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Abstract

Fully Convolution Networks (FCNs) have been
shown to be effective in semantic segmentation through
fine-tuning classification networks on segmentation
data. In this paper, we present that FCNs can be fur-
ther fine-tuned on target-background images in order
to solve visual tracking problems. Pixel level models
(FCNs) trained on segmentation data are superior to
class level models (e.g. VGG net and GoogLeNet) in
visual tracking tasks due to their powerful ability in
discriminating between objects and background. Our
work is based on a FCN network structure. The re-
sult is achieved by first fine-tuning the first image of a
sequence and then the tracking and updating processes
are conducted through classical forward and backward
processes of neural networks. The proposed model
achieves high precision and tracking success rates in
online object tracking benchmark (OTB) data. It in-
dicates our approach is competitive to state-of-the-art
approaches as well.

1 Introduction

Visual tracking is important in many applications
such as robotics, automatic driving and surveillance
etc. Traditional approaches include mean-shift based
trackers [1, 2] that transfer the tracking problem
to be probability density estimation problems. Re-
cently, deep convolutional neural networks (CNNs) en-
joy great popularity due to their success [3] in many ap-
plications, such as object detection [4]. They also out-
performed many approaches in ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC) [5]. The ap-
proach of Fully Convolutional Networks (FCNs) is first
proposed [6] for semantic segmentation. The key fea-
ture of this network is that the fully connected layers
in CNNs models, such as VGG net [7] and GoogLeNet
[8], are replaced with convolutional layers in order to
keep image spatial information throughout the whole
network. A more recent work, FCNT [9], is similar to
ours. The method first selects two feature maps one
from the top layer and one from a lower layer, then
export them to two networks for performing detection.
This pipeline is complex and slow. In contrary, our
approach uses one network, straight from image pixels
to the output-bounding box, so it can achieve higher
efficiency. We believe the problems of semantic seg-
mentation and visual tracking are similar. The goal is
to distinguish between the object and the background.
Both tasks produce the pixel-level output. Moreover,
in segmentation each pixel of the input image needs to
be annotated to some category during semantic seg-
mentation, while in object tracking each pixel is used
to find the target center. Thus, we propose to uti-
lize FCNs [6] to pre-train on the segmentation data as

our tracking prior. In our approach, a slight modifi-
cation on the network structure is needed, that is the
fine-tuning on the first image of a sequence is made,
then FCNs are adapted to the task of visual track-
ing. The performance of our method is comparable to
other state-of-the-art approaches when applied to pub-
lic benchmarks testing data (OTB [10]). Although our
method is implemented with a deep, neural network
structure, it can still run at the speed of 15 frames per
second using a common computer, faster than many
current trackers. This paper is organized as follows:
In Section 2, we discuss the neural network structure
used. The tracking method is described in Section 3.
In Section 4, implementation details and experimental
results are shown. Our work is concluded in Section 5.

2 Network Structure

Our network structure is similar to FCN-8s proposed
in [6] except that one more convolutional layer is ap-
pended after the last feature map layer. The purpose
of the newly added convolutional training layer is to
transform the segmentation response map (or called
heat map) into a target center highlighted response
map. The overview structure is illustrated in Figure
1. In order to achieve better efficiency, we performed
modifications on the original structure of FCN. The
details are described as follows. In the layer conv1 1,
pad is set to be 1 (originally 100); in the layer fc6, pad
with value of 3 is added; the places of score2 and score-
pool4 in the first crop layers are exchanged and in the
following fuse layer, score2 is replaced by score-pool4 ;
the places of score4 and score-pool3 are exchanged; in
the following fuse layer, score4 is replaced with score-
pool3. In contrast to the soft-max loss function defined
in [6], our loss function is the Euclidean loss between
the predicted response map (output of layer conv-final)
and the ground-truth response map.

L =
∑
i,j

‖f̂ij − fij‖2 (1)

where L denotes the objective function, f̂ij and fij
denote the predicted response map and ground-truth
response map respectively, i and j are image coordi-
nates.

3 Tracking: Model training, Target Cen-
ter prediction, Response map design and
Model update

After fine-tuning on the first image of a sequence,
subsequent images are input to the network. The cor-
responding output of the layer conv-final is used as the
response (heat) map for further process to localize the

Zhe Zhang, Kin Hong Wong, Zhiliang Zeng, Lei Zhu,"A neural network approach to visual tracking", The 
15th IAPR Conference on Machine Vision Applications (MVA 2017),  Nagoya University (Toyoda 
Auditorium), Nagoya, Japan, 8-12, May 2017.



+

+

pool3 pool4 pool5 score2 score4 score-final

FCN-8s Appended layer

response (heat) map
input image

Figure 1. An overview of our network structure. The feature maps in the layer of pool5 are convolved and
up-sampled to become feature maps in the layer of score2 which are further cropped and summed by the
feature maps convolved from the layer of pool4. The same trick is applied to the layers of score4 and pool3.
We append an additional convolutional layer (response or heat map) after the layer score-final, this appended
layer is of the same size as the input image.

Algorithm 1: FCNs in Visual Tracking

Input: Target location in the starting frame lstart
Output: Target locations in the following frames

lstart+1...end

Crop the input image patch according to the crop
function in Equation 2;

Construct the ground-truth confidence map as in
Equation 4;

for iter ← 1 to iterN do
Forward the network ;
Backward the network ;
Update the weights in the network ;

end
for frame← start+ 1 to end do

Crop the input image patch as in Equation 2;
Forward the network ;
Extract the output of layer conv-final and
process the confidence map as in Equation 3 ;

Update the target location according to the
confidence map ;

Backward the network ;
Update the weights in the network ;

end

target center. For each image, the FCN model is up-
dated through the feedback from the loss layer. The
whole procedure is listed in Algorithm 1. To begin
with, we need to fine-tune our FCNs on the tracking
sequences. For each sequence for tracking, we crop a
square region centered on the object center given in
the first image. The size of the square region is cho-
sen as α

√
wh, where w and h denote the width and the

height of the object in the first image respectively. The
reason to do so is that we want our input image patch
to cover some context information but not too much.
Considering that some objects may be very small, we
constrain the input image patch to be no smaller than
the expected input size of our network. Thus, the final
input image patch is cropped as:

E = max(s, α
√
wh) (2)

where E denotes the edge length of the square region
and s denotes the expected input size of our network.

Then no matter how large the input image patch is,
we resize it to be s before inputting to the network.
The model training is conducted through the typical
feed-forward and feed-backward training process the
network. Except for the first iteration, all the follow-
ing iterations are processed between layer fc6 and layer
loss in order to save training time. The next step is
Target center prediction. After fine-tuning on the first
image patch, the network is already able to predict the
target center. The input image patch is also cropped
as in Equation 2, since we believe that in most se-
quences the movement of the object is smooth and the
object will not be lost by properly selecting the pa-
rameters. We forward the input image patch until the
layer conv-final and the output is a response map in-
side which each value indicates the possibility of the
target center. Due to the assumption of smoothness of
the object movements, it is reasonable to introduce a
prior which impose higher weights near the center and
lower weights in the surrounding regions. In this work,
we utilized the Hann window as our prior distribution.
Then the confidence map now becomes:

C = Pfc (3)

where C denotes the confidence map, P denotes the
prior distribution and fc is the output of the layer conv-
final. The generated confidence map is filtered with a
Gaussian kernel G to remove noise. Our Response map
design is described as follows. Similar to [11], we design
the ground-truth response map as a Gaussian shaped
distribution

fij = e−
‖i−cx‖2+‖j−cy‖2

2σ2 (4)

where fij denotes the value in the response map in-
dexed by i and j, cx and cy denotes the horizontal and
vertical coordinates of the target center in the input
image patch, σ is the predefined parameter to adjust
the shape of the distribution. Finally, it is the model
update part of the system. The model update are pro-
cessed through backwarding the network as in model
training 3. The backwarding method used in our work
is the general stochastic gradient descent (SGD) func-
tion in the Caffe toolbox [12]. Since the whole com-
putation is processed inside Caffe without any exter-
nal functions, we claim that our system is simple and



trackers FCN1 FCN2
s 224*224 128*128
k 31*31 15*15
p 15 7
α 4 4
G(size) 5*5 5*5
G(σ) 1 1
σ 8 4
lr1 e−12 e−10

lr2 e−13 e−11

iterN 100 100

Table 1. Parameters used in our FCN1 and FCN2

straightforward. We have also implemented the MAT-
LAB wrappers for the functions forward from to and
backward from to to save running time.

4 Implementation and Experiment

We have implemented two trackers named as FCN1
and FCN2. FCN1 and FCN2 are the trackers config-
ured to test the Online Tracking Benchmark (OTB)
[10]. In Table 1, s denotes the input image size of
the network. k and p denote the kernel size and the
padding in the appended convolution layer conv-final.
The α in Equation 2 is set as 4. The size and σ of
the smooth Gaussian kernel G are 5*5 and 1 respec-
tively. σ denotes the Gaussian shaped response map
in Equation 4. The learning rates for the fine-tuning
on the first image and model update in the following
images are e−12 and e−13 respectively in FCN1, e−10

and e−11 respectively in FCN2 and e−11 and e−12 re-
spectively in FCN3. The fine-tuning lasts for 100 iter-
ations while the model update in the subsequent im-
ages is only one pass forward and backward. We
evaluate our proposed approach on a commonly used
benchmark in visual tracking, i.e. Online Tracking
Benchmark (OTB) [10]. The detailed system settings
and experimental results are described in the follow-
ing. Our system is implemented in MATLAB R2013a
on top of the deep learning toolbox Caffe [12]. We
rewrite some parts of the matcaffe.cpp file and add
some new functions. The pre-trained model and basic
deploy files are the fcn-8s-pascal files in [6]. All the pa-
rameters in our model are kept the same throughout
all the sequences of both benchmarks. Online Track-
ing Benchmark [10] is used here. Two metrics are
used. Precision plot measures the average Euclidean
distance between the center locations of the tracked
objects and the ground-truth. The success plot mea-
sures the overlapping ratio between the tracked ob-
ject windows and the ground-truth windows. Apart
from the conventional one-pass evaluation (OPE), two
types of evaluation methodologies, i.e. temporal ro-
bustness evaluation (TRE) and spatial robustness eval-
uation (SRE) are added to test the robustness the
trackers. In addition, all the sequences are marked
by 11 different attributes in order for further perfor-
mance analysis of the trackers in distinct situations.
The tracker names: ASLA,CSK,CXT,..etc. are de-
fined in [10]. We rank the trackers based on thresh-
old of 20 for Precision Plot and threshold of 0.5 for
Success Plot. The experimental results for OPE are

shown in Figure 2. From the overall experimental re-
sults, we can observe that our proposed methods out-
perform the state-of-the-art trackers in both metrics.
Probably because the input image size is nearly dou-
bled, the results of FCN1 in both Precision Plots and
Success Plot are approximately 3% higher than that of
FCN2 (0.877 v.s. 0.845 and 0.738 v.s. 0.709). How-
ever, even the results of FCN2 are marginally better
than the best state-of-the-art approach MEEM [13].
Observed from Table 2, FCN1 demonstrates the best
performance in nearly all attributes, except in defor-
mation and out-of-view, where FCN2 has the best per-
formance. Although FCN2 is inferior to FCN1, it
is still competitive to the best state-of-the-art track-
ers, i.e. MEEM [13] and RPT [14]. It is well-worth
to note that the improvements of our methods (both
FCN1 and FCN2) on low resolution sequences are
considerable, about 30 percent improvement on er-
ror evaluation and 17 percent improvement on over-
lap evaluation. In terms of running speed, KCF is
the fastest approach with around 30 frames per sec-
ond. The proposed FCN1 runs at approximately 3
frames per second, close to RPT and MEEM. At the
cost of losing 3 percent accuracy performance, FCN2
runs at 10 frames per second, nearly 3 times as fast as
FCN1. More information of this work can be found at
http://www.cse.cuhk.edu.hk/ khwong/papers.html

5 Conclusion

In this paper, we propose to apply the method
of fully convolutional networks to the visual tracking
task. After per-trained on segmentation data and fine-
tuned on the first image of a sequence, our FCNs can
track the targets and online update the model effi-
ciently. The whole pipeline is straightforward and sim-
ple but quite effective. Experimental results on both
OTB and VOT benchmark show that our tracker is
competitive to state-of-the-art trackers.
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Figure 2. Overall experimental result of one-pass evaluation on VTB. We choose to compute the performance
scores in the Precision Plots of OPE (left) at the location error threshold of 20 and Success Plot of OPE
(right) at the overlap threshold of 0.5 respectively.

ASLA CSK CXT VTS VTD TLD SCM Struck KCF TGPR RPT MEEM our FCN1 our FCN2

IV
error 0.517 0.481 0.501 0.573 0.557 0.537 0.594 0.558 0.728 0.687 0.825 0.778 0.867 0.816
overlap 0.503 0.388 0.416 0.503 0.480 0.460 0.568 0.491 0.581 0.591 0.684 0.667 0.711 0.681

SV
error 0.552 0.503 0.550 0.582 0.597 0.606 0.672 0.639 0.679 0.703 0.802 0.808 0.859 0.822
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DEF
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MB
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Table 2. Detailed results on all attributes, i.e. illumination variation (IV), scale variation (SV), occlusion
(OCC), deformation (DEF), motion blur (MB), fast motion (FM), in-plane rotation (IPR), out-of-plane
rotation (OPR), out-of-view (OV), background clutters (BC), low resolution (LR). The thresholds for error
and overlap evaluations are 20 pixels and 50 percent respectively. For each row, the rank-1st, rank-2nd and
rank-3rd results are marked in red, green and blue respectively.
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