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Understanding the Paradoxical Effects of Power
Control on the Capacity of Wireless Networks

Yue Wang, John C. S. Lui, and Dah-Ming Chiu

Abstract—Recent works show conflicting results: network ca-
pacity may increase or decrease with higher transmission power
under different scenarios. In this work, we want to understand
this paradox. Specifically, we address the following questions:
(1)Theoretically, should we increase or decrease transmission
power to maximize network capacity? (2) Theoretically, how
much network capacity gain can we achieve by power control? (3)
Under realistic situations, how do power control, link scheduling
and routing interact with each other? Under which scenarios
can we expect a large capacity gain by using higher transmis-
sion power? To answer these questions, firstly, we prove that
the optimal network capacity is a non-decreasing function of
transmission power. Secondly, we prove that the optimal network
capacity can be increased unlimitedly by higher transmission
power in some network configurations. However, when nodes
are distributed uniformly, the gain of optimal network capacity
by higher transmission power is upper-bounded by a positive
constant. Thirdly, we discuss why network capacity may increase
or decrease with higher transmission power under different
scenarios using carrier sensing and the minimum hop-count
routing. Extensive simulations verify our analysis.

Index Terms—Network capacity, power control, routing,
scheduling.

I. INTRODUCTION

W IRELESS networks have been actively developed
for providing ubiquitous network access in the past

decades. Recently, wireless mesh networks (WMNs) are con-
sidered as a key solution to extend the coverage of the Internet,
especially in areas where wired networks are expensive to
deploy, e.g., in rural areas. Therefore, improving network
capacity is one of the most important issues in the research of
wireless networks. Roughly speaking, network capacity is the
total end-to-end throughputs, which we will carefully define
in Section II. Various techniques ranging from physical layer
to network layer have been proposed for this purpose, such
as MIMO [1], multi-channel multi-radio [2], high-throughput
routing [20]- [23], etc. One way to increase network capacity
is by leveraging transmission power. This is effective espe-
cially in WMNs where stationary mesh routers usually have
sufficient power supply, for example, they can share power
supply with street-lamps as cited in [3].

In this paper, we study the impact of power control on the
capacity of wireless networks. In particular, we consider wire-
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less networks where nodes are stationary and are connected
in ad-hoc manner. Under this network setting, power control
can significantly affect network capacity via the interactions
with the link scheduling and the routing algorithms.

First, many link scheduling algorithms in wireless networks
nowadays implement carrier sensing to avoid transmission
collisions due to interferences1. That is, transmitters sense
channel states before transmissions and they can transmit
only when the sensed noise strength is below carrier sensing
threshold. Power control has a tight relation with carrier
sensing. When transmission power increases, the sensed noise
strength, mainly due to interference, is more likely beyond
carrier sensing threshold, which may reduce spatial reuse,
i.e., the number of simultaneous transmissions. Since network
capacity decreases with lower spatial reuse, higher transmis-
sion power may decrease network capacity. Second, power
control has a tight relation with routing. On the one hand,
higher transmission power may reduce the number of hops or
transmissions that a source needs to reach its destination for
a longer transmission range. Since network capacity increases
with fewer number of transmissions for an application-layer
packet, higher transmission power may increase network ca-
pacity. On the other hand, because longer transmission range
reduces spatial reuse (see Section II), higher transmission
power can decrease network capacity. Considering perfect
link scheduling, authors in [4] argued that network capacity
decreases with higher transmission power under the minimum
hop-count routing. However, some recent works showed that
network capacity actually increases with higher transmission
power in some scenarios [5] [6].

In this paper, we systematically characterize the impact
of power control on network capacity and provide a deep
understanding on the interesting paradox: why network capac-
ity may increase or decrease with higher transmission power
in different scenarios? Specifically, we address the following
questions:

1) Theoretically, should we increase or decrease transmis-
sion power to maximize network capacity?

2) Theoretically, how much network capacity gain can we
achieve by power control?

3) Under realistic situations, how do power control, link
scheduling and routing interact with each other? Under
which scenarios can we expect a large capacity gain
using higher transmission power?

The contributions of this work are as follows:

1We do not consider CDMA at the moment, which applies some other
techniques for interference cancellation.
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• We prove that the optimal network capacity is a non-
decreasing function of transmission power when the
network is using the optimal link scheduling and routing.

• We prove that under some specific configurations, the
optimal network capacity can be increased unlimitedly
by higher transmission power. However, when nodes are
distributed uniformly over a space, the gain of the optimal
network capacity by higher transmission power is upper-
bounded by some positive constant. To the best of our
knowledge, we are the first to prove this property.

• We provide a qualitative analysis on the interactions of
power control, carrier sensing and the minimum hop-
count routing. The later two are the key features com-
monly used in the link scheduling and routing algorithms
nowadays. Through this analysis, we can explain the
paradoxical effects of power control on increasing net-
work capacity. The essential reason is that carrier sensing
and the minimum hop-count routing are not optimal. We
also provide a taxonomy of different scenarios where
network capacity (may) increase or decrease with higher
transmission power.

• Our work offers some important implications to network
designers. First, one can redesign the link scheduling and
routing algorithms so as to increase network capacity
under high transmission power. Second, we observe from
simulation that high transmission power can significantly
increase network capacity in the networks whose diam-
eters are within a few hops, which can find applications
in small WMNs.

The paper structure is as follows. In Section II, we present
a model of wireless networks and define network capacity. In
Section III, we prove the theoretical network capacity gain of
power control. In Section IV, we discuss why network capacity
may increase or decrease with higher transmission power
under carrier sensing and the minimum hop-count routing. In
Section V, we do simulations to verify our analysis in the
previous section. In Section VI, we present related works. In
Section VII, we conclude our paper.

II. SYSTEM MODEL

In this section, we first present a physical model commonly
used in the research of wireless networks [8]. Then we define
performance measures and some notations used throughout
this paper.

In this paper, we consider a static network of n nodes
which are located on a 2D plane. Nodes are connected in
ad-hoc manner. We use (A, B) to denote a link transmitting
from node A to node B, and use |A − B| to denote the
Euclidean distance between A and B. We make the following
assumptions for the wireless physical model: 1) Common
transmission power. All nodes use the same transmission
power. This assumption simplifies our discussions. Actually,
the authors of the COMPOW (COMmon POWer) protocol
showed that per-node (or per-link) power control can only
improve network capacity marginally than common power
control [4]. 2) Single ideal channel. All nodes transmit on
an ideal channel without channel fading. This assumption
simplifies our analysis so that we can focus on understanding

this paradox. In practice, there are some physical technologies
such as MIMO which can greatly mitigate channel fading
by using smart antennas [1]. 3) Single transmission rate. All
nodes transmit at the same date rate of W bps. 4) Correct
packet reception based on signal-to-noise (SNR) threshold.

Let Pt be the transmission power. For a link e, the received
signal strength Pr at e’s receiver is

Pr =
cpPt

dα
, (1)

where cp is a constant determined by some physical parame-
ters, e.g. antenna height, α is the path loss exponent, varying
from 2 to 6 depending on the environment [10], and d is
the distance from e’s transmitter to its receiver (we call it the
length of link e). We assume all cp’s are equal. Thus, by letting
Pt denote cpPt, we can simplify Eq. (1) as

Pr =
Pt

dα
. (2)

For link e, its signal-to-noise (SNR) is defined at its receiver
side, which is

SNR =
Pr∑

i�=e Ii + N0
, (3)

where Pr is the signal strength at e’s receiver, Ii is the
interference strength from some other transmitting link i to
e, and N0 is the white noise. Ii is also calculated by Eq.(2)
except that d here is the distance from i’s transmitter to e’s
receiver. The accumulative interference strength and N0 are
treated as noise by e’s receiver. Note that N0 is usually small
comparing with interference strength so that we can ignore it.

To successfully receive a packet, the following two condi-
tions should both be satisfied:

Pr ≥ Hr, (4)

and

SNR ≥ β, (5)

where Hr is the receiving power threshold and β is the SNR
threshold for decoding packets correctly.

From the above equations, one can derive r, the maximum
distance between a transmitter and a receiver for successful
packet receptions (the maximum is achieved when interference
is zero),

r = min

{(
Pt

N0β

)1/α

,

(
Pt

Hr

)1/α
}

. (6)

We refer to r as transmission range. Two nodes can form a
link when they are within a distance of r.

The interference range rI of a link e is defined as the
minimum distance between an interfering transmitter and e’s
receiver so that e’s transmissions are not corrupted. Let d be
the length of e. From Eq. (2)-(3) and ignoring N0, we have

rI = β1/α · d (7)

We observe that rI is a constant times of d and is inde-
pendent of transmission power. Another observation is that
the silence area for successful transmissions of a link is
proportional to the link length. This suggests that spatial reuse,
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i.e. the number of simultaneous transmissions, will decrease
with the lengths of links.

Next, we define network capacity according to [9]2. We
consider a network G and a set of flows F . Each flow i has a
traffic workload ui (bytes). Suppose the network delivers all
traffic workload in time T , then the network capacity is∑

i=1...|F | ui

T
. (8)

Finally, we define the network capacity gain of power
control. Given the wireless network and the traffic pattern,
let CP (R, S) be the network capacity when Pt = P under
the routing algorithm R and the link scheduling algorithm S.
R defines the routes of each flow, and S defines whether a
link can transmit at any time t. We use C∗

P (R∗, S∗) or C∗
P to

denote the optimal network capacity when Pt = P under the
optimal routing algorithm R∗ and the optimal link scheduling
algorithm S∗.

Let P and KP (K > 1) be the minimal and the maximal
transmission power, respectively. Note that P should guarantee
network connectivity; Otherwise, network capacity is meaning-
less since some flows may not be able to find routes to reach
their destinations. We define network capacity gain of power
control (GK(R, S)) by using the routing algorithm R and the
link scheduling algorithm S as

GK(R, S) =
CKP (R, S)
CP (R, S)

. (9)

Furthermore, we define the theoretical network capacity gain
of power control (G∗

K), i.e.,

G∗
K =

C∗
KP

C∗
P

. (10)

Unless stated otherwise, we use K to denote the ratio of
maximal transmission power to minimal transmission power.

III. THEORETICAL NETWORK CAPACITY GAIN OF POWER

CONTROL

In this section, we derive the theoretical capacity gain of
power control based on the information-theoretic perspective.
In order to derive the optimal network capacity, we assume
that nodes transmit in a synchronous time-slotted mode and
each transmission occupies one time slot. From now on we
will use the phrase ”with high probability” abbreviated as
”whp” to stand for ”with probability approaching 1 as n →
∞” where n is the number of nodes in the network. The
following theorem states the relationship between the optimal
network capacity and transmission power.

Theorem 1: Given the network topology and the traffic pat-
tern, the optimal network capacity is a non-decreasing func-
tion of the common transmission power. Therefore, G∗

K ≥ 1.
Proof: Let S∗

P (t) denote the set of transmitting links at time
slot t when Pt = P . For any link e ∈ S∗

P (t), its SNR satisfies

Pr∑
i∈SP (t),i�=e Ii + N0

≥ β, (11)

2We adopt this definition of network capacity because it isolates the
capacity definition from fairness concerns

where Pr is the signal strength of e and Ii is the interference
strength from some other transmitting link i to e. Now we set
Pt = KP (K > 1) and use the same routes and the same link
scheduling sequence as Pt = P . We can see that at time slot
t, e’s SNR is

KPr∑
i∈S∗

P (t),i�=e KIi + N0
>

Pr∑
i∈SP (t),i�=e Ii + N0

≥ β, (12)

where we use the fact that Pr and Ii are proportional to Pt.
So S∗

P (t) can be scheduled at t when Pt = KP for any t.
Since R∗ and S∗ are optimal routing and link scheduling, we
have C∗

KP ≥ C∗
P by optimality.

Remarks: The theorem seems counter intuitive but is easy to
understand. Basically, given a set of simultaneous links, SNR
does not decrease with higher transmission power because
both signal strength and interference strength increase at
the same ratio. Network capacity can be further improved
if we can find better routes under higher transmission
power. Therefore, theoretically, it is desirable to use higher
transmission power to increase network capacity.

An interesting question is how much network capacity gain
we can achieve by using higher transmission power. To answer
this question, let us analyze it based on the information-
theoretic perspective [8]. Without loss of generality, we scale
space and suppose that n nodes are located in a disc of unit
area.

Theorem 2: In general, G∗
K can be unbounded when n → ∞.

Proof: We prove it by constructing a specific network. There
are 2m+1 vertical links each with a length of d. The horizontal
distance between any two adjacent vertical links is 2d. Fig. 1
illustrates five vertical links where (A1, A2) is the middle
link of the network. A3 evenly separates the line between A1

and A2. Also, there are two nodes evenly separating the line
between any two horizontally neighboring nodes. So there are
totally n = 12m + 3 nodes in the network. There is a flow
along each vertical link from the top node to the bottom node.
Let α = 4 and β = 10 in the physical model.

The maximal transmission power KP is set large enough
that the transmission range r is much larger than d and N0

can be neglected. Thus, the 2m+1 vertical links can transmit
simultaneously for any m. To see this, we can check the
SNR of the middle link (A1, A2) which suffers the most
interference, i.e.,

SNR(A1,A2) ≥
KP
d4

2 · ∑m
i=1

KP

(
√

d2+(2id)2)4

.

SNR(A1,A2) ≈ 11 > β when m → ∞. Therefore, C∗
KP is

(2m + 1)W or (1
6n + 1

2 )W . The minimal transmission power
P is set so that d > r > 2

3d. Thus all flows have to go through
A1, A3 and A2 to reach their destinations. For example, the
route from E1 to E2 is through C1, A1, A3 A2 and C2. So C∗

P

is at most 1
2W since (A1, A3) and (A3, A2) are the bottleneck

links for all flows. Therefore, G∗
K is at least (1

3n + 1), which
is unbounded when n → ∞.
Remarks: The above theorem shows that network capacity can
be increased unlimitedly by using higher transmission power
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Fig. 1. A network having unbounded G∗
K .

in some network configurations.
However, nodes placement is approximately random

in many real networks. We will show that G∗
K is upper-

bounded by a constant whp for networks with uniform node
distribution. Before we finally prove this result, we have the
following lemmas. We first cite a lemma which was proved
in [8].

Lemma 1: For any two simultaneous links (A, B) and
(C, D), we have |B − D| ≥ Δ

2 (|A − B| + |C − D|), where
Δ = β1/α − 1.
Remarks: From this lemma, if we draw a disc for each link
where the center of the disc is the link’s receiver and the
radius is Δ

2 times the link length, all such discs are disjoint.
Note that Δ > 0 because we usually have β > 1 in practice.

Lemma 2: Consider a set of simultaneously transmitting links
where the length of any link is at least d. Given a region
whose diameter is 2R, the number of links intersecting the
region is upper-bounded by 1

Δ4 (4(Δ + 1)R
d + Δ +2)2, where

Δ = β1/α − 1.
Proof: See Appendix A-1 in our technical report [7].

We define rc as the critical transmission range for network

connectivity whp. From [8], we know that rc =
√

log n+kn

πn

for n nodes uniformly located in a disc of unit area, where
kn → ∞ as n → ∞.

Lemma 3: Assume transmission power is sufficiently large so
that r > 4rc. For a network with uniform node distribution,
there exists a route between any two nodes A and B which
satisfies the following conditions whp: (a) for any relay link
on the route, its length is smaller than or equal to 4rc; (b)
the vertical distance from any relay node to the straight-line
segment of (A, B) is at most rc; (c) the number of hops
between any two relay nodes a1 and a2 is not more than
|a1−a2|

2rc
+ 1.

Proof: See Appendix A-2 in our technical report [7].
Remarks: Intuitively, the lemma shows that there exists a
route which can ”approximate” the straight-line segment
of any two nodes whp for a network with uniform node
distribution.

Theorem 3: Assume α > 2 and transmission power is suf-
ficiently large so that r > 4rc. For a network with uniform
node distribution, G∗

K is bounded by a constant c whp, where
c is not depending on K or traffic pattern.
Proof: Let P and KP (K > 1) be the minimal and maximal
transmission power, respectively. Let S∗

KP (t) be the set of
simultaneously transmitting links at time slot t when Pt =

B

2rc

3rc

a link tangent to the disc 

of 3rc  and its sublinks

S’

6rc

Fig. 2. Illustration of the worst case for a link whose sublinks can intersect
S′.

KP . To prove this theorem, it is sufficient to prove that for
any t we can schedule the traffic in S∗

KP (t) in at most c time
slots when Pt = P . By optimality, we have G∗

K ≤ c. We will
construct such c.

To avoid confusion here, we use ”link” to denote a link
when Pt = KP and use ”sublink” to denote a link when
Pt = P . Note that we construct all sublinks from their
corresponding links in this proof according to Lemma 3. That
is, suppose P is sufficiently large so that r > 4rc, we can find
the relay sublinks which satisfy the conditions of Lemma 3
for each link in S∗

KP (t) whp when Pt = P .
First, we will show that such a sublink is interfered by at

most c0 sublinks, where c0 is a constant not depending on
K or traffic pattern. Note that we only consider the links in
S∗

KP (t) with a length larger than or equal to rc here, since we
can schedule the links in S∗

KP (t) with a length smaller than
rc using another time slot.

We consider some relay sublink (A, B). In the preparatory
step, we count the number of sublinks intersecting the annulus
U(i) of all points lying within a distance between irc and
(i + 1)rc from B, where i ≥ m (m is a constant which we
will determine later). We evenly divide U(i) into 	2π(i + 1)

sectors, each of which has a central angle of at most 1

i+1 .
Consider such a sector S. It is easy to see that its diameter
is not more than 2rc. So we can draw a disc of radius 2rc,
named S′, to cover S. From Lemma 3, a relay sublink deviates
from its corresponding link by a distance of not more than
rc. Therefore, if a sublink intersects S′, the shortest distance
between its corresponding link and S′ is at least rc. Fig. 2
illustrates the worst case for a link (denoted by the directional
dashed line) whose sublinks intersect S′, where the link should
at least intersect a disc of radius 3rc. Since we consider the
links with a length not less than rc, from Lemma 2, the
number of links whose sublinks intersect S′ is upper-bounded
by 1

Δ4 (4(Δ + 1)3rc

rc
+ Δ + 2)2 = 1

Δ4 (13Δ + 14)2.
A sublink cannot intersect S′ if the shortest distance be-

tween its transmitter (or receiver) and S′ is larger than 4rc,
since its length is not more than 4rc according to Lemma 3.
Therefore, for any link, the number of its corresponding
sublinks intersecting S′ is upper-bounded by 2(2+4)rc

2rc
+1 = 7.

From the above results, the number of sublinks intersecting
the annulus U(i) is upper-bounded by 	2π(i+1)
 · 1

Δ4 (13Δ+
14)2 ·7 < c1(i+2), where c1 = 14π

Δ4 (13Δ+14)2. Besides, for
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a sublink intersecting U(i), the distance from its transmitter to
B is not less than (i− 4)rc. As a result, the total interference
to B contributed by the sublinks intersecting U(i) is upper-
bounded by c1(i + 2) · P

((i−4)rc)α .

Consider the disc C(B, mrc) of all points lying within a
distance mrc from B. Suppose that no simultaneous transmis-
sions of the sublinks intersecting C(B, mrc) are allowed, the
SNR of (A, B) is lower-bounded by

P
(4rc)α∑∞

i=m c1(i + 2) · P
((i−4)rc)α + N0

=
P

(4rc)αN0

( 6
α−1m1−α + 1

α−2m2−α) · c1P
rα

c N0
+ 1

. (13)

We see that the denominator of the last term above approaches
1 when m → ∞ for α > 2 (In practice, we usually have
α > 2 [10]. And α = 2 corresponds to the free-space path
loss model). Suppose P is sufficiently large so that r > 4rc,
then we have P

(4rc)αN0
> β. So there must exist some constant

m making Eq. (13) larger than or equal to β. Clearly, m only
depends on c1. Therefore, (A, B) is only interfered by the
sublinks intersecting C(B, mrc). So the number of sublinks
interfering (A, B) is upper-bounded by

c0 =
1

Δ4
(4(Δ+1)

(m + 1)rc

rc
+Δ+2)2 ·(2(m+4)rc

2rc
+1)

=
m + 5
Δ4

((4m + 5)Δ + 4m + 6)2, (14)

following the similar arguments above. Note that c0 is not
depending on K or traffic pattern.

Second, we can consider each sublink as a vertex. If a
sublink is not interfered by some other sublink, they are
assigned by different colors. From the well-known result of
vertex coloring in graph theory, we know that each sublink
can be scheduled at least once in every c0 + 1 slots to finish
the traffic of S∗

KP (t).

Finally, consider the links in S∗
KP (t) with its length smaller

than rc, we have c = c0 + 2, where c is not depending on K
or traffic pattern.

Remarks: First, the assumption of ”the transmission power is
sufficiently large” is necessary for G∗

K to be upper-bounded.
We illustrate it by an example. Consider there is one flow
transmitting from A to B in a linear topology. Suppose there
is a direct communication between A and B when Pt = KP .
So C∗

KP = W . Suppose there are m hops from A to B and
each hop distance is exactly r when Pt = P , where r is the
transmission range and r = ( P

N0β )1/α (theoretically, we can
assume Hr is arbitrarily small). Obviously, only one hop can
transmit successfully at a time to satisfy the SNR requirement.
So C∗

P = W
m . Therefore G∗

K = m which is unbounded
when m → ∞. Second, the assumption of ”uniform node
distribution” is not necessary for G∗

K to be upper-bounded.
Actually, we can derive the same result in Theorem 3 if
Lemma 3 holds for some other random node distribution,
or more generally, if the route between any two nodes can
”approximate” the straight line segment of them whp.

IV. PRACTICAL NETWORK CAPACITY GAIN OF POWER

CONTROL

In the previous section we see that network capacity is
maximized under the settings of maximal transmission power,
optimal routing and link scheduling. However, the latter two
are NP-hard problems [11] [12]. In this section, we examine
GK by using carrier sensing and the minimum hop-count
routing, which are the key features commonly used in the
link scheduling and routing algorithms nowadays.

First, we discuss carrier sensing. To avoid collisions during
transmissions, many current solutions require transmitters to
sense channel before transmissions. A transmitter can transmit
only when

Ps ≤ Hs, (15)

where Ps is the noise strength sensed at transmitter side
and Hs is carrier sensing threshold. Assume the network is
symmetric, that is, Ps at transmitter side is equal to

∑
Ii +N0

at receiver side (Note that the assumption is often invalid
in practice). By setting Hs = Pr

β , one can guarantee that
SNR ≥ β [13]. However, it is difficult in practice for a
transmitter to know its Pr at receiver side. To circumvent this
problem, we can conservatively estimate Pr by Hr. So we
have

Hs =
Hr

β
. (16)

In practice, exposed terminal problem and hidden terminal
problem often occur for Eq.(16). The radical reason is that
carrier sensing uses a fixed Hs and operates at transmitter side,
which can not estimate interference accurately. For a detailed
discussion, interested readers can refer to Section IV of our
technical report [7]. Therefore, even under the optimal routing,
network capacity can degrade with higher transmission power
by using carrier sensing. For example, consider a network
with all one-hop flows, higher transmission power increases
Ps, which can reduce spatial reuse and thus decrease network
capacity (see Experiment 1 in Section V).

Next, we discuss the minimum hop-count routing. The
authors of [4] argued that even under optimal link scheduling
network capacity under the minimum hop-count routing is
proportional to

1
r
. (17)

So GK = ( 1
K )1/α by Eq. (6). Their interpretation is as

follows. The network capacity consumption of a flow is
proportional to the number of hops the flow traverses, i.e.
1
r . Spatial reuse is proportional to 1

r2 . Network capacity is
proportional to spatial reuse and inversely proportional to the
network capacity consumption per flow, i.e. 1

r .
We make some comments on Eq. (17). First, although

it properly characterizes the order of network capacity as
a function of r, it has some deviations from practice. For
example, the network diameter (in term of the number of
hops) may be so small that the spatial reuse may not decrease
as much as 1

r2 due to edge effect3. As a result, the network

3In here, the edge effect means that the network diameter is so small that
most links are near the periphery of the network
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Fig. 3. Examples of network capacity increasing with higher power.

capacity may increase with larger r. Fig. 3(a) shows such an
example where there are five nodes and two flows of equal
rate in the network. When the transmission power is low,
both flows need to traverse the centered node to reach their
respective destinations. Since there are four links contending
the channel, the network capacity is 1

4W · 2 = 1
2W . When

we increase the transmission power so that packets can be
transmitted directly from sources to destinations, there are
two links contending the channel, and network capacity is
1
2W · 2 = W . Actually, the spatial reuse here is always
one transmitting link per time slot for any power level due
to edge effect. The network capacity increases with higher
transmission power due to a less number of hops per flow.
Second, it may not hold for the networks with non-uniform
link load distribution. Fig. 3(b) shows such an example where
there are k flows of equal rate traversing through the centered
node. The link load distribution is non-uniform here as the
centered node is the biggest bottleneck. It is easy to see that
the spatial reuse decreases as 1

r2 here. However, the network
capacity does not decrease as 1

r . To see this, we consider
two specific cases. In the first case of using the minimal
transmission power, each flow is m-hop (m >> 2). So there
are at least 2k links neighboring the centered node, resulting
in the network capacity of at most W

2k ·k = 1
2W . In the second

case of using the maximal transmission power, each flow is
1-hop. So there are k links contending the channel, resulting
in the network capacity of W

k · k = W .
Based on the above observations, one can explain why net-

work capacity sometimes increases with higher transmission
power under the minimum hop-count routing [5].

In summary, current carrier sensing and the minimum hop-
count routing do not guarantee GK ≥ 1 and may lead
to significant capacity degradation with higher transmission
power. But network capacity may increase significantly with
higher transmission power in some scenarios. Therefore, there
is a paradox in practice on whether to use higher transmission
power to increase network capacity.

V. SIMULATION RESULTS

In this section, we examine the impact of power control on
network capacity via simulation. We use carrier sensing and
the minimum hop-count routing as the link scheduling and
routing algorithms in our simulations.

We set α = 4 for simulating the two-ray ground path loss
model [10]. We set β = 10 and Hr = −81dBm.Therefore,

Hs = 1
10Hr by Eq. (16). We ignore N0 which is often much

smaller than the interference strength. For better illustrations,
we use the transmission range r to represent the transmission
power. We increase the transmission power so that r = 250m,
500m, 750m and 1000m. Actually, one can change r pro-
portionally and scale network topologies at the same time to
obtain similar results.

We implemented a TDMA simulator for performance eval-
uation. That is, nodes transmit in synchronous time-slotted
mode and each DATA transmission and its ACK occupies
one time slot. Transmitters sense the channel one by one at
the beginning of each time slot. A transmitter will transmit a
DATA packet when Ps ≤ Hs and its backoff timer expires.
The receiver returns an ACK to the transmitter when it receives
the packet successfully. If the transmitter does not receive an
ACK due to packet collision, it will carry out the exponential
backoff. The backoff mechanism is similar to that of 802.11
except that we backoff the time slot here.

We calculate network capacity according to Eq. (8). In our
simulations, each flow is assigned a traffic workload of 500
equal-sized packets. We generate CBR traffic for each flow
until completing its traffic workload. The CBR rate is set large
enough to saturate the network. Besides, the packet buffer in
each node is set sufficiently large since we do not consider
queue management at the moment.

For simplicity, in the following experiments, we use CS to
denote carrier sensing and use HOP to denote the minimum
hop-count routing. We implemented a centralized link schedul-
ing, named Cen, as a benchmark, which schedules links one
by one in a centralized and collision-free way and thus ensures
maximal spatial reuse. In each experiment, we take the average
of all simulation results for ten networks.

In the first experiment, we study the interaction of power
control and carrier sensing by considering one-hop flows so
as to isolate the interaction of routing.
Experiment 1 Network capacity vs Power in a random
network with one-hop flows. There are n = 200 nodes
uniformly placed in a square of 3000m×3000m, which form
a connected network when r = 250m. Each node randomly
communicates with one of its nearest neighbors.

Fig. 4 shows the network capacity as a function of r.
Obviously, the network capacity by using Cen is almost a
constant in this scenario. However, when we use CS, higher
transmission power causes more exposed terminals and de-
crease network capacity, since the carrier sensing threshold is
fixed.

In the following experiments, we study the interaction of
power control, carrier sensing and the minimum hop-count
routing by considering multi-hop flows.
Experiment 2 Network capacity vs Power in a random
network with multi-hop flows and small network diameter
(in terms of the number of hops). There are n = 20 nodes
uniformly placed in a square of 1000m×1000m, which form
a connected network when r = 250m. Each node randomly
communicates with any other node in the network.

Fig. 5(a) shows the network capacity as a function of r.
First, in a sharp contrast to Eq. (17), the network capacity by
using HOP significantly increases with r. The reason is that the
network diameter is so small (4-6 hops) that the spatial reuse
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Fig. 5. Experiment 2.

only decreases slightly with larger r, as shown in Fig.5(b).
Actually, only a few links can transmit simultaneously in this
scenario due to edge effect. HOP minimizes the number of
hops that flows traverse, as shown in Fig.5(c), which is the
dominant factor for the significant increase of network capac-
ity. Second, CS works reasonably well in this experiment, as
compared with Cen (see Fig.5(b)). The reason is that HOP
prefers longest forwarding links for multi-hop flows, which is
close to the case that we derive Hs in Eq. (16).
Experiment 3 Network capacity vs Power in a grid network
with multi-hop flows and large network diameter (in terms
of the number of hops). There are n = 625 nodes placed
in a 25 × 25 grid. There is a distance of 200m between
any two horizontally or vertically neighboring nodes. There
are 25 flows from the leftmost nodes to the rightmost nodes
horizontally and 25 flows from the topmost nodes to the
bottommost nodes vertically. This configuration ensures a
large network diameter and uniform link load distribution.

We observe that the network capacity decreases significantly
with larger r, as shown in Fig. 6, because of the significant
decreasing of spatial reuse under the minimum hop-count
routing. We also plot the network capacity by using HOP and
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Fig. 6. Experiment 3: Network capacity vs r.

Cen, which confirms our explanation.
We also test the random networks with multi-hop flows

and a large network diameter. We observe that the network
capacity significantly decreases with larger r in this scenario
when n is sufficiently large.

In summary, the following conclusions can be made from
our analysis (Section IV) and simulations. When we use
carrier sensing and the minimum hop-count routing,

• In the networks with one-hop flows, the network capacity
significantly decreases with higher transmission power
due to exposed terminal problem.

• In the networks with multi-hop flows and a small network
diameter of a few hops, the network capacity can increase
significantly with higher transmission power because the
edge effect makes spatial reuse only decrease slightly
with larger r. This can find applications in small WMNs.
Currently, many WMNs tend to have a small network
diameter (in term of the number of hops), because the
end-to-end throughput of a flow drops significantly with
an increasing number of hops [8] [14].

• In the networks of multi-hop flows and a large network
diameter, there are two subcases. Under uniform link load
distribution, the network capacity decreases significantly
with higher transmission power as shown in Eq. (17);
Under non-uniform link load distribution, it is hard to
make a conclusion. The network capacity may increase
with higher transmission power as illustrated by Fig. 3(b).

VI. RELATED WORK

Research on power control can be classified into two
classes: energy oriented and capacity oriented. The first class
of works focus on energy-efficient power control [15] [16]
[17]. The application is in mobile ad hoc networks (MANETs)
or wireless sensor networks (WSNs), where nodes have lim-
ited battery life. Low transmission power is preferred here
to maximize the throughput per unit of energy consumption,
while maximizing overall network capacity is the secondary
consideration. As a result, their solutions often achieve mod-
erate network capacity. The second class of works focus
on capacity-oriented power control. The application is in
WMNs where mesh routers have sufficient power supply and
maximizing network capacity is the first consideration.

Authors in [4] indicated that network capacity decreases
significantly with higher transmission power under the mini-
mum hop-count routing and they suggested using the lowest
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transmission power to maximize network capacity. There are a
lot of works following this suggestion, e.g. [18] [19], and they
observed capacity improvement by using lower transmission
power. However, there is an opposite argument recently. Park
et al showed via simulation that network capacity sometimes
increase with higher transmission power [5]. Behzad et al.
formulated the problem of power control as an optimization
problem and proved that network capacity is maximized by
properly increasing transmission power [6].

We also proved that the optimal network capacity is a
non-decreasing function of common transmission power in
a simpler way. Furthermore, we characterized the theoretical
network capacity gain of power control. Besides, we studied
the interactions of power control, carrier sensing and the
minimum hop-count routing. As a result, we explained the
above paradox successfully from both theoretical and practical
perspective. Our work provides a deep understanding on the
structure of the power control problem and is an extension to
[4]- [6].

VII. CONCLUSION

This work thoroughly studies the impact of power control on
network capacity from both theoretic and practical perspective.
In the first part, we provided a formal proof that the optimal
network capacity is a non-decreasing function of common
transmission power. Then we characterize the theoretical ca-
pacity gain of power control in the case of the optimal network
capacity. We proved that the optimal network capacity can be
increased unlimitedly with higher transmission power in some
network configurations. However, the increase of network
capacity is bounded by a constant with higher transmission
power whp for the networks with uniform node distribution. In
the second part, we analyzed why network capacity increases
or decreases with higher transmission power in different
scenarios, by using carrier sensing and the minimum hop-
count routing in practice. We also conduct simulations to
study this problem under different scenarios such as a small
network diameter vs a large network diameter and one-hop
flows vs multi-hop flows. The simulation results verify our
analysis. In particular, we observe that network capacity can
be significantly improved with higher transmission power in
the networks with a small network diameter, which can find
applications in small WMNs.
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