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Fig. 2. The data structure for adaptive flow aggregation: a two-dimensional
hash table. Node A, B, ... X,Y are flows. Flow A’s srcIP is 137.8.6.5 and its
dstIP is 120.0.0.1. Flow S’s srcIP is 202.75.1.7 and its dstIP is 120.0.0.1.

of hash collisions. As we have mentioned in Section III-A, we
assume flows are defined in terms of four keys, srcIP, dstIP,
srcPort, and dstPort. When a packet arrives, the system first
computes a hash value H 4 on its flow ID (the four keys) using
a hash function, H4 = Hash(srcIP, dstIP, srcPort, dstPort).
Then the system finds out H 4 in the hash table and looks at
every flow in the list with H 4, to determine which flow this
packet belongs to, or creates a new flow entry if the packet does
not belong to any existing flow.

We need a new data structure for our flow aggregation, which
is a tradeoff. If we use a simple data structure like a hash table
with linked list as mentioned above, it will be inefficient to ag-
gregate flows in a cluster, which needs to traverse every node in
the hash table. We need to put flows which are more likely to be
aggregated later closer. On the other hand, if we use a compli-
cated data structure like the multidimensional tree in [12], it will
use excessive memory, and bring too much overhead to normal
flow operations like flow look up.

Our data structure is as shown in Fig. 2. The data structure is
a two-dimensional hash table. One dimension of the hash table
is H 4, the hash value based on a flow’s srcIP (the left table of
hash number from 0 to 65535). The other dimension is H 44,
the hash value based on a flow’s dstIP (the top table of hash
number from 0 to 65535). H 4 of a packet is computed based
only on its srclIP, instead of its flow ID of the four keys, that is,
H 4 = Hash(srcIP). Similarly, H 44 = Hash(dstIP).

Take srcIP as an example, packets with the same srcIP will
definitely be mapped to the same H 45, on the other hand,
packets with different srcIPs may be mapped to the same H 4
because of hash collision. Each H 4, node has a linked list,
which consists of all srcIPs mapped to this H 4. For instance,
srcIPs of 137.8.6.5, 202.75.1.7, and 210.70.1.4 are all mapped
to Hs = 115. In addition, every srcIP node has a linked list,
which consists of all flows with this srcIP. The dstIP dimension
of the hash table has a similar structure. Each H 44 node has
a linked list, which consists of all dstIPs mapped to this H 4.
We only consider clusters containing a fixed srcIP or dstIP, so
we compute the hash value based on these two fields. In the
srcIP/dstIP list, we put flow ID nodes sorted by dstIP/srcIP.
This data structure makes it easier to find flows in one cluster.

In the data structure, every IP node has a counter to indicate
the number of flow nodes with this IP address. With this counter,
we can easily get a fop list for the IP addresses with the largest
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flow numbers. Entries in the top list have a flow counter and
a pointer pointing to the corresponding IP address node. Now
the problem is that the top list is only for srcIP/dstIP, not for all
combinations. The flow aggregation algorithm is to identify the
desired clusters from these L1 clusters in the top list.

V. ENTROPY BASED FLOW AGGREGATION ALGORITHM

In this section, we describe our entropy based flow aggrega-
tion algorithm. We first illustrate a simple flow aggregation algo-
rithm in Section V-A. Then we introduce the concept of entropy
to the problem of flow measurement in Section V-B and define
a parameter named APP in Section V-C. The detailed descrip-
tion of the entropy based flow aggregation algorithm is given in
Section V-D. Finally, we discuss flow aggregation and export in
Section V-E.

A. Simple Flow Aggregation Algorithm

Before describing our entropy based flow aggregation algo-
rithm, we first illustrate a simple flow aggregation algorithm,
which was proposed and described in [25]. We define my,ax as
the memory usage that triggers aggregation and mq.s as the de-
sired memory usage after aggregation. When the memory usage
reaches my,x, the system will identify some clusters and merge
all flows in one cluster to one metaflow, thus reduce the memory
usage to mges. It looks at every L1 cluster in the top list to find
out if there is one or more L2 or L3 clusters inside this L1 cluster
(e.g., L2 cluster B/E and L3 cluster D inside L1 cluster A in
Fig. 1). A threshold r defines the minimum size (the number of
flows in a cluster) of these identified L2 and L3 clusters. Among
all identified clusters, the higher level ones have the higher pri-
ority to do aggregation. Among all clusters in the same level,
the bigger ones have the higher priority. We choose these iden-
tified clusters one by one from high priority to low priority to
do aggregation, until the memory usage is reduced to 1mges. This
simple flow aggregation algorithm can only meet some of the re-
quirements discussed in Section III-B, such as keeping as many
key attributes as possible. More details of this algorithm can be
found in [25]. In the rest part of this section, we will introduce
the entropy based flow aggregation algorithm, which meets all
the objectives discussed in Section III-B.

B. Entropy

Entropy is a measurement of uncertainty of a random vari-
able. Consider a random variable X that may take Nx discrete
values. Suppose we randomly observe X for m times, then the
empirical probability distribution on X is p(x;) = m;/m,z; €
X, where m; is the number of times we observe X taking the
value z;. The empirical entropy of X is then defined by

H(X) == > p(z:)logp(z;). (1)

r; €X

It is clear that 0 < H(X) < Hpax(X) = logmin{Nx,m}.
The above are stand/grd results from [26]. We define the nor-

malized entropy as H(X) = (H(X)/Humax(X)). If H(X) =
0, then all observations of X are the same, i.e., p(z;) = 1
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for some z; € X.If H(X) = 1, then the observations have
the highest degree of uncertainty or randomness, i.e., p(x;) =
1/ min{N,,m} for each observed z;.

Now we introduce the concept of entropy to our problem of
flow measurement. We first define several variables about the
properties of flows in a given cluster.

¢ X:arandom variable that denotes one of the four dimen-

sions (srcIP, dstIP, srcPort and dstPort);

o A = {x1,...,x,}: the set of distinct values in X (e.g.,

srcIP) that the observed flows take;

e N: the total number of flows in the cluster;

e N;: the number of flows that take the value x;;

* ps(z;) = N;/N: the empirical probability distribution of

X (in terms of flows);

* H¢(z;): the empirical entropy of X (in terms of flows);

. H #(z;): the normalized entropy of X (in terms of flows);

* B: the total number of bytes in the cluster;

e B;: the number of bytes that take the value z;;

* pp(z;) = B;/B: the empirical probability distribution of

X (in terms of bytes);

* Hp(z;): the empirical entropy of X (in terms of bytes);

. Hp (z;): the normalized entropy of X (in terms of bytes).

In the first part of our algorithm, we only look at the flow
distribution in the given cluster. We use p ¢ (z; ) as the probability
distribution of X and H s(x;) as the entropy of X . In the second
part, we differentiate between big flows and small flows. We use
pa(z;) as the probability distribution of X and Hpg(z;) as the
entropy of X.

Consider the example in Fig. 1, 100 flows form a L1 cluster
with a fixed srcIP. Then the entropy of dimension SrcIP is
H;(X) = 0 because all 100 observed flows have the same
srcIP. Assume all flows have different srcPort, then its entropy
with respect to number of flows is Hf(X) = 1. As to the
dimension of dstPort, there are two significant values with the
probability distribution of p(1434) = 0.8 and p¢(80) = 0.1.
Assume the other 10 flows have different and unique dstPort,
then the entropy of dimension dstPort is H #(X) = 0.2. From
this example one can conclude that entropies of these four
dimensions are good indicators of their degree of uncertainty or
randomness. It tells us if there are some significant values that
stand out from others or all values are randomly distributed.

C. Aggregation Priority Parameter

We call those dimensions that have more than one value (e.g.,
the dstIP and srcPort of cluster B) random dimensions, and those
dimensions which have one fixed value (e.g., the srcIP and dst-
Port of cluster B) fixed dimensions. When we merge all flows in
a cluster into one metaflow, we only retain the fixed dimensions,
and no longer keep track of the random dimensions. Among all
clusters in Fig. 1, intuitively, we should choose cluster B to do
aggregation because it meets most of the aggregation objectives.
First, cluster B contains enough flows compared with cluster D
and E. Second, the degree of randomness of its random dimen-
sions is large compared with cluster A. Third, cluster B contains
one more dimension (dstPort) than cluster A.

We use the APP to characterize these properties of cluster B.
For the four dimensions of a cluster, assuming R = { all the
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random dimensions } and F' = R = { all the fixed dimensions
}, then APP is defined by

APP; = Min{H(X;)|X; € R}. )

The larger the APP of a cluster, the higher priority this cluster
would be given to be aggregated. The APP is a direct indicator
of those clusters we want to aggregate because high APP means
that the number of flows in the cluster is large, and that the en-
tropy with respect to the individual random dimensions is large,
and hence there are no individually significant flows with re-
spect to these dimensions. Note that we use H y(X;) rather than
the normalized entropy H #(X;) because we should choose the
cluster that has enough flows.

What is the relationship between these two properties, degree
of uncertainty and the number of flows in the cluster? Suppose
there is a Ly cluster with a smaller L1 cluster inside it. The
number of flows in the Ly (Lg41) clusteris Ni, (Ngy1), respec-
tively. Assume everything is randomly distributed except there
is asmaller Ly cluster inside the big Ly, cluster. Then the APP
values of the Ly and the L;, clusters are

APP(k + 1) = log Ny41

Ni N,
APP (k) = — ]’;:1 log ]’\“[:1
Np—Npgr, 1
- log — .
N, 8 . 3)

We would choose the Lyy; cluster if APP¢(k + 1) >
APP (k). Given a Ny, we can get a threshold 6 from (3). If
Nit+1/Ni > 6, then APP¢(k + 1) > APP (k). For example,
when N, = 1000, § = 0.25. Hence, the smaller cluster would
be chosen if the size ratio Ni11/Nj > 0.25. In other words,
when the size of the smaller cluster reaches 0.25 of the bigger
cluster, it is too significant to be ignored. The threshold 6
decreases as the value of Ny, increases. In Fig. 1, the size ratio
of cluster B and cluster A is 0.8, so it is too significant to be
ignored.

As we have mentioned in Section III-B, if there are several
big flows in the identified cluster, we would pick them out. To
do this, we further define APP (in terms of bytes) as

APPp = Min{Hp(X;)|X; € R}. “)

High APPp means there will be no flow much larger than
other flows in the identified cluster. Now we assume all flows
in cluster B have the same size except flow C, whose size is 10
times of that of other flows. Cluster D has 10 flows with the same
dstIP. Then APP(B) = 5.73.If we pick out flow C and cluster
D, the APP of cluster F' := B — C — D is APPg(F) = 6.11.
Among all clusters in Fig. 1, cluster F has the highest APPp.
Under this condition, we would choose cluster F to do aggre-
gation. So what the flow aggregation algorithm should do is to
find out cluster F among all subclusters of cluster A.

D. Algorithm Description

As mentioned in Section IV, we maintain a top list for the IP
addresses with the largest flow numbers. From the top list, now
we have several big L1 clusters with fixed srcIP or dstIP. The
entropy based flow aggregation algorithm is to find out every L1
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Fig. 3. Example of the procedure for finding out desired subclusters.

cluster’s subclusters that have the largest APP, just as finding out
subcluster F in L1 cluster A. We call them desired subclusters.
These desired subclusters could not be subordinate to or overlap
with each other. Among them, the subcluster whose APP is the
largest will be chosen. However, if several subclusters do not
contain or overlap with each other (we call them distinct clus-
ters) and have similar APP, they would all be identified.

1) First Step: Find Out the Subclusters With the Highest
APP¢: The first part of this algorithm iteratively computes
APP for each level of clusters and finds out those subclusters
with the highest APPy, just as finding out cluster B in Fig. 1.
Fig. 3 illustrates an example of this procedure. The procedure
starts from a L1 cluster C'1 with a fixed srcIP, whose three
random dimensions are sorted by their entropy in ascending
order, dstPort, dstIP and srcPort. The reason for this reordering
is that the lower the entropy of one dimension, the higher the
possibility that there is a big subcluster in this dimension. For
example, in Fig. 1, dimension dstPort has a big subcluster B.
Looking at dimension dstPort given srcIP = al, we find out
all L2 clusters such as C'21 and C'22 whose flow numbers are
greater than a threshold f,.. If any one of these L2 clusters
has a larger APPy than its parent cluster C'1, this L2 cluster
will replace cluster C'1 to become one of the candidates of the
desired clusters. We also zoom in on the L3 subclusters of each
L2 cluster. Take C'21 as an example, it has two random dimen-
sions sorted by entropy. We find out those L3 clusters such as
C31, C32, and C33, whose flow numbers are greater than f,,
and compute APP of these clusters. If any one of these L3
clusters has a larger APP than its parent and the L1 cluster,
it will replace them to become one of the candidates. After
examining all the subclusters in the three random dimensions,
we get a list of candidates for the desired subclusters, which are
distinct clusters with similar APP .

The complexity of this procedure largely depends on the
threshold f,.. The higher this threshold, the less subclusters we
need to examine. To dynamically adjust f,., we maintain an
APP .« which represents the current maximum APP value
of all clusters that we have examined. We have noted that the
maximum APP; of a cluster equals to log N, where NN is the
number of flows in this cluster. We can set f, = 247Pmax and
only examine those subclusters whose number of flows greater
than f,., because only these subclusters have the possibility
to have APPy values larger than APP ... To finally find
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out several distinct clusters with similar APP¢, we can set
fr =k % 24PPmax where 0 < k < 1.

Algorithm 1. Finding out subclusters

Input: Cluster C'(D), where D = {srcIP} or {dstIP}
Output: subclusters of high APP: CList
FindSubCluster (C){
1. compute C.APP ¢
2. initialize CList, APP yax, fr
3. R = T\D, where T' = {srcIP, dstIP, srcPort, dstPort}
4.sort Rto R = {r;|H(ro) < H(r1) < H(r2),0 <3 < 2}
5. fori=0to2

L2 = {Si|Sk(D U {r;}),Sk.N > f,.}

6

7.  for every Sy in L2

8 compute Sy. APPy
9

Update APP 0%, fr

10. G = R\{r;}

11 sort G to G = {g;|H(go) < H(g1),0 <j <1}
12. forj =0tol

13. F=DuU{r;}U{g;}

14. L3[j] = {SSi|SSi(F),SSi.N > f.}

15.  for every SSS; in L3[j]

16. compute SS;. APP ¢

17. Update APP ax, fr

18.  end for

19.  end for

20. list[¢].append (MaxAPP (S, L3[0], L3[1]))

21.  end for

22. CList = MaxAPPDistinctCluster (CList, list[i])
23.  end for

24.  for every C'p in CList

25. GetMaxEntropySubset (Cp)
26. end for

27. reorganize (CList)

}

Algorithm 1 represents the algorithm for finding out desired
subclusters from the original L1 cluster. The input to the func-
tion is an L1 cluster C' with fixed dimension D. The output of
the function is CList, a list of subclusters with the largest APP.
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Line 1 to 23 of the function describe the first step of the algo-
rithm. Line 1 to 4 are the initialization steps including setting the
initial value of APP .y to C.APP f, computing corresponding
fr, setting CList to C, and sorting R by entropy in ascending
order, where R is the three random dimensions of C'. As shown
in line 5 to 23, we examine the three random dimensions one by
one to get a list of candidates with the highest APP ¢. First, in
line 6, all L2 subclusters Sy, are put into L2. These Sy, have fixed
dimensions DU{r;} and have flow numbers greater than f,.. The
two random dimensions of Sy, are represented by G. In line 7 to
21, every Sy is zoomed in on its L3 subclusters L3[j], which
have three fixed dimensions represented by F'. In line 20, the
L2 subcluster Sy, or one or several L3 subclusters from L3[0],
or from L3[1] are chosen and appended to list[¢], depending on
which one has the highest APP ;. In line 22, subclusters in list []
are appended to CList as long as they are distinct clusters and
have similar APP; with the highest one.

2) Second Step: Pick Out Big Flows From the Candidates:
Until now, we have not differentiated between big and small
flows. The second step is to pick out big flows from these can-
didates, such that the remaining subset has the highest APPp,
e.g., cluster F'in Fig. 1. We call it the maximum entropy subset.
After we extract the maximum entropy subset from each candi-
date, they will have the new A PP g, which are different from the
original APP ;. Atlast, we reorganize the list by removing those
subclusters whose new A PP g are not at the same level with the
subcluster having the highest A PP . This part is shown in line
24 to 27 of Algorithm 1.

Algorithm 2. Finding out the maximum entropy subset

Input: cluster C with random dimensions rd
Output: maximum entropy subsets of cluster C
GetMaxEntropySubset (C, rd) {

1. d = MinEntropy(C, rd)

2.sort C to {S;]Si(d), Bi—1 < B;,1 <1 < X4}
3.3 F=0H,=0k=0;R=0

4. fori =1to Xy

5 P, = B/ ¥4 B

6 R=R+ P

7. E=F—-PFlogh;

8 H =E/R+ logR

9 if(H >Hy) He=H'; k=1
10.  endfor

11. return k, Hy,

}

We use Algorithm 2 to find the maximum entropy subset of a
cluster C. First, we compute H g for every random dimension of
C, and set d to the dimension with the minimum entropy (line
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1). After that, all flows in C are sorted to {S;|S;(d), B;—1 <
B;,1 <i< X4} (line 2). X is the number of different values
in dimension d. S; is the set of flows which have the same value
in dimension d. Let B; be the total number of bytes of all flows
in S;, and these S; are sorted in ascending order of B;.

The entropy of dimension d of cluster C is Hg =
— Y Pilog P, where P = B;/ Y% B;. We want
to pick out some biggest {S;,k + 1 < i < Xy} and let
the remaining {S;,1 < ¢ < k} be the maximum entropy
subset. Sometimes the maximum entropy subset is gener-
ated by picking out the smallest S;. We do not consider this
condition because we only need to pick out big flows. Let
R = Zle P, then the entropy of {S;,1 < i < k} is
Hy, = =% (P;/R)log(Pi/R) = Ex/R + log R, where
E,=-Y +—1 P log P; is the part that the subset & contributes
to Hp. Having this relationship, we can find out the maximum
entropy subset by going through these S; only once, as de-
scribed in line 3 to 10. The output are k and Hy, that is to say,
the maximum entropy subset is {.S;, 1 < ¢ < k} and its entropy
is Hk.

E. Flow Aggregation and Export

After the algorithm identifies the desired subclusters, the
system merges all flows in one desired subcluster to one
metaflow. If there are several desired subclusters with similar
APP, we get one metaflow from each subcluster. If the desired
subcluster is like cluster F' := B — C — D in Fig. 1, then all
flows except flow C that are in cluster B but not in cluster D are
merged to one metaflow, while flow C and the flows in cluster
D are not modified.

The metaflow keeps the values of fixed dimensions of the
cluster and set the values of random dimensions to *, denoting
all possible values. Other attributes of this metaflow are similar
to those defined in [5]: the packet/byte count is the sum of the
number of packets/bytes of all aggregated flows, the timestamp
of the first packet (create time of the metaflow) is the minimum
of this timestamp of all aggregated flows, and the timestamp of
the last packet (modify time of the metaflow) is the maximum
of this timestamp of all aggregated flows.

When a packet arrives, the system determines if this packet
belongs to an active flow. For a metaflow, only fields of an exact
value are compared with corresponding fields of the packet.
For example, if a metaflow is (srcIP = x, dstIP = 210.0.0.3,
srcPort = *, dstPort = 80, TCP), then all following packets
of web traffic to the server with IP address of 210.0.0.3 will be
regarded as belonging to this metaflow. The metaflow will be
terminated and exported as other normal flows when the termi-
nation criteria are met, including inactive timer and active timer.
Note that the criteria based on certain TCP flags would not be
used, because these flags indicate the termination of only one
flow but not the metaflow.

When new packets do not belong to any active flow but
belong to one metaflow, the number of packets and bytes of
this metaflow will be updated. So we can get accurate packet
and byte counts for the metaflow. The number of flows of
the metaflow cannot be counted directly because we must
distinguish between packets belonging to the old and the
new flows and increment the flow counter only if the flow
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is new. We use the multiresolution bitmap algorithm which
was proposed in [27] to estimate the number of flows. Before
merging flows in one cluster to a metaflow, the system creates a
multiresolution bitmap, and maps all flow IDs in this cluster to
the bitmap. Whenever a new packet is determined to belong to
this metaflow, the system will map its corresponding flow ID to
the bitmap. We can get quite accurate result for the estimated
number of flows if we use a large enough bitmap. Because
there will not be too many identified clusters, the memory
requirement and the processing overhead are acceptable.

VI. ANALYSIS

In this section, we analyze the algorithm proposed in this
paper (entropy based flow aggregation), and compare it with
other solutions including: 1) NetFlow without memory con-
straint (basic NetFlow); 2) NetFlow which rejects new flows
when the cache is full (rejecting NetFlow); 3) NetFlow which
exports more aggressively when the cache is full (exporting Net-
Flow); 4) adaptive NetFlow (proposed in [4]) that adapts the
sampling rate to traffic; and 5) the simple flow aggregation al-
gorithm proposed in [25]. We take the implementation of fprobe
as an example of basic NetFlow.

A. Resource Requirement

First, we analyze the resources required by the algorithms.
The key resource measures include the size of flow memory,
the size of export bandwidth, and CPU utilization.

1) Flow Memory: Because of our modified data structure,
our algorithm uses a bit more memory than basic NetFlow. As-
sume S is the size of a flow entry, S;;, is the size of an IP Node
in Fig. 2. Considering the worst case, every flow entry has dif-
ferent srcIP and dstIP, then our algorithm uses (Sy 4+ 2 % Sy, +
4)/Sy times memory of basic NetFlow. 4 denotes we use one
more pointer in the flow entry. Sy is around 64 bytes, S,; is
around 10 bytes (two pointers and one counter). So our data
structure uses 1.4 times the memory of basic NetFlow in the
worst case.

Besides the memory used for storing active flows, entropy
based flow aggregation uses additional memory when it does
flow aggregation. The first one is the temporary memory used
in identifying the desired subclusters for each L1 cluster. As-
sume the L1 cluster has NV flows, the system uses a linked list to
store the information of all the flows that belong to this cluster,
which includes a pointer to this flow. Because we need to sort
all the flows in this cluster when we compute entropy, we use
this linked list to store the sorted flow information. Assume the
size of a node in this linked list is S;, then the total memory
needed for each cluster is IV * S;. This memory will be freed
after we identify the desired subclusters in this cluster, so the
peak memory is Nmax * Sf;, where Ny is the maximum flow
number of all the L1 clusters. S¢; can be 8 bytes if each node in
the linked list only stores a pointer to the flow and a pointer to the
next node. The second one is the memory used in the bitmap al-
gorithm for counting the flow number in every metaflow, which
is O(10g(Nmeta)), where Nyeta is the flow number in each
metaflow. This part of memory is not freed until this metaflow
is terminated and exported.
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Adaptive NetFlow may also use more memory than basic
NetFlow. The algorithm divides the NetFlow operation into
measurement bins. A fixed size of the measurement bin could
be a problem, because its optimal size depends on the traffic
mix. If the measurement bin is too large, it keeps many short
flows unnecessarily long in the memory cache, and uses more
memory than necessary. If the memory is bounded, then the
adaptive algorithm decreases the sampling rate lower than
necessary, and sacrifices the accuracy of all flows. On the other
hand, if the measurement bin is too small, it splits many long
flows to several flows, hence increases the export bandwidth
and burdens the collector. Once adaptive NetFlow fixes the size
of the measurement bin, how much memory that it uses more
than basic NetFlow depends on the traffic mix.

2) Export Bandwidth: Besides memory, another main re-
source constraint is export bandwidth. Our algorithm uses either
the same or less export bandwidth than basic NetFlow. Its ex-
port bandwidth is the same as basic NetFlow when the system
does not aggregate flows, and less than basic NetFlow when it
performs aggregation. Exporting NetFlow may use a very high
export bandwidth, and may flood the collector. In adaptive Net-
Flow, a router operator specifies the reported number of flow
records M desired for each measurement bin, the algorithm
guarantees this fixed export bandwidth by decreasing the sam-
pling rate.

3) CPU Utilization: We first describe the overhead to normal
flow operations, that is, update the flow cache when new packets
come in and periodically check the flow cache looking for ex-
pired flows. In extreme conditions, if a large part of flows have
the same srcIP or dstIP, then the corresponding IP node list will
be so long that it would slow down flow lookup. Actually we
can define a threshold, and when the length of the IP node list
reaches this threshold it triggers aggregation. As mentioned in
Section IV, we maintain a top list for the IP addresses with the
largest flow numbers. Another overhead to normal flow opera-
tions is to maintain this top list. Every time we create or delete a
flow entry, we need to update the top list. However, the max-
imum number of the top list is not large (20 or even less is
enough). In addition, We need some extra processing to find
out the desired subclusters for every L1 cluster. The complexity
of this algorithm is O(NN?), where N is the number of flows
in the L1 cluster. The detailed complexity analysis is given in
Appendix A.

B. Accuracy

Various network anomalies all tend to generate excessive
number of flows, often exceeding the resource constraints of
traffic monitors. Most countermeasures need to give up some
accuracy in traffic capturing. For example, one countermea-
sure is rejecting NetFlow that rejects all new flows when the
cache is full. Another countermeasure is adaptive NetFlow
that automatically chooses a lower sampling rate during a DoS
attack. While this measure degrades the system gracefully
during attack, it unfortunately affects the accuracy of all flows
collected. Sometimes the bottleneck is not the netflow (in the
router), but the flow export process, especially in exporting
NetFlow. Accuracy can be lost in two ways: 1) routers export
NetFlow records to the collector using UDP and flow records
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are lost due to congestion; 2) the post-processing analysis and
visualization tools cannot keep up with this avalanche of flows.

When comparing with those countermeasures that lose
flows during heavy load, the superiority of flow aggregation is
easily established. The comparison of flow aggregation against
adaptive Netflow, however, is hard to quantify. By lowering the
sampling rate, adaptive Netflow will lower the accuracy of all
flows with equal probability; hence all kinds of aggregates (by
ports, IP addresses, etc.) also lose accuracy proportionally. On
the other hand, flow aggregation uses a lower resolution only
for some, but not all clusters, so loss of accuracy for different
aggregates is quite different. The loss of accuracy brought by
flow aggregation depends on how aggregation is performed
and whether the network operators care about the details lost
during aggregation. If the dimensions that we discard during
aggregation are included in the dimensions network operators
are interested, then there is loss of accuracy; otherwise, there
is effectively no loss of accuracy. For example, if we identify
and aggregate a cluster of fixed dstIP plus dstPort, then we still
get accurate results for protocol and application breakdowns,
and the destination host. However, if the network operators are
interested in the srcIP or srcPort of this traffic, they cannot get
the accurate statistics of these two dimensions. We compare
the accuracy of entropy based flow aggregation with other
solutions by experiments, described in Section VII.

C. Practical Considerations

Often the reason for abnormal traffic conditions is due to
security attacks and such attacks often have some common
patterns. So our algorithm can relieve the resource overload
by identifying these traffic clusters and aggregating these
large amounts of short flows into a few flows. Sometimes,
the overload may be caused by undifferentiated traffic not
dominated by any particular cluster, e.g., a shift in load caused
by link failure or routing change. In this situation, even if we
aggregated all L1 clusters, the memory which will be freed may
still not satisfy the requirement. In other words, our solution
cannot deal with this case. From this point of view, our solution
should be considered as a way to complement other current
solutions, rather than completely replace them. If our algorithm
fails to find appropriate clusters, we conclude that the traffic
is undifferentiated and take other actions such as in rejecting
NetFlow, exporting NetFlow, or adaptive NetFlow.

Another problem is that the traffic from a busy web server
may be identified as the desired cluster by our algorithm. So if
there are links in the network that are dominated by particular
clusters in the normal case, network operators can use policy
to protect such clusters, resulting in the algorithm looking for
other clusters or performing aggregation only when they exceed
their policy defined limits. If there is a flash crowd to a server,
it will be very similar to a DoS attack from the point of view of
our system. Then the flows of this flash crowd will be identified
and aggregated when they exceed the limits defined by network
operators.

VII. EXPERIMENTAL EVALUATION

In this section, we evaluate different solutions by running
them on synthetic and real trace files. These solutions include
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basic NetFlow, rejecting NetFlow, exporting NetFlow, adaptive
NetFlow, simple flow aggregation, and entropy based flow ag-
gregation. We first present our experimental setup, and then give
out evaluation results on different trace files.

A. Experimental Setup

We first present our metrics and experimental datasets. For
a given cluster, assume ny, n,, np are the number of flows,
packets and bytes of this cluster. This given cluster can be any
traffic aggregate that network administrators are interested in,
e.g., all the traffic sent from a specific host. Basic NetFlow can
get accurate values of these numbers, while the estimated values
from other solutions will be different from the accurate ones.
Different solutions use different amounts of resources and have
different accuracy. We use the following metrics to evaluate
these solutions:
* memory usage—memory used at the observation point;
» export bandwidth—number of flows exported during the
previous 2 minutes;
* relative error—average error for byte, packet, or flow esti-
mates

1 e [ n%

relerr; = | — E 21
m n;
i=1 J

1<i<m, j=fpB.

)

Equation (5) is used to compute the relative error of a given
solution. We repeat the experiment for m times, n;c n;, and

—

n} are the estimated value for the number of flows, packets and
bytes in the ¢th experiment of this solution.
The data sets that we measure different solutions are the fol-
lowing.
* “Synthetic”’—a synthetic trace file generated by CSIM;
* “DarpalDE”—the training data of the 1998 DARPA Intru-
sion Detection Evaluation;
e “CaidaOC48”—a 30 min trace of the traffic on an OC48
IP backbone link, provided by Caida.

B. Resource Evaluation on Synthetic Trace File

We use CSIM, a general purpose discrete-event simulator, to
generate a synthetic trace file. During the observation time of
5400s, there are seven types (A, B, C, D, E, F, G) of flows.
Flows of each type arrive as a Poisson process, and the inter
flow time is exponentially distributed with mean ¢;. In every
flow, the packet arrival is also Poisson, and inter packet time is
exponentially distributed with mean 7;. The number of packets
for every type of flow is uniformly distributed in a range [l;, h;].
The characteristics of these seven types of flows are shown in
Table II. Flow E is a simulated DoS attack, all flows of type
E have the same dstIP and dstPort. It does not last during the
whole duration of 5400s, but starts at 2700s and ends at 3700s.
Flow F is a simulated worm spread, all flows of type F have the
same srclIP. It starts at 2000s, and ends at 4000s. Flow A, B,
C, D, and G are simulated normal traffic, they last during the
whole duration. ¢, 7, [, and h are different for each type, so they
have different characteristic, long-lived or short-lived, dense or
sparse. But compared with flows E and F, their ¢ and 7 are longer
and [ and h are larger. Their IP address and port are randomly
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TABLE II
SYNTHETIC TRACE FLOW INFORMATION

t T I, h] [Ts, Te] Description
A | 10s s [900, 1200] [0, 5400s]
B | 10s Ss [180, 240] [0, 5400s]
C | 10s Is [180, 240] [0, 5400s]
D | 10s Ss [36, 48] [0, 5400s]
E | 0.Is | 0.1s [2, 20] [2700s, 3700s] DoS attack
F | 0.1s | O.1s [2, 20] [2000s, 4000s] | worm spreading
G | 10s 1s [180, 240] [0, 5400s] web traffic
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Fig. 4. Memory usage for different solutions on synthetic trace.

generated except that all flows of type G are web traffic to the
same dstIP.

Fig. 4 shows the memory usage of different solutions. we
define myax = 40,000 bytes, and mges = 30,000 bytes.
When memory usage reaches my,,x, different systems (except
basic NetFlow) perform different operations to reduce memory
usage to Mdes, While basic NetFlow is assumed to have unlim-
ited memory. Fig. 5 shows the export bandwidth of these solu-
tions. We record export bandwidth every 2 minutes, which is de-
fined as the number of flows exported during the previous 2 min-
utes. For exporting NetFlow, before reaching m ., its memory
usage and export bandwidth are the same as that of basic Net-
Flow. After exceeding m,,x, its memory usage is bounded by
Mmax, but the export bandwidth is much higher than that of
basic NetFlow.

For adaptive NetFlow, we use the measurement bin of 1
minute. Before reaching m,.x, memory usage of adaptive
NetFlow is a little greater than that of basic NetFlow, due to
the unnecessarily long time that adaptive NetFlow keeps short
flows in the memory, as we mentioned in Section VI-Al. On
the other hand, the export bandwidth of adaptive NetFlow is
also greater than that of basic NetFlow. The reason is that many
flows we generated are much longer than the measurement bin
of 1 minute, so they are split into several flows. After exceeding
Mmax, 1ts memory usage is bounded by i, and the export
bandwidth is stable. For more detail, its memory usage and
sampling rate in several measurement bins are shown in Fig. 6.
At the beginning of one measurement bin, the sampling rate
is equal to 1 (process every packet). When the memory usage
reaches mmax, adaptive NetFlow decreases its sampling rate.
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Fig. 6. Memory usage and sampling rate in several measurement bins of adap-
tive Netflow on synthetic trace.

At the end of one measurement bin, all active flows in the cache
memory are exported and the sampling rate is reset to 1. In
this experiment, the sampling rate decreases to a low value of
around 1/30 (as shown in Fig. 6).

For entropy based flow aggregation, before reaching mmax,
its memory usage is larger than that of basic NetFlow, due to
the overhead caused by the new data structure, as we analyzed
in Section VI-A-IL Its export bandwidth is the same as that of
basic NetFlow. At around 2000 s, the memory usage exceeds
Mmax. 1he algorithm identifies the cluster of the simulated
worm spread (with the same srcIP) and aggregates flows in
this cluster. Both the memory usage and export bandwidth are
much lower than those of basic NetFlow. At around 2700 s,
the simulated DoS attack is generated, so the memory usage
exceeds mmax again, which triggers the second aggregation.
The third aggregation occurs at around 3800 s. The reason is
that we use an active timer of 30 minutes, so the metaflow
generated from aggregation at 2000 s is terminated and ex-
ported at 3800 s. But because packets in this worm spread
have not stopped, many new generated flows make the memory
usage reach m,.x again and trigger the third aggregation. At
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TABLE III
RELATIVE ERROR (%) OF PROTOCOL BREAKDOWN ON “DARPAIDE” DATASET

adaptive NetFlow

protocol % byte err | packet err | flow err | bitmap
TCP 85.2 0.21 0.28 15.18 NA
UDP 0.6 0.97 0.77 33.15 NA
ICMP 14.2 21.21 21.04 36.99 NA

entropy based flow aggregation

protocol % byte err | packet err | flow err | bitmap
TCP 85.2 0 0 0 0
UDP 0.6 0 0 0 0
ICMP 14.2 0 0 66.04 0.99

the time when system performs aggregation (around 2000 s,
2700 s, 3800 s), the peak memory usage is a little higher than
Mmax, Which includes the additional temporary memory used
in identifying the desired subclusters.

C. Accuracy Evaluation On “DarpalDE” Dataset

In this section, we will show results from experiments on
traces of actual traffic. The dataset we use is part of the training
data of the 1998 DARPA Intrusion Detection Evaluation,* which
contained a wide variety of simulated intrusions. We choose
Wednesday data of week 1 as our experiment data, because it
contains DoS attacks such as Smurf. For brevity, we omit the
resource evaluation results, which are the same as what we ex-
pect and similar to those of the “Synthetic” dataset. To com-
pare the accuracy of adaptive NetFlow and entropy based flow
aggregation, we perform post-processing on the flow records
exported from adaptive NetFlow, entropy based flow aggrega-
tion and basic NetFlow. We perform three post-processing steps
based on the applications used by most analysis and visualiza-
tion tools.

The first post-processing step is protocol breakdown. For
these solutions, protocol breakdown counts the number of
bytes, packets and flows for TCP, UDP and ICMP. We repeat
each experiment for 5 times, and get relerr using (5). Relerr re-
sults for adaptive NetFlow and entropy based flow aggregation
are shown in Table III. It may be unfair to compare the relerr
results for the number of flows directly, because we use the
bitmap algorithm to count the number of flows of the identified
clusters. We also give out the flow error result without using
the bitmap algorithm, as shown in the “flow err” column. The
flow error result using the bitmap algorithm is shown in the
“bitmap” column.

The second post-processing step is port breakdown, which
counts the number of bytes, packets and flows for different ports.
For adaptive NetFlow and entropy based flow aggregation, we
calculate relerr for the top srcPort/dstPort sorted by the number
of bytes, packets and flows. For brevity, we only show relerr of
the top eight srcPorts sorted by the number of bytes in Table IV,
and omit the other five relerr tables. The third post-processing
step is to find the top hosts by bytes, packets or flows of traffic
generated/received. Relerr results of top 8 dstIP sorted by bytes
are shown in Table V.

From these relerrresults, we conclude that entropy based flow
aggregation provides better accuracy for legitimate flows than
adaptive NetFlow. As shown in these three tables, entropy based

4http://www.ll.mit.edu/IST/ideval/data/1998/training/
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TABLE 1V
RELATIVE ERROR (%) OF PORT BREAKDOWN ON “DARPAIDE” DATASET

adaptive NetFlow
srcPort % byte err | pkt err | flow err | bitmap
80, tcp 66.54 0.31 0.32 16.63 NA
20, tcp 11.45 0.26 0.26 8.31 NA
25, tep 0.58 0.68 0.36 3.00 NA
53 , udp 0.52 1.73 1.26 26.68 NA
21, tcp 0.075 1.29 0.40 2131 NA
23, tep 0.072 2.05 1.27 16.19 NA
123 , udp 0.069 2.90 2.90 37.91 NA
11306 , tcp | 0.019 0 0 0 NA
entropy based flow aggregation
srcPort % byte err | pkt err | flow err | bitmap
80 , tcp 66.54 0 0 0 0
20, tcp 11.45 0 0 0 0
25, tep 0.58 0 0 0 0
53, udp 0.52 0 0 0 0
21, tcp 0.075 0 0 0 0
23, tep 0.072 0 0 0 0
123 , udp 0.069 0 0 0 0
11306 , tcp | 0.019 0 0 0 0
TABLE V

RELATIVE ERROR (%) OF IP BREAKDOWN ON “DARPAIDE” DATASET

adaptive NetFlow
dstIP % byte err | pkt err | flow err | bitmap
172.16.114.50 | 14.66 21.17 19.68 29.74 NA
172.16.116.44 9.09 0.46 1.21 14.11 NA
172.16.114.169 | 8.16 0.44 0.99 12.24 NA
172.16.114.148 | 5.19 0.95 0.62 17.00 NA
172.16.113.84 5.03 0.97 1.23 9.08 NA
172.16.114.207 | 4.64 1.32 1.32 16.94 NA
172.16.112.194 | 4.44 1.31 1.32 15.62 NA
172.16.112.149 | 3.88 0.97 1.05 6.33 NA
entropy based flow aggregation
dstIP % byte err | pkt err | flow err | bitmap
172.16.114.50 | 14.66 0 0 57.60 0.86
172.16.116.44 9.09 0 0 0 0
172.16.114.169 | 8.16 0 0 0 0
172.16.114.148 | 5.19 0 0 0 0
172.16.113.84 5.03 0 0 0 0
172.16.114.207 | 4.64 0 0 0 0
172.16.112.194 | 4.44 0 0 0 0
172.16.112.149 | 3.88 0 0 0 0

flow aggregation achieves accurate results with zero byte errors
and packet errors. The reason is that flow aggregation keeps
the accurate byte and packet counts for metaflows. The Smurf
attack in this dataset generated large number of ICMP flows,
which causes the memory usage to reach m,.x and triggers
flow aggregation. The TCP and UDP traffic is not affected, so
there is no error in the flow counts for TCP and UDP in Table III
and the flow counts for all the top srcPorts in Table IV. On the
other hand, we aggregate those ICMP flows to the victim dstIP
in the Smurf attack into one metaflow and do not keep the flow
counts, so the flow counts for ICMP and the victim dstIP have
high error rates of 66.04% and 57.60%, respectively. After using
the bitmap algorithm, the flow count results become much more
accurate, as shown in the “bitmap” columns.

D. Accuracy Evaluation on “CaidaOC48” Dataset

The “CaidaOC48” data set is a 30 minute trace from Aug
2002 of one direction of traffic on an OC48 link located in San
Jose, provided by Caida. The flow rate, packet rate, and byte
rate of this data set is 5 k/s, 75 k/s, and 396 M/s respectively.
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Fig. 7. Memory usage for entropy based flow aggregation on “CaidaOC48”
dataset.

We artificially generate several DoS attacks and worm spreads
and mix it with “CaidaOC48”. The information of these attacks
is shown in Table VI. The time of traffic A being [1205s, 180 ]
means it starts at 120 s and ends at 180 s. SrcIP of traffic A being
“x.%.%.%” means its srcIP is a randomly chosen IP address. Byte
of traffic A being 40 means its packet size is 40 bytes per packet.
SrclP of traffic B being “3 hosts: a.b.c.d” means there are three
hosts that send the traffic, and dstIP of traffic B being “a.b.*.*”
means the first two parts of the dstIP are equal to the srcIP.

As we have mentioned in Section I, for high-speed interfaces,
Cisco introduced sampled NetFlow. We do not use sampling for
the last two experiments because of their low data rate (about
118 Kbytes/s for the synthetic dataset and 4 Kbytes/s for the
“DarpalDE” dataset). For this OC48 data set, we set the packet
sampling rate to 1/100. That is, we use a basic sampling rate
for all solutions including basic NetFlow. In addition, we only
focus on the error caused by decreasing the sampling rate or
performing flow aggregation under memory shortage and ig-
nore the error caused by the packet sampling under normal con-
ditions. So we preprocess the trace file by sampling it using a
sampling rate of 1/100. After that we run different solutions on
the pre-sampled trace file.

We set mpax = 900, 000 bytes and mges = 850, 000 bytes
for all solutions. For adaptive NetFlow, we use 20 s as the size
of the measurement bin such that its export bandwidth is similar
with that of entropy based flow aggregation. For simple flow
aggregation, we set 1 = 30, which means the minimum size
for the identified clusters is 30. Fig. 7 is the memory usage of
entropy based flow aggregation. The increases in the memory
usage of basic NetFlow are caused by all the DoS attacks and
worm spreads shown in Table VI except traffic F, whose flow
rate is too low to trigger flow aggregation.

Entropy based flow aggregation accurately identifies all
the clusters of the DoS attacks and worm spreads except
traffic F. The metaflows resulted from the entropy based flow
aggregation present the network administrators some useful
information about these DoS attacks and worm spreads. For
example, for traffic B and C, entropy based flow aggregation
generates three metaflows, each one corresponds to one host
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TABLE VI
INFORMATION OF SIMULATED DOS ATTACKS AND WORM SPREADS
time simulated attack | flow rate srcIP dstIP srcPort dstPort | protocol | byte
A [120s, 180s] DDoS 33k/s * kK K 162.131.189.129 * 80 TCP 40
B [360s, 480s] Blaster worm 0.75k/s 3 hosts: a.b.c.d a.b.*.* 1000 - 1999 135 TCP 40
C [360s, 480s] Blaster worm 2.25k/s 3 hosts: a.b.c.d * R 1000 - 1999 135 TCP 40
D [450s, 510s] DoS after Blaster 10k/s a.b.*.* 207.46.18.94 1000 - 1999 80 TCP 40
E [600s, 1200s] Slammer worm Sk/s S hosts: x.y.z.w xRk 3355 1434 UDP 376
F | [1620s, 1800s] Welchia worm 0.5k/s 239.187.123.15 239.187.* * ICMP 92
TABLE VII
RELATIVE ERROR (%) OF DSTIP BREAKDOWN ON “CAIDAOC48”” DATASET
% rejecting NetFlow adaptive NetFlow simple flow aggregation entropy based
dstIP of total | byte Err. | flow Err. | byte Err. | flow Err. | byte Err. flow Err. byte Err. | flow Err.
162.131.189.129 1.20 5.05 17.95 0.67 38.72 0 2.07 0 1.34
162.131.175.232 0.50 2.11 0.09 0.32 36.26 0 0.31 0 0
3.142.98.83 0.48 1.00 0.78 1.64 41.84 0 1.11 0 0
162.131.199.254 0.43 1.53 0.79 1.68 29.78 0 0 0 0
238.109.212.178 0.43 1.08 1.07 0.99 38.97 0 1.04 0 0
115.42.247.74 0.28 0.76 0.80 221 17.67 0 0 0 0
241.46.188.127 0.21 1.08 1.23 0.84 40.92 0 0.47 0 0
241.46.218.115 0.17 1.08 1.01 2.13 41.04 0 0 0 0
238.109.212.180 0.16 0.89 0.90 122 40.37 0 0 0 0
241.46.185.227 0.15 0.65 0.62 1.74 39.69 0 0.69 0 0

that sends out the worm traffic. Each metaflow gives out the
information including begin time, duration, srcIP, dstPort,
protocol, byte number, packet number and flow number of this
worm spreading. DstIP and srcPort of the worm traffic are not
given by the metaflow because of flow aggregation, which are
randomly chosen by the worm.

In accuracy evaluation on the “DarpalDE” dataset as shown in
Section VII-C, we only compare the accuracy of adaptive Net-
Flow and entropy based flow aggregation. Because the flow rate
is very low, there is very few other legitimate traffic when the
DoS attacks occur. So simple flow aggregation acts in a similar
way as entropy based flow aggregation does, and rejecting Net-
Flow also has a good result because most of the packets that
are thrown away are DoS attack packets. On the other hand,
the “CaidaOC48” dataset has a high byte/flow rate, so we com-
pare the accuracy of all the four solutions for the “CaidaOC48”
dataset.

Relerr results of some top dstIPs of these solutions are shown
in Table VII. The byte error and flow error of rejecting Net-
Flow are similar, because it just rejects new flows when the
flow cache is full and does nothing to the lost flow data. On the
other hand, the flow error of adaptive NetFlow is much greater
than its byte error, because adaptive NetFlow decreases the sam-
pling rate and compensates this by multiplying the result by the
sampling rate while cannot do corresponding compensation to
the flow numbers. Our two flow aggregation solutions provide
better accuracy than the other two solutions. For entropy based
flow aggregation, only the victim of traffic A has error in the
flow count. However, simple flow aggregation identifies other
L2 and L3 clusters with size greater than , which results in the
flow errors of some hosts.

VIII. CONCLUSION

NetFlow is the traffic measurement solution most widely used
by ISPs to determine the composition of the traffic mix in their
networks. However, NetFlow has the problem of overrunning
available memory for flow records during abnormal situations.

Currently available countermeasures have their own problems.
We propose an entropy based adaptive flow aggregation algo-
rithm. This mechanism, while certainly not a panacea, provides
relief from DoS attacks and other security breaches. Addition-
ally, it significantly improves the accuracy of legitimate flows.

We choose five fields typically used to define a flow, and use
11 combinations of these five fields to define clusters. To effi-
ciently implement the algorithm in real-time, we design a new
data structure called two-dimensional hash table. Based on the
concept of entropy from information theory, we use the param-
eter of APP to indicate the priority of clusters to be aggregated.
The algorithm can efficiently identify the clusters containing
attack flows as well as pick out some large normal flows be-
longing to the identified clusters. After identifying these clus-
ters, the system merges flows in the clusters to metaflows, and
updates information of the metaflows from new incoming flows
belonging to these clusters.

We analyze the resource requirements and accuracy of our
solution, and compare it with other current solutions. Experi-
mental evaluations on synthetic and actual trace files confirm
our analysis on resource requirements, and show that our so-
lution provides better accuracy for legitimate flows. The mea-
surements for bytes and packets are completely accurate, and
measurements for flows are nearly accurate using the bitmap al-
gorithm.

APPENDIX
COMPLEXITY ANALYSIS OF ALGORITHM 1

Assume there are N flows in an L1 cluster C, we give out
the complexity analysis of Algorithm 1. The computation com-
plexity depends on those operations that need to look at part or
all flows in cluster C, including the operations in line 1, line 8
and line 16. There are two steps to compute the entropy of a
random dimension d of cluster C'. First, sort the flows by the
value of dimension d such that all flows with the same value in
dimension d are put together. This step can be regarded as an
insertion sort with the frequency count of N(N — 1)/2. The
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second step is to compute the entropy, which has the frequency
count of V. Cluster C' has three random dimensions, so the fre-
quency count of the operation in line 1is 3N(N —1)/2+3N =
3(N?+ N)/2.

The operation in line 8 is to compute APP for all Sy, in L2,
1 < k < ng, where ng is the number of S}, in L2. Assume
the number of flows of S; is N, then Z?;l N;, < N. S} has
two random dimensions, so the frequency count of computing
its APP is 2Ny (N, — 1)/2 + 2Ny. The frequency count of
computing the APPf of all Sy in L2is Y2, (2N (Np—1)/2+
2Ny) = >0 N2+ 37 N, < N2 + N. So the frequency
count of line 8 is 3N2 + 3N. Similarly, the frequency count of
line 16 is 6 N2 + 6 N. From the above analysis, the computation
complexity of Algorithm 1 is O(N?).
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