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1 Introduction
The Internet of today is a large collection of independently administered autonomous entities. These entities typically take unilateral
decisions, such as selecting a path to route their packets, in order to maximize their own utility. In this note, we study the effect of
selfish routing on the efficient performance of the Internet.

Several studies in the past have cast this question as a game between selfish agents and have tried to quantify what is called the
price of anarchy [5]—the ratio of performance of the network at the Nash Equilibrium of the game, to the optimal performance. In a
series of papers, Roughgarden et al study the cost of Nash equilibrium, when selfish flows in a network pick routes so as to minimize
their latencies (see for example, [8, 6]). They show that the cost of a Nash equilibrium can, in general, be arbitrarily larger than the cost
of the optimal routing, except when the latencies on links in the network depend linearly on the total flow on them. The problem has
also been studied by Koutsoupias and Papadimitriou [3], and by Mavronicolas et al [4] and Czumas et al [2], but on a slightly different
model. Koutsoupias et al give bounds on the price of anarchy when agents own unit amount of flow and pick paths probabilistically.

While seminal in their contributions, the aforementioned studies have a common drawback: they are too simplistic in their modeling
of the behavior of flows on the Internet. In this paper, we study the price of anarchy in a more realistic model of the Internet. We
assume that the agents are unsplittable TCP flows. TCP is the predominant model of transport in today’s Internet used by over 80% of
the bytes carried by the network. TCP uses a congestion control algorithm to help adapt its rate of flow to the bandwidth available on
its path. In this setting, we assume that selfish users (TCP flows) aim to minimize the time that it takes to complete a file transfer (time
between transmitting the first and the last byte on the flow), and pick the route that minimizes this time. We show that choosing a route
that minimizes completion time is equivalent to choosing one that maximizes the bandwidth available to the flow. Thus, each flow
picks a path that has the maximum bottleneck bandwidth available for the flow. The bandwidth available on a link is divided among all
flows using that link, in inverse proportion to their end-to-end latencies (or round-trip times), since TCP is RTT-fair [10]. Note that we
do not consider the slow start phase of TCP (we do not consider “short-lived” flows). We assume that the system quickly converges to
a stable state, and evaluate the performance in this stable state. We also do not consider the dynamic arrival and departure of flows.

2 The model and some observations
We are given a network with capacities, or bandwidths be, on edges. There are n agents — agent i is a flow from node s i to ti. Each
agent picks a path Pi to route its flow. Let the transmission delay, or round trip time (RTT), for routing packets on path P i be ri. The
RTT of a link depends on the physical properties of the link and its load. Since we are considering TCP senders, that adapt the rate of
flow to the bandwidth of the link (i.e. flows are elastic), the load on each link stays constant on average; thus the RTT of the path, r i,
stays independent of the number of flows on any link. Next, we describe how we model elastic TCP flows.

After all agents have chosen their paths, for any edge e, let F e be the set of agents whose paths contain the edge e. The bandwidth
available to agent i on edge e is given by 1

Ze

be

ri
, where Ze =

∑
i∈Fe

1
ri

. That is, the total bandwidth available on edge e is divided
among the flows using this edge in inverse proportion of their RTTs. The bottleneck bandwidth used by flow i, B i, is the minimum
bandwidth available to it on edges in its path. The time taken by i to complete its file transfer is given by Si

Bi
+ ri, where Si is the size

of the file that it is trying to transfer. Each agent aims to minimize the file transfer time. Assuming that the transmission delay is a
negligible component of this time, this is equivalent to maximizing the bandwidth B i. The performance of the network is evaluated by
the total amount of bandwidth used by all flows.

We observe that a pure Nash equilibrium for this game always exists, although it may not be unique. The existence can be
established by the following simple argument.

Lemma 1 The selfish routing game always has a pure Nash equilibrium, however it may not be unique.

Proof: Start with any set of paths Pi for each flow i. As long as there is a flow i that is unhappy (that is, it can improve the bandwidth
available to it by switching to a different path P̂i), change the path of flow i from Pi to P̂i. Let the bandwidth available to flow i at a
particular step be ai. Arrange the bandwidths ai in decreasing order to obtain the sequence â i. Then consider the function

∑
i T iâi,

where T is the sum of bandwidths of all the edges in the network. Assume T > 2, otherwise use T = 2. Note that the sum is always
positive and bounded above by nT n+1. We will show that at every step the value of this function increases strictly. Since it is bounded
above by a constant, the process terminates and gives a Nash equilibrium.

Note that whenever a flow i changes its path from P i to P̂i, other flows using any link on P̂i may see a decrease in their bottleneck
bandwidth. However, their final bottleneck bandwidth is at least as much as the final bottleneck bandwidth of flow i. Now suppose
that after the change, flow i has the jth maximum bottleneck bandwidth, and its bandwidth increase by ∆. Then, in the worst case,
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the increase in the function due to increase in bandwidth of i is T j∆. The decrease in bandwidth takes place, in the worst case, for all
flows above j. Thus the net decrease is at most

∑
k<j T k∆ ≤ T j∆. In addition, some other flows, specifically those that use links in

Pi, may see an increase in their bottleneck bandwidths. Thus the net value of the function increases.

As an example, consider the network in Figure 1(a). All links have bandwidth 1. There are n
2 − 1 flows from s0 to t0 and one flow

each from si to ti, i ≥ 1. The transmission delay of each link is set so that all flows have equal RTTs. One Nash equilbrium in this
game is defined by all flows from s0 to t0 going via all the xi. In this equilibrium, each flow gets 2

n bandwidth, and the total bandwidth
used is 2. In another equilibrium, which is also the optimal solution for this network, the flows from s 0 to t0 take the path s0x1x2t0.
In this equilibrium, the flows from s0 to t0 and the flow from s1 to t1 get bandwidth 2

n , whereas, the rest of the flows get bandwidth 1.
Thus the total bandwidth used is n

2 + 1, which is Ω(n) times that used in the previous case.
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Figure 1: Lower bound on the price of anarchy in general networks

3 Results and Discussion
3.1 The price of anarchy
In this section we explore the price of anarchy under the above model, for different kinds of networks. First note that the above
example shows that in the worst case in a general network, the performance of a Nash equilibrium can be arbitrarily worse than that of
the optimal solution. Thus we get the following:

Lemma 2 The price of anarchy in a network with n flows can be as large as Ω(n).

Note that the example above uses a network that has a diameter of Ω(n). This motivates us to consider the case of a network where
all flows use short paths. The price of anarchy in this case improves considerably. This is encouraging as the diameter of the Internet
is known to be O(log v), where v is the number of nodes. Also, it has been shown that typical path length in the Internet is O(log v).

Lemma 3 The price of anarchy in a network where all agents use paths of length at most D, is at most D + 1.

Proof: Let P1, · · · , Pn be the paths used by flows in Nash equilibrium, with bottleneck bandwidths b 1, · · · , bn respectively, and let
Q1, · · · , Qn be the corresponding paths in the optimal solution. Consider the solutions S i = Q1, · · · , Qi, Pi+1, · · · , Pn, i = 0 · · ·n.
Let Ti be the total bandwidth used by flows in Si. We use a function, “buffer-bandwidth” W i, such that W0 = 0 and ∀i, Wi ≥ 0. We
show that Ti + Wi ≤ Ti−1 + Wi−1 + Dbi. Summing over all i, we get Tn ≤ T0 + D

∑
i bi = (D + 1)T0, which implies the result.

Note that the only difference between Si−1 and Si is that flow i shifts from Pi to Qi. This frees bi amount of bandwidth on each
link in the path Pi. In the worst case, this bandwidth becomes available to different flows on every link. Since there are at most D
such links, the increase in bandwidth is at most Dbi. If this bandwidth is used by other flows, it leads to an increase in T i. The rest of
the unused bandwidth is buffered, or added to W i−1 to obtain Wi. Now consider the new bandwidth available to the flow i. Let e be
the bottleneck link on path Qi. If e contains other flows, there is no increase in bandwidth. If it doesn’t contain any flows, then either
it did not contain any other flows in S0, in which case, its bandwidth is at most bi. Otherwise, it contained flows in S0, but all these
flows moved to different paths. In the latter case, the bandwidth of link e was buffered in W i. Accordingly, we decrement Wi by the
amount of increase in Ti. This implies that Ti + Wi ≤ Ti−1 + Wi−1 + Dbi, and we are done.

Next we observe that although one Nash equilibrium in Figure 1(a) is arbitrarily bad with respect to the optimal solution, there is
another equilibrium, that is in fact optimal. This leads us to conjecture that in a network with bounded bandwidth, there always exists
a Nash equilibrium that has a low price of anarchy. Below we give some evidence for this conjecture.

Conjecture 1 Let the ratio between the maximum bandwidth of any link and the minimum bandwidth of any link in the network be B.
Then the optimistic price of anarchy is at most O(B).

Assume without loss of generality, that the minimum bandwidth in the network is 1, and the maximum is B. For a path P , let
p1 ≤ p2 ≤ · · · denote the bandwidths available to a flow along links in this path. We say that a path P dominates path P ′ if there
exists i, such that, pj = p′j for all j < i, and pi > p′i. Suppose that instead of just maximizing their bottleneck bandwidth, agents were
trying to achieve a stronger goal—if there are several paths with the same bottleneck bandwidth, then among these, pick the path that
dominates all the other available paths. If a Nash equilibrium exists in this model, we show that it has a low cost.
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Lemma 4 Let the bandwidth ratio be bounded by B. Consider a Nash equilibrium in which each agent picks a path that dominates
all other paths available to him. The price of anarchy for this equilibrium is at most O(B).

Proof: If no player in this equilibrium has a bottleneck bandwidth of less than 1, then we are done, because no player can obtain a
bandwidth of more than B. Suppose there are players with bottleneck bandwidth less than 1. Let F be the set of such flows. We
will show that it is not possible for these flows to collectively increase the total bandwidth occupied by them. Let E be the set of all
links that are bottleneck links for flows in F (there can be multiple such links for some flows). Then, E forms a multi-commodity cut
that is fully saturated. Flows that only utilize one link in this set clearly cannot increase their bandwidth without harming other flows.
Consider flows that use more than one edge in E. Then it may be possible for some of these flows to change their path such that their
bottleneck bandwidth stays the same, however other flows obtain more bandwidth. However, consider removing any subset of their
bottleneck links from the set E. The remaining set still forms a saturated cut with respect to the flows using this set (because the flow
picked a dominating path)1. Thus again, the flows using this set cannot collectively increase their bandwidth.

Note that when the bandwidth ratio is unbounded, even the optimistic price of anarchy can be quite high, as can be seen from the
simple extension of the above example given in Figure 1(b). In this example, the links through all the x i have bandwidth n/2 each,
whereas the n/2 − 1 bottom links have bandwidth 1 − ε each.

3.2 The benefit from using limited central control
The above results are quite discouraging, as in each case, the price of anarchy is quite high. In this section, we examine the improvement
in performance of the network, when a central authority can control a fraction of the flows and route them optimally, while the rest of
the flows are still selfish. Such a model was first considered by Roughgarden in [7].
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Figure 2: Central control does not help even in a single-source single-sink network

First observe from example 1(a) that even if a central authority controls half of the flows, specifically those between s i and ti for
i ≥ 1, the price of anarchy remains as before. Thus it seems unlikely that central control would alleviate the problem in this game.

One might consider restricting the model to a single-source single-sink network. However, as the example in Figure 2 shows, even
in this case, if we allow a central authority to control a (1 − ε) fraction of the flows, for a constant ε, the price of anarchy is O(n). In
the example given in the figure, there are n flows in the system. Even if a central authority routes (1 − ε)n of the flows over the green
links, in one nash equilibrium, εn/2 of the flows use the red and black paths, half on each. The rest of the flows use the blue and black
paths. In this equilibrium, the total bandwidth used is slightly less than n. On the other hand, in the optimal solution, when all flows
use the green or the lue-black paths, the total bandwidth used is at least εn

2
εn
4 = Ω(ε2n2). Thus the price of anarchy is Ω(n).

Thus we consider a simpler network model in which each flow has the same source and sink and has a choice between several
parallel links. Note that this is exactly the same as the model considered by Roughgarden [7], except that our objective function and
latency function is different from the one used by them.

Lemma 5 In the single source and single sink model, with parallel links, the price of anarchy is at most 2. Further if a central
authority controls an α fraction of the flows, then the price of anarchy is at most 2 − α.

Proof: Without loss of generality, we can assume that there are at most n links, with bandwidths b 1 ≥ b2 ≥ · · · ≥ bn, because both
Nash equilibrium and the optimal solution use only the n highest bandwidth ones. The optimal solution simply puts one flow on each
link and obtains a bandwidth of

∑
i bi. Now consider a Nash equilibrium. The bandwidth of any link not used in this equilibrium is at

most the minimum bandwidth used by any flow. In the worst case, all unused links not used have the same bandwidth, and all flows
occupy the same bandwidth. Thus, if there are l unused links, at most n/(n + l) fraction of the total bandwidth is used by Nash. The
worst case is achieved when l = n− 1, and in this case, the ratio is at most 2. Now, the strategy for the central authority is to compute
a Nash equilibrium for the (1 − α)n flows, and route the rest of the αn flows on αn highest bandwidth links, thats are not used in the
Nash. As before, in the worst case, the ratio is at most (n − αn + l)/n, which is at most 2 − α.

4 Future work and open problems
Our work initiates the study of the price of anarchy in a realistic model of the Internet routing game. In a similar effort, Qiu et al [9]
show experimentally, that the price of anarchy in networks representing real ISP backbone topologies is quite low. We believe that

1Compare this to the cut defined by the bad Nash equilibrium in Figure 1(a).
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realistic selfish routing would span many ISPs and would result in a different results than that shown in [9]. Currently, we are also
investigating the price of anarchy on special topologies like large power-law graphs and highly connected graphs. Another interesting
open problem is to design a mechanism which regulates selfish flows and achieves near optimal performance. Finally, an interesting
model is to allow end users to only pick the first hop of their path to the destination. This corresponds to multihomed end-networks,
a widely employed strategy to improve performance in the Internet [1]. We expect the performance of the network to improve in this
situation, although Figure 1(b) shows that we may not see any improvement in an arbitrary worst case network.

Acknowledgments
We thank Luis von Ahn for helpful discussions.

References
[1] A. Akella, B. Maggs, S. Seshan, A. Shaikh and R. Sitaraman. A measurement-based analysis of multihoming. ACM SIGCOMM 2003.
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