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Abstract— Estimating the 3-D motion of a moving camera 
from images is a common task in robotics and augmented reality. 
Most existing marker-less approaches make use of either points 
or lines. Taking the advantages of both kinds of features in an 
unknown environment is more attractive due to their availability 
and differences in characteristics. A novel model-less method is 
presented in this paper to tackle the 3-D motion tracking 
problem. Two Bayesian filters, one for point measurements while 
another for line measurements, are embedded in the Interacting 
Probabilistic Switching (IPS) framework. They compensate for 
the weaknesses in one another by utilizing both kinds of features 
in the stereo images. The proposed method is able to obtain the 3-
D motion given as little as two line or two point correspondences 
in consecutive images with the use of multiple trifocal tensors. 
Our method outperformed two recent methods in terms of 
accuracy and the problem of drifting was very little in real 
scenarios. 

Keywords—Camera motion estimation, Pose tracking, Stereo 
Vision, Kalman filtering, Trifocal tensor 

 INTRODUCTION 

 Computation of the position and orientation of a moving 
camera is a common task in robot navigation and augmented 
reality. It is particularly challenging if such a piece of pose 
information is required to be measured at high speed in an 
unknown environment only with 2-D images as input. In this 
work, we have made significant improvements over the latest 
model-less 3-D motion tracking algorithm in [11]. Instead of 
using only point features in stereo images, we utilize both 
points and straight lines in the 3-D motion recovery process. A 
novel way to recover 3-D pose with line features in the images 
and trifocal tensors is proposed. The interacting probabilistic 
switching (IPS) framework is devised to enable the algorithm 
work with a mixture of point and line features. The algorithm 
operates in a recursive manner with the use of multiple 
Bayesian filters. Our methods are classified as model-less, as 
the scene model is not reconstructed and the 3-D structure of 
the scene is not known beforehand. No 3-D information about 
the scene structure is known in advance. 
 Most previous camera motion tracking algorithms, no 
matter whether they require prior knowledge about the scene, 

are specific to either point [3, 6, 9, 10, 11, 12, 25, 36] or line 
[1, 5, 13, 15, 16, 17, 26] features but are unable to handle 
both. For instances, Persson et. al. [30] developed a stereo 
visual odometry system on the basis of monocular techniques 
using point features. Silva et. al. [32] described a probabilistic 
approach to estimate the egomotion from calibrated stereo 
cameras in vehicles. A dense probabilistic 5-D camera motion 
estimation algorithm is combined with a sparse keypoint-
based method. Zhang et. al. [29] proposed the Bernoulli filter 
to address stereo visual odometry using SURF features. 
 To consider multiple cues in a tracking process, 
probabilistic techniques [24, 27] are widely used. Most of 
these methods are model-based. It means that they require 
prior knowledge about the 3-D model of the scene. For 
example, Comport et. al. [15] presented a virtual visual 
servoing framework for the estimation of camera pose that 
exploits various 3-D geometrical primitives including straight 
lines, circles, cylinders and spheres. 3-D model of the scene is 
needed. Pressigout and Marchand [2] devised another model-
based approach that integrates texture information into 
traditional pose estimation algorithm using only line features. 
Ramalingam et. al. [18] proposed a minimal pose estimation 
algorithms using points and lines with a known 3-D model of 
a city for geo-localization. Koletschka et. al. [31] explored the 
combination of point and line features to compute camera 
motion between consecutive stereo frames. 3-D structure of 
the scene is reconstructed on the fly. Rother [35] propsoed a 
linear method to simultaneously reconstruct 3-D points, lines, 
planes and cameras from multiple views with the  assumption 
that a reference plane is visible in the views. Some other 
researches considered both points and lines to compute the 
trifocal tensor and in turn reconstruct the scene structure [21] 
[22]. However, their focus is not on the recursive estimation of 
the 3-D motion.  

The contributions of this paper are as follows: 
 Taking the advantages of both point and line features. 
The proposed approach takes the advantages of both point 
features and straight lines in stereo images. Our hybrid method 
is able to operate under most realistic conditions. It is not the 
case for existing approaches that depend solely either on 
points or edges. To the best of the our knowledge, state-of-the-
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art techniques for recovering camera motion from images 
without reconstructing the 3-D scene structure are, however, 
either based solely on point or line features. [3, 11, 12]. 
Efficient trackers that exploit both points and lines require 3-D 
models in advance [2, 4, 18]. As lines in images can often be 
computed with great precision and point features are 
commonly available in the scene, our method can achieve a 
higher accuracy than either kinds of the algorithms that only 
makes use of points or lines alone. 
 Eliminating the step of reconstructing the 3-D scene 
structure. Our algorithm is model-less and the 3-D model is 
not reconstructed even with no prior information about the 
scene. This is achieved by  integrating the trifocal tensors into 
the Kalman filtering and IPS framework. This characteristic  
improves the accuracy as the trifocal constraint can stabilize 
the solution of the recovered motion.  
 Exploiting the strengths of a stereo camera. As stereo 
images are utilized in our method, the problems of monocular 
algorithms such as scale factor, observability and instability 
during the initialization stage, can be avoided with the help of 
the trifocal constraint. The trifocal tensors are arranged in a 
special way to lock up the features in every four views as in 
Fig. 4. Trifocal constraints are applied to transfer points and 
lines in the measuremnt models. Our algorithm is able to 
operate with two line or two point correspondences in 
consecutive stereo frames. 
 Experimental results show that our approach is more stable 
and accurate than an existing point-based approach [11], and 
another recent method using straight lines [5]. We have found 
that our algorithm can generate impressive results at high 
speed from long image sequences with small drifting. 
 The rest of this paper is organized as follows. In Section II 
the problem of 3-D motion estimation is defined. In Section 
III, an overview of the proposed motion tracking algorithm is 
given. In Section IV, the details of our Bayesian filters and the 
interacting probabilistic switching framework are described. 
In Section V, experimental results of our method with real 
images and synthetic data are shown. 
 

Fig. 1: The geometric model used in this article. 

 PROBLEM MODELING 

  Fig. 1 illustrates the setup of the imaging system. Here 
I1, I1

'
will be used throughout to designate the reference images 

taken by the left camera and right camera at the first time-step 

t=1, respectively. Likewise, It , It
'
 are the current images taken 

by the left and right camera at time t. Points and lines are 

extracted from images. Point tmp , and line tml , , where m=1,2.., 

are extracted from image It . Similarly, 
'

,tmp and 
'

,tml  are 

extracted from It
'
 . Points tmp ,  and 

'
,tmp  are the projection of 

the 3-D scene point mP  on the left and right view, respectively. 

Lines tml ,  and 
'

,tml  are the projection of the 3-D straight line 

mL  in the scene on the left and right image, respectively. tma , , 

tmb ,  and tmc ,  are respectively the parameters a, b and c of a 
straight line ax+by+c in general form. 
  Upper triangular matrix K encodes a camera’s intrinsic 
parameters. Matrix E  represents the extrinsic parameters of 
the rigid transformation between the system cameras. Both 
matrices are found by the calibration utility in [14].  

Matrix tM , or equivalently the 6-dimensional twist vector t , 
encodes the pose information that transforms the 3-D structure 
from the world frame to the reference camera at time instance 

t . t
~

 is the matrix form of t with the upper 33 component 
as a skew-symmetric matrix.  

 Tttttttt zyx  =           (1) 
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tx , ty  and tz  are the components that determines the amount 

of translation along the axes. t , t ,  t  are the rotations about 

the x , y  and z  axis respectively. t
~

 can be converted to 

tM with the exponential map. It is given as: 
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 The geometric relationships between the 3-D point 
T

mmmm zyxP ,1],,[=  in the scene and its projection tmp ,
~

 on 

the left view and 
'

,
~

tmp  on the right view in normalized form are 
obtained as: 

m
T

tmtmtmtm KPwvup =]~,~,~[=~
,,,,             (4) 
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Suppose the 3-D line mL is composed of two 3-D end-points. 
The 2-D projections of the end-points on the left view are 

1,,tmp  and 2,,tmp . Similarly, the 2-D projections of the end-

points on the right view are 
'

1,,tmp  and 
'

2,,tmp . tml ,  and 
'

,tml can 
be found by the cross product of their corresponding projected 
end-points: 



2,,1,,, = tmtmtm ppl                  (6) 
'

2,,
'

1,,
'

, = tmtmtm ppl                    (7) 

 f  is the focal length and  vu ss  denotes the principal point. 

The normalized form tml ,

~
 and 

'
,

~
tml  of line tml ,  on the left view 

and 
'

,tml  on the right view are respectively given by 
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tm,  and tm,  are the slope and polar radius of tml ,  . Likewise, 
'

,tm  and 
'

,tm  are the slope and polar radius of 
'

,tml . 
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The aim of the proposed method is to find the 3-D camera 

motion t  recursively given only the 2-D image 

measurements tmp , , 
'

,tmp , tml , and 
'

,tml . 

 OUTLINE OF THE ALGORITHM 

 

Fig. 2: A summary of the proposed 3-D motion tracking method that uses 
multiple extended Kalman filters within the interacting probabilistic switching 
framework. 
 
   An outline of the proposed tracking method is shown in Fig. 
2. Features are extracted from the first image pair at the 
beginning, i.e. at t=1. The feature correspondences between 

two views of the reference image pair are then established. 
Then we enter into the main filtering loop by setting the 
current time-step to t=2. From t=2, matched correspondences 
are tracked from one stereo pair to the next and the details will 
be explained in Section III.A. The trifocal tensors are arranged 
in a special way to lock up the features. Trifocal constraints 
are applied to transfer points and lines in the measuremnt 
models. Their arrangement will be discussed in Section III.B. 
The 2-D features are then passed to the extended Kalman 
filters (EKFs) within the proposed interacting probabilistic 
switching (IPS) framework. The IPS leads us to a flexible 
framework with a two-channel filter structure. The two 
channels, one for the point measurements and the other for the 
line measurements, are complementary in that each 
compensates for the weaknesses in one another, as points and 
straight lines bear distinguishing properties. The IPS algorithm 
makes use of the residual information from the channels to 
evaluate the contribution of each channel to the final 
computed pose using a probability framework. This provides a 
mechanism for the algorithm to combine the pose deduced 
from point and line features elegantly. The mathematical 
details will be presented in Section IV. 

 
Fig. 3: The extracted and matched point and line features in a stereo image. 
 
A. Feature Extraction, Matching and Tracking 
Existing techniques are applied to extract, match and track 
features in the stereo image sequence. Our method uses two 
kinds of features at the same time. One of them is a texture-
based feature, which is represented as an interest point in the 
space. To extract point features, the FAST detector [33] is 
employed. The interest points in a stereo pair are then matched 
using BRIEF descriptor [34], together with the brute force 
classifier based on the k-nearest neighbor (KNN) algorithm. 
Epipolar constraints [8] is added to enhance the matching 
robustness. For efficiency, the brute force classifier is 
templated on the distance metric called Hamming distance. 
The Kanade-Lucas-Tomasi (KLT) tracker described in [28] is 
then used to track the matched points from frames to frames in 
the images. 

Another type of features used in our system is the line 
feature. Lines are first detected in the reference image pair by 
a conventional edge detection algorithm such as the Canny 
algorithm. Then, the line correspondences between two views 
of the reference image pair are established. We follow the 
method by Schmid and Zisserman [19] using mean-standard 
deviation line descriptors (MSLD) [20] to establish line-to-
line matches in a stereo image. Matched correspondences are 
tracked from one frame to the next using Lucas-Kanade 
optical flow applied to the end-points as described in [7]. Fig. 



3 shows the extracted point features and straight lines in a 
sample stereo image. 

B. Defining the Trifocal Tensor Relations 
In our algorithm, we propose to use several trifocal 

tensors [8] to set up constraints among four views, i.e. I1, I1
'
, 

tI  and It
'
, for  motion tracking as illustrated in Fig. 4. 

The trifocal tensor introduced by Hartley in [8] is a 3x3x3 
array of numbers that incorporates all projective geometric 
relationships among three views. It is independent of the scene 
structure, and depends only on the relative pose among the 
three views and their intrinsic calibration parameters. The 
trifocal tensor actually relates the coordinates of 
corresponding points or lines in three views. This gives rise to 
the trifocal constraint. With such a constraint, point and line 
transfer among views becomes possible.  

The first triplet consists of the images of the first stereo 

image pair I1, I1
'
 in an image sequence and the current image 

It  taken by the left camera. Hence the first trifocal tensor 

T constitutes the set of images I1, I1
'
 and It . The second 

trifocal tensor 'T  and the third trifocal tensor *T  are formed 

in a similar manner such that 'T constitutes images I1, tI  and 
It

'
 , and *T  comprises the image set I1, I1

'
 and It

'
.  

Three trifocal tensors are used to form two sets of 
geometric constraints. The first set is composed of the trifocal 
tensor pair T and 'T . It helps the system ensure the 
consistency of slopes and displacements of the line features in 
every four views. The second set comprises the trifocal tensor 
pair T  and *T , and is used to lock up the positions of point 
features in every four images. 

 
Fig. 4: A visual representation of the trifocal tensor arrangement. The first 

tensor T  involves both points and lines in images I1, I1
'
 and It . The second 

tensor 
'T  involves only lines ,1ml , tml ,  and 

'
,tml . The third tensor 

*T  

involves only points pm,1, pm,1
'

 and pm,t
'

. 
 

With the normalized 2-D coordinates, T , 'T  and *T  can be 
expressed in tensor notation as:  

k
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j

ia , 
j
ia ' , 

j
ia"  are respectively the extrinsic parameters E  

of the stereo system, the elements of the upper 3-by-4 

component of the rigid transformation matrix tM  and the 

matrix product tEM  such that  j
iaE = ,    j

it aMI '
1333 =0   and 

 j
it aEM "= . 

These tensors are used in the form of transfer formulae in 
the EKFs that will be discussed in Section IV. Two of them 
are the point transfer formulae and can be written in the tensor 
notation as 

jk
ijm

i
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k
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where tmU ,  and 
'

,tmU  are respectively the normalized 

homogenous general form of tmp ,  and 
'

,tmp . 
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*
,tml  is a line passing through the 

thm  feature point 
'

,tmp  in 

the image pair of the right view at time t . 
*

,tml  is constructed 

by first finding the epipolar line 
*

,tml  through the coordinates 
'

,tmU . Then 
*

,tml  is joining 
'

,tmU  and perpendicular to the 
epipolar line. 
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where 12e  is an estimate of the epipole observed from the right 
camera and is calculated in the initialization step.  

The normalized homogenous general form of ,1ml , 
'

,1ml , 

tml ,  and 
'

,tml  are ,1

~
mL , 

'
1,

~
mL , tmL ,

~
 and 

'
,

~
tmL , respectively. The rests 

are line transfer formulae and are in tensor notation as 
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C. Feature Replacement 
A simple scheme catering for the replacement of 2-D 

features into the scene is used. For each set of geometric 
constraint, it has its own pool of feature correspondence and 
reference image pair. Correspondences that are extracted from 
the set of views related by the trifocal tensors are fed into the 
filters to find the innovation residual, which will be discussed 
in the next section. If the number of available features are 

below two or any greater-than-2 integer ck  defined by the 
user, the views at the current time-step will be set as the new 
reference image pair and the tracker will be bootstrapped. In 
other words, the features extracted the reference image pair 
I1, I1

'
 are assumed to be static and observable throughout the 

sequence before bootstrapping.    



IV. THE INTERACTING PROBABILISTIC SWITCHING 

FRAMEWORK AND THE EXTENDED KALMAN FILTERS 

 The proposed algorithm consists of two extended Kalman 
filters (EKFs) embedded within the interactive probabilistic 
switching (IPS) framework. One EKF takes point features as 
measurement input, i.e. the point filter, while the other one 
uses line features as measurements, i.e. the line filter. The IPS 
provides a probabilistic framework for the EKFs to interact. 
With the combination of estimates from the EKFs, the velocity 
of the camera system, and in turn its position and orientation, 
can be estimated.  
 
A. The Dynamic Systems 

The state vector )(ist  of the 
thi  EKF, }2,1{i , 

representing the pose is defined as: 

 Tttttttt zyxis  =)(            (23) 

tx  , ty  , tz  are the amounts of translational velocities along 

the axes. t , t , t  are the angular velocities of the motion on 

the x , y  and z  axis respectively. )(~ ist  is the matrix form of 
)(ist according to equations (1) and (2). tM  can be regarded 

as an integral of velocity from the initial time to the current 

moment. Let t  be the zero mean Gaussian noise and the 
dynamic system equations of the filters are: 

))(~(= 1 isexpMM ttt                 (24) 

ttt isis  )(=)( 1                 (25) 
It is assumed that the sampling rate of the measurements is 
high with small object motion between successive images.  

 
B. The Measurement Models 

The two EKFs that make use of different kinds of features 
as inputs have distinct measurement models. For the point 
filter, its measurement model is defined as: 

*** )(= tttt Mg                    (26) 

where 
*
tg  is the 14 * N -output trifocal tensor point 

transfer functions (15) (16) in Section III.B 
*
t  is a 14 * N  

vector representing zero-mean Gaussian noise imposed on the 

images captured. Here 
*N is the number of point features 

extracted from scene. Using the point measurements 
*
1  from 

the first stereo image pair in the sequence, the pose 

information tM , together with the extrinsic parameters of the 
stereo rig E , the estimated coordinates of the feature points at 
current time t can be computed. 

The measurement model for the line filter, which relates 

the pose tM  and the measurements ],[ '
tt   taken from the 

system, is defined as: 
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where t  is the line measurements from the image taken 

by the left camera at time-step t  while 
'
t  is the line 

measurements on the right view at time t . t  is a 12 N  

vector representing zero-mean Gaussian noise imposed on the 
images captured. N  is the number of extracted line features. 

tg  and 
'
tg  are the 12 N  -output line transfer functions 

(21)(22) in Section III.B with the results converted to the form 

of slope and polar radius using equations (10) (11). A line 1,ml  

can be transformed into slope 1,m  and polar radius  1,m  with 
these formulae.  

The line transfer function works in a reverse manner. Line 

measurements from the current image of the left camera t  
are projected back to the first left view with the predicted 

motion tM , the rigid transformation E , and line 

measurements in the first image from the right camera 
'
1  by 

solving the non-linear measurement equation. The estimation 

of line measurements on the left reference view 1  can also be 
computed from a quartette consisting the straight lines from 

the current left and right images, i.e. t  and t' , the predicted 

motion tM  and the rigid transformation matrix E . 
 

C. Interaction of the IPS Algorithm 
The basic IPS algorithm consists of several steps, which 

can be visualized in Fig. 2. Firstly, the likelihood of each filter 
)(1 it  is updated according to the 22  switching matrix 
),( jiJ  

)(),(=)( 1
* jjiJi t

j
t  

              (28) 

where )(* it  is the likelihood probability of the filter after 

interacting with the switching matrix ),( jiJ . ),( jiJ  denotes 

the probability of switching from filter i  to filter j . The 
switching matrix is set by assuming that the algorithm relies 
on either one kind of features for an extended period of time 
with an occasional transition to another type of feature 
measurements.  The other formulae for filter interaction are 
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where )(ˆ*
11, is tt   and )(ˆ *

11, iP tt   are respectively the state 
estimates and its covariance of filter i  after the interaction 

with the switching matrix ),( jiJ . They are then passed to the 
EKFs for prediction and smoothing with their own 
measurements in the current time-step. 

 
D. Filtering and Smoothing 

The prediction equations of filter i  for calculating the 
optimal estimates are 

)(ˆ=)(ˆ *
11,

*
1, isis tttt                (32) 

ttttt QiPiP  )(ˆ=)(ˆ *
11,

*
1,              (33) 



)(ˆ*
1, is tt   is the estimates of state )(ist  after prediction. 

)(ˆ *
1, iP tt   is a 66  covariance matrix of )(ˆ*

1, is tt  . tQ  is the 

covariance of the noise terms t  
The update equations of filter i  for the corrections of 

estimates: 
)()()(ˆ=)(ˆ *

1,
*
, iriWisis ttttt             (34)       

)(ˆ)()()(ˆ=)(ˆ *
1,

*
1,

*
, iPigiWiPiP ttMtttt              (35)               

1*
1,

*
1, ))()()(ˆ)(()()(ˆ=)( 

  iRigiPigigiPiW t
T

MttM
T

Mtt (36) 

where )(ˆ*
, is tt  is the estimate of state )(ist  after update. 

)(ˆ *
, iP tt  is a 66  covariance matrix of )(ˆ*

, is tt . )(iW  is Kalman 

gain matrix. )(igM  is the Jacobian of the non-linear 

observation equations of  filter i evaluated at )(ˆ*
1, is tt  . )(iRt  is 

the covariance of the measurement noise. )(irt  is the 
innovation vector as stated in equation (37). The outputs of the 

thi  filter after the prediction phase are )(ˆ*
1, is tt   and )(ˆ *

1, iP tt   

while that of the smoothing phase are )(ˆ*
, is tt  and )(ˆ *

, iP tt . 
 

E. Likelihood Update and Final State Computation 
After the Kalman filtering cycle, the likelihood of each filter 

)(it  is updated with regard to the innovation vector )(irt  and 

its corresponding residual covariance )(iSt  of the filters. 

 






2for  ),,('),,(

1for )(
=)(

'
1

'
1

'
11

**

iMgMg

iMg
ir T

tttttt

ttt
t 


  (37) 

)()()(ˆ)(=)( *
1, iRigiPigiS t

T
MttMt            (38) 

 
)(

)()()(0.5)(
=)(

1*

iS

iriSirexpi
i

t

tt
T

tt
tt

           (39) 

tt
i

i  =)(                     (40) 

t  is a normalization factor and )(it  is computed 
according to a zero-mean normal distribution function. Lastly, 

the usable output state vector 
*
,ˆ tts  and covariance matrix 

*
,

ˆ
ttP  at 

the current time-step are generated with the following 
equations: 

)(ˆ)(=ˆ *
,

*
, isis ttt

i
tt                 (41) 

 )()(ˆ)(=ˆ *
,

*
, iiPiP tttt

i
tt               (42) 

  Tttttttttt sissisi *
,

*
,

*
,

*
, ˆ)(ˆˆ)(ˆ=)(           (43) 

The final state output 
*
,ˆ tts  of the system is a linear sum of 

the smoothed state and covariance estimates of each filter 
weighted by the corresponding updated filter likelihood. 

V. EXPERIMENT RESULTS 

A. Experiments with synthetic data 
There are few types of errors that could affect the 

accuracy of the camera poses recovered by the proposed 
algorithm. The first type is the 2-D measurement error. To 
make the analysis, a uniformly distributed random error 't  

was imposed on each measurement. 40 synthetic features 
consisting of both points and lines were randomly generated. 
They were centered at 0.5m away from the camera The 
motion parameters per frame were randomly set with  their 
maximum change of 0.5 degrees and 0.0005 meters in rotation 
and translation, respectively. The focal length of a camera was 
4.6mm. The pixel dimension was 5.42 x 10-3 mm by 5.42 x 
103mm. Each simulation experiment for a particular 
measurement error value contained 50 trials and each test case 
involved a 150-frame-long synthetic image sequence. Fig. 5 
shows how the accuracy of the recovered poses varied as a 
function of the measurement error. The errors in the plots are 
the average accumulated total rotation  and  translation errors 
measured at the 150th frame. The errors were relatively small. 

The second type of error that we are going to investigate 
is the calibration error induced by inaccurate focal length.  
Fig. 6 shows the results. The formulae for calculating the 
errors are the same as the previous test. The proposed 
algorithm was not susceptible to erroneous focal length.   

 
Fig. 5: The accuracy of the recovered poses varies as a function of 
measurement noise. 

 
Fig. 6: The accuracy of the recovered poses varies as a function of errors in 
the calibrated focal length. 

In the third experiment, we want to compare our method 
with other existing methods. An empirical comparison among 
the proposed hybrid method, the line-based approach by 
Elqursh and Elgammal [5], and the point-based algorithm by 
Yu et. al. [11] was made using synthetic data. Configurations 
of the simulation were the same as before but with an accurate 
focal length. Fig. 7 shows the errors of 50 random test cases. 
The lines with different markers (asterisk for the proposed 
method, triangle for the approach in [5] and square for the 



method in [11]) are used to represent the experiment results of 
different methods. The proposed approach had errors smaller 
than that of Yu’s point-based algorithm [11] and Elqursh’s 
line-based method [5] for most of the time during tracking.  

Fig. 7: The mean accumulated rotation (top) and translation (bottom) errors 
versus frame number of the algorithms under comparison.  

TABLE I: A COMPARISON OF COMPUTATIONAL TIME AMONG 
THE THREE ALGORITHMS 

Algorithm\ 
Feature number 

Minimum 
Number 

10 20 30 

The proposed approach 
 
Yu's method 
 
Elqursh's method 

0.0030s  
 
0.0009s 
 
0.0002s 

0.0050s 
 
0.0016s 
 
N/A 

0.0095s 
 
0.0032s 
 
N/A 

0.0146s 
 
0.0051s 
 
N/A 

 

  Table 1 shows the core speed of all algorithms under 
comparison. The computation time required per frame is 
stated. The algorithms were implemented using C++ and 
tested using a desktop computer. Having 10 features in the 
scene, our method could operate at 200Hz.  

 
B. Experiments with real images 

A stereo image sequence was taken to evaluate the 
algorithm. We want to show if our algorithm can accurately 
estimate the 3-D motion of a robot. The robot moved in front 
of the bookshelf and images were taken with a stereo camera 
pair on the top. The ground-truth motion data was acquired 
while the robot was moving. The resolution of the images 
captured was 640x480 pixels. 

Fig. 8 shows the comparison of the recovered motion with 
the ground truth. The average total errors in translation and 
rotation were lower than 0.003 meters and 1 degree, 
respectively. These errors were quite small and were mainly 
induced by the deviations of the calibrated values of the 
system parameters from the actual values. 
 

 

 

 
Fig. 8: A comparison of the recovered motion parameters from the real 
sequence with the ground truth values in the Bookshelf sequence. 

VI. CONCLUSION 

  We have presented a recursive model-less algorithm to 
compute the 3-D camera motion from 2-D images in this 
paper. Both point features and straight lines are utilized in the 
computation process. At each time step, the motion is first 
predicted using the dynamic models in the extended Kalman 
filters (EKFs). It is then re-estimated with the help of the 
trifocal tensor point and line transfer functions in the 
measurement models. The final 3-D motion is computed by 
the likelihood probability of each EKF in the interacting 
probabilistic switching (IPS) framework. The trifocal 
constraints are incorporated into the system to eliminate the 
step of 3-D structure reconstruction. The core part of the 
proposed method takes 0.005s to process an image pair with 
10 features. The system is able to operate with a minimum of 
2 lines or 2 points. This requirement is so lenient that one can 
easily extract such a number of features in most realistic 
scenes. The proposed method has been applied to both 
synthetic and real data to demonstrate its performance. It is 
shown that our algorithm outperformed the latest recursive 



model-less approach [11] that uses only point features, and 
another recent method that depends solely on line features [5]. 
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