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Abstract- In this work, we solve the pose estimation problem for robot motion by placing multiple 

cameras on the robot. In particular, we combine the Extended Kalman Filter (EKF) with the multiple 

cameras. An essential strength of our approach is that it does not require finding image feature 

correspondences among cameras which is a difficult classical problem.  The initial pose, the tracked 

features, and their corresponding 3D reconstruction are fed to the multiple-camera EKF which estimates 

the real-time pose. The reason for using multiple cameras is that the pose estimation problem is more 

constrained for multiple cameras than for a single camera, which has been verified by simulations and 

real experiments alike. Different approaches using single and two cameras have been compared, as well 

as two different triangulation methods for the 3D reconstruction. Both the simulations and the real 

experiments show that our approach is fast, robust and accurate. 

1. Introduction 

To find the pose of an object is to get its position and orientation. It is a popular 

research problem, and is related to many different areas such as: robotics, man-machine 

interaction, augmented reality (AR), and intelligent vehicle guiding [37]. Applications 

are abundant, for example, maintenance training by augmented reality [23], precise 

localization in industrial environments [39], and identifying large 3D objects [27]. 

The pose estimation problem can be solved by many different approaches such as: 

dead reckoning, range sensing and map fusion [9]. However, most of these approaches 

suffer from drawbacks, e.g. the increase of systematic errors with time [37]. On the 

other hand, the computer vision approaches can solve this problem more efficiently and 
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with lower cost, especially with the dropping prices and the increasing accuracy of 

cameras. 

Pose estimation has different flavors in the field of computer vision. Sometimes it is 

denoted as the 2D-3D absolute orientation problem [13] which is equivalent to getting 

the (ego-) motion of the camera. If the 3D structure of the scene is required, then the 

problem becomes Structure from Motion (SfM). If it is required to find the relative 

camera pose between two views, the problem is denoted as the 2D-2D relative pose 

problem. When it is required to register a 3D object to a 3D CAD model, the problem is 

denoted as the 3D-3D pose problem [2], and [40]. There is an ambiguity problem in 

pose estimation which is known as the bas-relief ambiguity [3], [31], and [35]. This 

ambiguity  becomes obvious when the depth variation of the scene is small, and the 

camera field of view is narrow leading to misinterpreting the small translation along 

one axis as a rotation around another and vice versa. 

 In this work, we are interested in finding the ego-motion of a set of cameras for the 

sake of localizing a robot moving within a scene, however we intend to extend in future 

work to obtain an accurate 3D reconstruction of the scene on the fly. One approach of 

the solution is the use of epipolar geometry [14] based on the fundamental matrix or 

trifocal tensors. This approach is linear however it suffers from degenerate 

configurations and requires time consuming statistical techniques such as RANSAC to 

reduce the ruining effect of outliers. 

Another approach to find the camera motion is the bundle adjustment (BA) [14] and 

[33], which finds the optimal solution; however it requires a good initialization and a 

high computational cost. Factorization [14], [26], and [32] is optimal for affinities. Yet, 

the limiting factor of both BA and factorization is that they are batch techniques, which 

are not suitable for real time applications such as the problem at hand. 

When it is required to solve the problem in real time, as in our case, we have to use 
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recursive techniques such as the Kalman filter (KF) and its variants or the particle filter/ 

CONDENSATION algorithm. The latter, the particle filter, is more advantageous in 

tracking continuous curves, such as heads or hand contours, in dense visual clutter. 

However, KF variants are quite satisfactory in computational speed for point targets, as 

in our case where feature corners are tracked among frames. Moreover, improving the 

performance of the CONDENSATION algorithm requires increasing the sample size 

and the computational cost [16]. 

KF [15], [16], and [22] is an optimal recursive data processing algorithm for linear 

systems [19]. However, the linear assumption is violated by the perspective camera 

model. In this case, using Extended Kalman Filter (EKF) is necessary. In fact EKF has 

been used in diverse ways in the field of computer vision [7], [4], and [17]. The work in 

[8] by Broida et al was one of the early attempts to bring Kalman filter to the field of 

computer vision and motivated the related researches that followed. Broida et al used 

one filter for the pose and 3D structure, and used iterated extended Kalman filter (IEKF) 

to encounter the high nonlinearity of the state-measurement relation and the divergence 

of EKF in some cases. Weng et al in [36] compared batch to recursive techniques in 

motion and structure estimation. They also used one filter for both pose and structure 

and IEKF to improve the performance. Azarbayejani et al in [1] enhanced the recursive 

technique further to obtain the focal length which is one of the camera intrinsic 

parameters, and indicated the effect of parameterization on the stability and accuracy of 

the filter. They used one filter for both pose and structure and iterated EKF once to 

remove the initial transient. In [11], one EKF for both pose and structure is used. 

Having one filter for both pose and structure guarantees that they are coupled, however 

in this way, the length of the state space vector becomes large which may affect the 

filter stability. It is noted in [1] that the larger the length of the state vector, the lower the 

stability of the filter. Therefore, in this case, tuning the filter would be rather difficult. 
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This may be the stimulus behind using separate filters for pose and structure. In [6], one 

separate IEKF filter for each 3D point was used for structure updating. The pose was 

obtained using epipolar geometry and the accuracy was improved using RANSAC 

approach which rendered the solution not suitable for real time implementations as 

indicated above. In [38] Yu et al. used one EKF filter for pose as the first step, then used 

a set of EKFs, one for each model point as the second step. This in fact improves speed 

but may lower the accuracy due to the decoupling of pose and structure. In [29], 

Shademan et al. carried out a sensitivity analysis of EKF and IEKF in pose estimation 

but using a few number of points (about 5 or 6 points). 

Besides using multiple cameras in stereo rigs, they have been used in pose estimation 

primarily to resolve the bas-relief ambiguity [3]. In [10], [12], and [25], the multiple 

cameras are dealt with as a single generalized camera then, in [10], the problem is 

formulated in a least–squares manner and solved iteratively. Sometimes multiple 

cameras are used with KF or EKF, for example, in [28] multiple fixed cameras, and a 

KF combined with eigenspace methods are used to observe the pose of a planar robot 

joint. Additionally Lippiello et al in [18] discussed using multiple fixed cameras for 

pose estimation of an object with a known CAD model.  

In contrast, we use two cameras put back-to-back on a robot moving within the scene. 

The inputs to the system are the simultaneous frames taken by each camera, camera 

intrinsic parameters, and the initial pose. The output is the real time pose for each frame 

along a sequence of one hundred frames. To do this job, we use one EKF for pose 

estimation, and though our main interest is recovering pose, we calculate the 3D 

structure of the points fed to the EKF as well. To make the 3D structure consistent with 

the pose, we calculate it using triangulation methods based on the pose obtained from 

the EKF as will be explained in section 3. Furthermore, feature correspondences are not 

sought between different cameras in the set, only in subsequent frames of the same 
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camera which increases the accuracy of tracking due to the small baseline between 

frames. The fairly small number of sought correspondences for each camera drastically 

removes outliers. This configuration is promising in resolving the bas-relief ambiguity, 

and would be able to recover the pose in case of any of the cameras being off or for 

example imaging a textureless surface without enough features to track. 

1.1 Contributions 

The main contributions of our work are (1) formulating the EKF implementation for 

the pose estimation of moving multiple cameras, (2) comparing a triangulation method 

based on analytic geometry, the AG triangulation, to the well known linear 

triangulation method in terms of the ability to recover the scale factor, speed, and 

accuracy, and (3) using a changeable set of features to avoid the effect of occlusion.  

1.2 Structure of the Rest of the Paper 

In section 2, we present the background which discusses the scale factor ambiguity, 

the linear triangulation method. In section 3, we present details of our work, the layout 

of the solution algorithm, and the EKF implementation. In section 4, we introduce the 

experiments and the results. Section 5 is a discussion. We conclude our work in section 

6. Appendix A is dedicated to the AG triangulation, and at last, appendix B discusses 

the coordinate systems to be used as a reference for the motion. 

2. Background 

2.1 Scale Factor, Absent and Present 

The scale factor ambiguity has attracted a lot of attention in the literature. For 

example, in [8] it is indicated that normalizing the states is necessary to eliminate a free 

scale factor, otherwise, the IEKF simply diverges unpredictably along this extra degree 

of freedom. In [1], scale is set by setting the initial variance of the depth of the first 
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feature point to zero. This fixes that parameter to its initial value. All other parameters 

automatically scale themselves to accommodate this constraint. In [11], the scale factor 

is associated to a three reference features which are replaced with the most suitable 

points when occluded leading to an inevitable drift.  

Szeliski and Kang say in [30] that the scale ambiguity can be removed knowing the 

absolute distance between camera positions. Trucco and Verri in [34] agree with them. 

In [24], Nistér says that the overall scale of the configuration can never be recovered 

solely from images. In [20] McReynolds and Lowe comment on the viewpoint of 

Szeliski and Kang saying that the global depth offset cannot be determined from the 

images and indicate, in [20], that they use a known image scale factor which is related 

to the focal length and the camera’s field of view. In [14] Hartely and Zisserman 

indicate that to know the scale we need to know the real distance between two points in 

the image, and even assume a unity scale factor constraint for 3D reconstructions of 

image sequences. In our work, we need to resolve this ambiguity as shown in section 3. 

2.2 Linear Triangulation Method 

This method is used for reconstructing the 3D structure knowing the camera matrices 

which contain the cameras’ intrinsic parameters (focal length, etc.), and the extrinsic 

parameters (poses). This method will be explained briefly and the reader is referred to 

[14] for more details.  

Suppose that we have 5 cameras: 

 XPxXPxPXx ′′′′=′′′′′=′=  .......,..........  , ,        (1) 

Where x ={ }xxx ′′′′′,...,,  are 2D image points, P ={ }PPP ′′′′′,...,,  are camera matrices 

and X is the imaged 3D point which is found as follows: 

- Compose a cross product: x × PX = 0 to get an equation of the form 0=AX . 

- X is the last column of V, where TUDVA = is the singular value decomposition 
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(SVD) of A. 

Although in [14], it is mentioned that this solution is obtained under the constraint 

1=X , we have found that this method is capable of finding the scale factor since we 

use the absolute camera centers in composing the camera matrices. In contrast, if the 

relative camera centers, obtained under the assumption of unity translations, are used, 

the ambiguity cannot be resolved. Another triangulation method based on analytic 

geometry, the AG triangulation, is described in Appendix A. Moreover, both 

triangulation methods are compared in subsection 5.1. 

3. Our Work 

3.1 Introduction 

Our aim is to find the pose of a robot during its motion within the scene. Our strategy 

for the solution is to find the pose of a set of multiple cameras (with fixed relative 

positions) carried by the robot. For this implementation, we use two cameras however 

the algorithm is ready-to-use with any number of cameras. The reasons for using 

multiple cameras are: the rotation and translation are much better constrained for a 

multiple camera system than for single cameras [3], and [25], there are ambiguous 

scenes which require a set of images for accurate pose estimation [25], and intuitively 

adding an additional camera is equivalent to adding another eye for collecting more 

information. The use of multiple cameras is much more justified by the facts that the 

camera prices are dropping while the accuracy is increasing, and the redundancy is 

useful in case of any camera becomes off, completely occluded, or encountering a 

textureless part of the scene without enough features to track.  The choice of the 

back-to-back setting of the two cameras is motivated by the analysis of the Fisher 

Information Matrix by Pless [25] however the optimal number of cameras, rotations 

and translations between them. The inputs to our algorithm are the image frames taken 
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by the multiple cameras, and the camera calibrations. The output is the real time pose 

per frame with reference to the initial position of the first camera.  

 

Fig.1. Top-down view: effect of rotation and translation on the displacement between cameras 

(referred to the initial position, Rk and Dk are fixed, and k=2 in case of using two cameras) 

3.2 Multiple-Camera Model 

Taking the camera at the first frame as the reference, the camera coordinates, a 3×1 

vector Pij, of the 3-D feature Mi (3×1 vector), at frame j is given by: 

) ( j
T
j dMRP iij −=                (2) 

Where Rj is the (3×3) camera rotation matrix at frame j (referred to the first frame), 

and dj is the (3×1) camera translation vector at frame j (referred to the first frame). 

If we have multiple cameras, the kth camera rotated Rk at the first frame, and 

translated Dk from the reference has the following jth frame camera coordinates of Mi: 

)( T
j

T
k kjjiijk DRdMRRP −−=             (3) 

In Fig.1, Rk, and Dk are shown for the kth camera, while R1 and D1 are the identity 

matrix and the zero vector respectively (reference position.) 

Sometimes, it is required to have the reference coordinate system parallel to a fixed 

coordinate system in the scene, e.g. that formed by a room-corner. In most cases, it is 
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easy to adjust the initial position of the first camera with zero angles of rotations around 

that fixed coordinate system however we may need some effort to do this job if the 

camera has a spherical shape for example. Appendix B deals with this situation.  

3.3 Proposed Algorithm 

We solve the pose problem sequentially, a frame by frame, throughout all the 

sequence (one hundred frames), which is divided into sections (ten frames each). The 

length of a section is a trade-off between speed and accuracy as will be shown below.  

  
Fig.2. Brief Algorithm Flowchart. 

3.3.1 Initialization 

At this stage, we get the initial pose of the cameras, i.e. robot. We need only the 

pose of the first two to five frames to start the algorithm. Since generally the cameras 

will see completely different views of the scene, the pose of such frames may be 

obtained using the essential matrix for each camera respectively, but this method will 

be ill-conditioned if the initial translations are small. On the other hand, we get the 

initial pose from the computer program which controls the robot motion. The first 

frame is usually the reference with zeros in translations and rotation angles, and the 

next one or four frames respectively (is/ are) accurate enough to start the algorithm 

since the first few frames do not suffer from drift accumulation yet. The uncertainty of 

the initialization is tested experimentally in section 4.  
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Fig.3. Algorithm Flowchart. 

3.2.2 Feature Tracking, KLT (Group of Frames) 

At this stage we use the KLT algorithm [42] in feature tracking in the first 2-5 frames 

of the sequence for each camera respectively. However, it is easy to combine any other 

feature tracker with our algorithm. 

3.3.3 AG / Linear Triangulation 

The linear and the AG triangulation methods are described in section 2 and Appendix 

A respectively. This stage uses the outputs of the previous stages namely the pose and 

the feature correspondences per camera, e.g. for a group of 5 frames, to calculate the 3D 

reconstruction of such features. 

3.3.4 Feature Tracking, KLT (Single Frame) 

We move to the next frame for each camera tracking the features whose 3D 

reconstruction is computed at the previous stage.  
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3.3.5 Multiple Camera EKF 

This is the core stage of our algorithm. The output of this stage is the pose of the 

current frames of each camera, and the inputs to this stage are the tracked features in 

them, their 3D reconstruction, and the previous pose which is obtained only once from 

the initialization stage, then the current output of this stage is fed as the input previous 

pose for the next time step. 

3.3.6 Checking Step 

This stage provides the control logic of our algorithm. It first checks if there are 

upcoming frames in the sequence, if not it stops the algorithm. Otherwise, it checks if a 

new section should be started, if not the algorithm merely gets the next frame and 

moves to stage 4, KLT (Single Frame), and continues the processing. If a new section 

should be started, the last five frames of the current section are fed to stage 2, KLT 

(Group of Frames) and the processing is continued passing through stage 3, Linear/AG 

Triangulation which has in this case, as an input, the pose of the last 5 frames of the 

current section instead of the initial pose of the first (2-5) frames. 

The length of a section, as we mentioned above is a trade-off between speed and 

accuracy; it is known that KLT suffers from drift when tracking long sequences [38], so 

releasing the features and restarting a new tracking process for the next section will lead 

to choosing fresh good features to track. On the other hand, starting a new section will 

lead to the overhead of triangulation. Unlike [38], we do not restart the reconstruction 

of the new section orthographically, but in contrast, we use the calculated poses in our 

triangulation.   

Although, in some situations when the motion is limited to small translations and 

angles of rotations, it can be possible to consider all the sequence as one section with 

the triangulation stage carried only once at the beginning of the sequence, we stick here 
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to sections of 10 frames length to allow the range of motion to increase and to lower the 

drift of KLT algorithm, and hence the presence of outliers. 

3.4 Details of The Multi-Camera EKF Implementation 

The EKF inputs are the tracked features in the current frame, their corresponding 3D 

reconstruction, the previous pose and its covariance. Based on the inputs, the system 

model, and the statistical description of the system and measurement noise, the EKF 

can predict the current pose and its covariance which are fed to the EKF in the next 

frame as the previous ones. Therefore, the EKF is a recursive technique which solves 

the pose problem frame by frame. In fact, recursive techniques are so popular since they 

relax the storage requirements and enable real time performance. 

3.4.1 State space vector: 

T
zyxx tttttts ]                                                                                                              [ zy

••••••

= γγββαα   (4) 

Where   and , , zy tttx are the translations in the corresponding axes directions, 

•••

zyx ttt  and ,,   are their derivatives,     and , , γβα are the roll, pitch, and yaw angles, and 

•••

γβα and , ,  are their derivatives. 

3.4.2 Plant Equation: 

kk nss +Α= −1k                 (5) 

Where the 12×12 matrix A is given by (using MATLAB notation): 

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=Α

10
1

,,
10

1 ττ
Kdiag                  (6) 

τ is the sampling period, nk= N (0, Q) is the plant noise, and k is the time step. 

3.4.3 Measurement Equation: 

kkk shI η+= )(                   (7) 

Where Ik is the measurement vector (image points) of m different features taken by n 
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cameras, for example we can denote (ui
j, vi

j) as the image coordinates of the ith feature 

in the image taken by the jth camera, accordingly: 

T
11

111
1

1
1 ]                              [ n

m
n
m

nn
mmk vuvuvuvuI KKK=          (8) 

The function h(sk) is the state measurement relation: 

T

n
m

n
m

n
m

n
m

n

n

n

n

n
m

m

m

m
k Z

Y
Z
X

Z
Y

Z
Xf

Z
Y

Z
X

Z
Y

Z
Xfsh

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=                 , ,                )(

1

1

1

1
1

1

1

1

1
1

1
1

1
1

1
1

1 KKK    (9) 

j
i

j
i

j
i ZYX  and , ,  are the jth camera coordinates of ith feature, 

f1, ………,  fn  are focal lengths of the n cameras, 

And ηk = N (0, )λ  is the measurement noise. 

3.4.4 Initialization and Filter Tuning: 

Initialize )0(ˆks , and Ck(0) (initial estimation of state vector, and initial state 

covariance matrix respectively). Initial pose is obtained as mentioned in subsection 

3.3.1 and the initial velocities, the derivatives, are obtained from the initial pose, say at 

frame 5 of the whole sequence, and the pose at the preceding frame, frame 4 as follows: 

     
τ

)4()5()0( xx
x

ttt −
=

•          (10)    

( ) ( ) ( ) ( )  ,0  ,0   , 0  ,0  
••••

βαzy tt and ( )
•

0γ  are obtained in the same way. Additionally, as we 

know the initial conditions accurately enough, we can set the elements of the initial 

state covariance matrix to zeros. Another initialization technique is mentioned in [5]. 

For the filter tuning, we use the identity matrix for both Q, and λ. Other tuning 

techniques can be found in [34], [8] and [5]. 

3.4.5 Prediction: 

1,11-kk, ˆˆ −−Α= kkss                 (11) 

11,11-kk, −−− +ΑΑ= k
T

kk QCC               (12) 
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3.4.6 Update: 

Use 1,ˆ −kks  obtained from equation (11) in calculating T
jR , and dj and then substitute 

in equation (3) for each camera respectively to get the camera coordinates matrix, Pijk. 

Use Pijk to get h(sk) and Jk = ∂h(s)/∂s | 1,ˆ −= kkss . The Jacobian, 
s
h
∂
∂

, is a ( )122 ×mn  

matrix where n is the number of cameras, and m is the number of tracked features. 

Referring to (9) the state measurement relation h for the kth camera (not to be confused 

with the kth time step of the filter), the jth frame, and the ith feature is given by: 

j
k
i

k
i

k
i

k
i

kkji Z
Y

Z
Xfh ⎥

⎦

⎤
⎢
⎣

⎡
=   ,  ,,               (13) 

Let k
i

k
i

kU Z
Xfh =  , and k

i

k
i

kV Z
Yfh =          (14) 
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&&&&&&

&&&&&&
  (15)    

Referring to (3): 
)3(
)1(

ijk

ijk
kU P

P
fh =  , and 

)3(
)2(

ijk

ijk
kV P

P
fh =        (16) 

Where )1(ijkP  is the X-component of ijkP , )2(ijkP  is the Y-component of ijkP , and 

)3(ijkP  is the Z-component of ijkP . Let T
j

T
k  RRRot =         (17) 

Then 

])3()3()[3,1(])2()2()[2,1(])1()1()[1,1()1( zkiykixkiijk tDMRottDMRottDMRotP −−+−−+−−=

                  (18) 

Where ),( qlRot is the element of Rot  matrix at the thl row and the thq column, and 

T
xj tttd ]                       [ zy= is the translation vector of equation (3). )2(ijkP , and 

)3(ijkP can be written easily in a similar fashion.  
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Noting that kR  and kD are constants, ( )2)3(
)3()1,1()1()1,3(

ijk

ijkijk
k

x

U

P
PRotPRot

f
t
h −

=
∂
∂

 (19) 

αααα ∂
∂

−−+
∂

∂
−−+

∂
∂

−−=
∂
∂ )3,1(])3()3([)2,1(])2()2([)1,1(])1()1([ RottDMRottDMRottDMh

zkiykixki
U

                  (20) 

Similarly, we can obtain the other elements of the Jacobian, however the details are 

omitted for the space limits. Moreover, any partial derivatives with respect to velocities 

such as:    and ,                     
βα &&&&& ∂

∂
∂
∂

∂
∂

∂
∂

∂
∂ UV

z

V

y

U

x

U hh
t
h

t
h

t
h

are zeros since the velocities are not 

present in equation (3). 

Then we go on to calculate the Kalman gain, G, and the updated state and updated 

state covariance as follows: 

1
1,1, )( −
−− += λT

kkkk
T
kkk JCJJCG               (21) 

))ˆ((ˆˆ 1,1,, −− −+= kkkkkkk shIGss               (22) 

1,1,, −− −= kkkkkkk CGJCC                 (23) 

3.4.7 Image Feature Selection 

We arrange features in each frame according to their distances from the center of the 

image in an ascending order, and choose a number of them, say 50. This choice realizes 

several benefits: it is a sort of normalization that satisfies the zero average assumption 

which is essential for avoiding biased estimates in the EKF [11], the reduction of radial 

distortion is guaranteed. Furthermore, using such a flexibly changeable set of features 

renders our algorithm not affected at all by the occlusion of any feature points among 

frames. Moreover, it may provide a basis for studying the efficiency of our solution in 

the presence of bas-relief ambiguity as shown in Fig. 4 below. 
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4. Experiments and Results 

4.1 Simulations 

The robot carrying the multiple-camera setup was moved as if on the floor with 

random translations Tx, and Tz in the direction of X and Z axes respectively, and with 

random rotation angle  around the Y axis. The coordinate system origin coincided β

with the center of the first camera at the motion start with the Z axis perpendicular at the 

image frame. The translations were taken randomly with a uniform distribution from 

±0.005 to ±0.015 meters, and the rotation angles were taken randomly with a uniform 

distribution from ±0.005 to ±0.02 radians. A random noise was added to each feature 

point with a normal distribution of zero mean and 1 pixel standard deviation. 

The motion took place inside a spherical surface whose radius is one meter and its 

center coincides with the origin of the coordinate system. The spherical surface is open 

from either side in the direction of Y axis extending from -0.22 to 0.22 meters. The 

feature points were distributed randomly on the spherical surface. The total number of 

feature points, in the scene, was chosen as 10,000, 15,000 and 20,000 respectively and 

experiments were carried out to study the accuracy and the speed of the algorithm in 

each case. Additionally, the different choices of such number is related to the bas-relief 

ambiguity, since we feed the EKF with a certain number of points, 50, 75, or 100, in 

each frame which is nearest to the image center, and the larger the total numbers of 

feature points in the scene, the narrower the spread of the chosen point features around 

the center of each image. This is equivalent to having a small depth of view such as the 

case when using a lens of a large focal length to image a distant object with more details 

and small depth variation. 
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Fig.4. Approximate drawing showing the relation between the total number of feature points in 

the scene and the field of view. 

We compared different two-camera and single-camera methods. For these sets of 

experiments we fixed the roll, pitch, and yaw rotation angles of the second camera with 

respect to the first to [0, π, 0] respectively, and the translations of the second camera 

center from the first to [0, 0, -0.03] meters in the directions of X, Y, and Z axes 

respectively at the motion start. Moreover, we carried out two sets of experiments to 

study respectively the effect of the pose initialization error, and the measurement pixel 

error of the images on the results. 

4.2 Simulation Results 

We carried out three sets of experiments with the total number of feature points, in 

the scene, chosen as 10,000, 15,000 and 20,000 respectively. Each set was run 100 

times and for each run the different approaches of the solution were experimented to 

guarantee a fair judgment. The tests are: using two cameras with linear triangulation, 

using two cameras with AG triangulation,  and then  using one camera  with linear 

triangulation having 50 points/frame,  75 points/frame, and 100 points/frame. 

The absolute error of the translational and rotational parts of the motion are 

calculated as well as the time of the processing whether in the EKF part or in the 

triangulation part of the algorithm. The following three tables give the average of 100 

runs, in each case, the absolute errors and the time periods are given per frame, while 
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the convergence rate of each approach is given per the total number of runs. The term: 

“one frame” is obvious when using a single camera however it means the set of 

concurrent frames, taken at the same moment, for multiple cameras. All the 

experiments were run using Matlab-7.0.4 on a machine with a 2.8 MHz Pentium 

processor, and 512 MB RAM. 

Method Tx Abs. Error 

meter 

Tz Abs. Error 

meter 

β Abs. Error 

radian 

EKF Time 

second 

Triangulation Time 

second 

Convergence 

% 

Linear 2 Cam. 0.000419 0.00119 0.000885 0.01206 0.012205 100 

AG 2 Cam. 0.002271 0.004474 0.001917 0.01226 0.074619 92 

Linear 1 Cam. 50 points/frame 0.051274 0.04954 0.049933 0.002742 0.006478 100 

Linear 1 Cam. 75 points/frame 0.053393 0.059658 0.051274 0.006196 0.006497 100 

Linear 1 Cam. 100 points/frame 0.05112 0.070661 0.047674 0.011512 0.006817 100 

Table.1. Number of feature points 10,000 /scene 

Method Tx Abs. Error 

meter 

Tz Abs. Error 

meter 

β Abs. Error 

radian 

EKF Time 

second 

Triangulation Time 

second 

Convergence 

% 

Linear 2 Cam. 0.000398 0.001185 0.00095 0.012375 0.018888 100 

AG 2 Cam. 0.005386 0.013015 0.004471 1.23E-02 1.14E-01 92 

Linear 1 Cam. 50 points/frame 0.045823 0.039463 0.044277 0.002711 0.010253 100 

Linear 1 Cam. 75 points/frame 0.044598 0.046363 0.042489 0.006258 0.010365 99 

Linear 1 Cam. 100 points/frame 0.046999 0.052829 0.044777 0.011688 0.010199 100 

Table.2. Number of feature points 15,000 /scene 

Method Tx Abs. Error 

meter 

Tz Abs. Error 

meter 

β Abs. Error 

radian 

EKF Time 

second 

Triangulation Time 

second 

Convergence 

% 

Linear 2 Cam. 0.000384 0.001267 0.000936 0.012238 0.025238 100 

AG 2 Cam. 0.004475 0.009242 0.003064 1.22E-02 1.53E-01 94 

Linear 1 Cam. 50 points/frame 0.040851 0.032019 0.040007 0.002737 0.013089 100 

Linear 1 Cam. 75 points/frame 0.042712 0.039809 0.041685 0.006286 0.013077 100 

Linear 1 Cam. 100 points/frame 0.042179 0.045209 0.040617 0.011638 0.013061 100 

Table.3. Number of feature points 20,000 /scene 

Note: The pose, with reference to the initial frame, has a sum of absolute translations 

equal to 1 meter on average, and a sum of absolute rotations equal to 1.25 radians (≈71.6 

degrees) on average.  

Three random samples of the program runs are shown in Fig.5 below. 
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Fig.5. Three samples of the simulation outputs: each row shows tx, tz, andβof the same sample 

obtained by the two-camera, and single-camera methods compared to the ground truth.  

Since in real situations, there must be uncertainties in the initialization step due to 

noise in the pose of the initial frames, we carried out a fourth set of experiments to study 

the effect of adding Gaussian noise with zero mean and standard deviations ranging 

from 5% to 50% of each random pose element (translations and rotation angles). These 

simulations were run for a scene with 10,000 feature points one hundred times for each 

noise level with a total number of one thousand runs. The results are shown in Fig.6 

below. The shown absolute errors are the average per frame, and the error standard 

deviations are the average per sequence (one run of the program). 
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Fig.6. Effect of uncertainties of pose initialization 

 

Fig.7. Effect of measurement noise 

Moreover, we carried out a fifth set of experiments to study the effect of adding 

Gaussian noise with zero mean and standard deviations ranging from 0.1 to 1 pixel 
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measurement error to the images (fixing the standard deviation of the initial pose noise 

to 25%). These simulations were run for a scene with 10,000 feature points one hundred 

times for each noise level with a total number of one thousand runs. The results are 

shown in Fig.7 above. The shown absolute errors are the average per frame, and the 

error standard deviations are the average per sequence (one run of the program). 

4.3 Real Experiments 

 

Fig.8. The robot and the cameras: frontal, side, and back views 

The robot used is shown in Fig.8. It carries two ordinary web-cameras with 

240320×  resolution put back-to-back about 40 centimeters apart. Additionally, the 

path taken by the robot is defined via a wireless network connected to a computer 

on-board. Before carrying out the experiments, each camera is calibrated to obtain the 

internal parameters using [43]. To calibrate the inter-rotation and the translation 

between the two cameras, we use two upright and parallel check-boards facing each 

other with a known distance in-between. The extrinsic parameters of each camera 

with respect to the corresponding check-board are obtained using [43]. Since the 

relation between the coordinate systems attached to the two check-boards are known, 

we can easily get the inter-rotation and the translation between the two cameras. We 

cannot use the stereo-calibration since the two cameras are back-to-back. However, as 

an alternative, the 1D-calibration mentioned in [21] might be used. 

A sequence of 100 frames was taken simultaneously by each camera; some 

frames are shown in Fig.9. The pose is obtained using the different methods described 



Internal report number: 
khw_irep_070516 

The CSE Dept., The Chinese University of Hong Kong, Internal report, 
2007-May-16 

 

 22

above and the results are shown in Fig.10, and the ground truth is provided by the 

computer controlling the robot.  

 
Fig.9.The lab-sequence: each row shows frames 1, 51, and 100 for each camera 

 
Fig.10. The real experiment results for single and two-camera methods: the upper row shows 

translations while the lower row shows rotation angles. 

5. Discussions  

Our EKF algorithm has been used to the following approaches: two cameras with 

linear triangulation, two cameras with AG triangulation, and single-camera with linear 

triangulation having 50 points/frame, 75 points/frame, and 100 points/frame 
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respectively. From the absolute error columns in the three tables, it is clear that 

two-camera methods are far more accurate than single-camera methods and this well 

justifies the use of multiple cameras rather than one.  

5.1 Linear versus AG Triangulation  

Both the two triangulation methods are capable of recovering the scale factor as 

explained in section 2, and appendix A. However, the linear triangulation is better than 

the AG triangulation in terms of accuracy, speed, and convergence rate. This is 

expected since the linear triangulation method solves a set of equations simultaneously 

with SVD to find the best solution in the least squares manner while the AG 

triangulation finds the midpoint between each pair of skew lines, then takes the average 

of midpoints which also may suffer from round-off errors. Additionally, the repetition 

of the AG triangulation algorithm with each pair of the skew lines, ten pairs in case of 

the five lines used here, is the cause of the slower speed than the linear implementation.  

5.2 Single-camera methods  

Fixing the total number of feature points in the scene, the three single-camera 

methods are close to each other in terms of accuracy, and there is no fixed direction of 

improvement with increasing or decreasing the number of points used in each frame. 

This indicates that we need more research to find the optimal number of points to use. It 

is also obvious that, as the total number of points in the scene increases, the accuracy of 

the single-camera methods slightly increases. On the other hand, the required time 

increases as we move down from a table to another with a larger number of total feature 

points in the scene, and within the same table from a row to another with a larger 

number of feature points per frame. 

5.3 EKF Time versus Triangulation Time 

There are two entries for time in the three tables, one for the time spent in the 
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multiple-camera EKF step, and the other for the time spent in the triangulation step. 

Both times are given per frame. For example, looking at the first row of the first table, 

we find out the average time required per frame in the two-camera method with linear 

triangulation is the summation of these two times, 0.024265 seconds. Therefore this 

algorithm can process about 41 frames per second with a very high degree of accuracy. 

Furthermore, even more frames can be processed per second by relaxing the 

triangulation overhead, for example, it can be carried out once in each set of 20 frames 

not 10 frames as in the current implementation; this tradeoff between speed and 

accuracy was explained in section 3. Practically, this high speed will be limited by the 

maximum frame rate the hardware used can handle, the image size, the feature tracker 

used, and the number of features to be tracked. However, since tracking a few number 

of features, 50 or lower, is enough for accurate pose estimation, the real time 

performance is guaranteed. Additionally, further speed can be gained by using 

multiprocessing; each camera can have its processor to track features and triangulate 

whenever needed. With respect to the EKF time, it is approximately constant for the 

same method in the three tables, since the main time consuming of this approach is a 

matrix inversion, see equation (21), which depends on the number of points used for 

each frame. Therefore, the time required by the EKF algorithm increases in case of the 

single-camera methods from the 50 points method to the 100 points which is slightly 

faster than the EKF algorithm in the case of the two-camera methods which use also 

100 points. The slight increase in EKF time in case of the two-camera methods is due to 

the formulation of the geometric relations between the two cameras. Again, the EKF 

times for the two-camera methods are quite close in all tables to further prove our 

conclusion. 

With respect to the triangulation time of the simulations, we triangulate all available 

features at the beginning of each section to deal with motion randomness. That is why 
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the linear triangulation time is nearly constant for the three single-camera methods in 

each table regardless of the number of points used. However as we move down to the 

next table where the number of feature points increases, the linear triangulation time 

increases. The time required for the two-camera method with linear triangulation in 

each table is nearly the double  of any single-camera method, since the triangulation 

algorithm is carried out in this case twice, one for each camera frame. When moving 

from a table to the next, the AG triangulation nearly increases by the same ratio as the 

linear triangulation however for each table, it is longer than the linear triangulation 

method as explained in subsection 5.1. 

5.4 The Two-camera methods and the Number of Points in the Scene   

Now, we compare each two-camera method among the three tables. The two-camera 

method with linear triangulation has nearly the same accuracy in all tables which is a 

good indication that it can be used in resolving bas-relief ambiguity. Its convergence 

rate is 100% in all cases, however, the required time for the triangulation increases as 

the number of feature points increases which is the case in simulation only since we 

triangulate all available features at the triangulation step. In real circumstances, the 

triangulation is carried out for a fixed number of features. 

With respect to the two-camera method with AG triangulation, it is obvious from the 

three tables that the convergence rate is not affected by narrowing the field of view. 

Generally, the accuracy of Table.1 results is the highest and that of Table.2 is the lowest 

indicating again that there is no fixed direction of improvement and more research 

should be done to find the optimal settings. 

5.5 The Effect of Uncertainties in Initial Pose    

As shown in Fig.6, fixing the method used, the absolute errors and the error standard 

variations of pose components generally increase with the increase of the percentage of 
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the standard deviation of the Gaussian noise added to the initial pose. This is expected 

since the initial reconstruction is affected and the error propagates to subsequent poses. 

Therefore, we need to initialize the algorithm as precise as possible to guarantee 

accurate results. 

5.6 The Effect of Measurement Noise   

As shown in Fig.7, while the standard deviation of the average-mean Gaussian noise 

added to the images varies from 0.1 to 1 pixel and the method used is fixed, the pose 

absolute errors and standard deviation errors vary slightly and can be considered almost 

constant. This agrees completely with the theoretical foundation of the Kalman Filter 

which can estimate the state space vector accurately under the assumption of 

average-mean Gaussian measurement noise [19]. We think that the filter would 

perform well even if the standard deviation of the measurement error increased much 

more, albeit it might need re-tuning.  

5.7 Real Experiments  

As shown in Fig. 10, although the ground truth is not perfect due to possible drift and 

slipping of the robot wheels, the two-camera method with linear triangulation follows it 

fairly well. The slight variations of γα  and  ,  ,yt around the ground truth are caused by 

small perturbations in the position of the robot center-of-gravity due to the presence of 

the small wheels shown in Fig. 8 (they are used only for supporting the robot while the 

motion is transferred from the motor-assembly to the larger wheels via a gear-box). 

Although, the two-camera method with AG triangulation is closer to the ground truth 

than single-camera methods in cases of y and  ttx , it suffers from drift especially in 

cases of γα  and , ,zt . We believe that using accurate cameras with resolutions higher 

than 240320×  provided by the web-cameras used will allow more precise calibration 
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and provide more accurate results. 

6. Conclusions and Future Work 

In this work, we introduce a novel approach, using multiple-camera EKF, to find the 

motion of the set of cameras, or rather the motion of the robot carrying them. The 

novelty of this approach is the use of the multiple cameras, two in this work, have a 

large rotation angle in-between, and do not need to have any common features across 

the camera at the same time. Additionally, the features are tracked from each frame to 

the subsequent of the same camera which realizes a small baseline and allows accurate 

tracking which much reduces the outliers. Using a flexibly varying set of points for 

each frame, the nearest to the image center, to be fed to the EKF algorithm stabilizes the 

filter and again reduces the effect of outliers which tend to move largely away from 

their false correspondences, and if they are close to the image center, the negative 

effects will be minimal. 

The AG triangulation method has been compared to the linear triangulation method. 

Furthermore, both the two-camera methods have been compared to three single-camera 

methods with different point numbers of features per frame, and different point 

numbers in the scene which has been related to the small depth of view of the bas-relief 

ambiguity. Additionally, we have studied the effects of the uncertainties in the initial 

pose, and the measurement noise on the accuracy and the stability of the two-camera 

methods. Moreover, we have compared all methods in a real experiment setting.  

The accuracy, the speed, and the stability of the two-camera method with linear 

triangulation render this method quite suitable for precise real time applications. 

For future work, we would carry out more research to study the case of more than two 

cameras, the translations and rotations among them to find the optimal settings. 

Additionally, we would study the bas-relief ambiguity in more details under this setting. 
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Self-initialization of the initial pose would be studied perhaps by adding a camera or 

more to the assembly to serve two purposes: providing accurate self-initialization, and 

recovering pose optimally. Furthermore, we would combine the linear and the AG 

triangulation methods to make use of the accuracy of the former and the potential 

outlier-removing capability of the later in wide baseline settings. Moreover, we would 

try other feature trackers which may be more efficient than the KLT. Finally, we would 

extend the algorithm to obtain an accurate 3D reconstruction of the scene on the fly. 

Appendices 

A. Analytic Geometry (AG) Triangulation 

If we have two known camera centers CC ′, with respect to a global reference 

(coordinate system), and two image points xx ′,  (in two camera frames) for one 3D 

point X, then we can refer both of x and x′  to the global coordinate system then get 

the point of intersection of the rays Cx  and xC ′′ . Certainly, these two rays will be 

skew due to noise however we can get the midpoint between them since the cameras are 

calibrated (Euclidean setting). We can extend the AG triangulation to any number of 

images; we choose 5 throughout this work. In this case, we get 10 midpoints (ray 1 with 

rays 2, 3, 4, and 5- ray 2 with rays 3, 4, and 5 and etc.), and the resultant midpoint is the 

average of them all. 

The algorithm for calculating the midpoint of skew rays is a major modification of 

the algorithm in [41] which can be used only for two line segments. Fig.11. below 

describes the AG Triangulation. Normally, we apply this method to a set of five 

cameras however the three cameras shown in the figure explain the method well. All 

camera centers: C , C ′ ,  and C ′′ have known locations, and all image planes have 

known rotations with reference to the global coordinate system at O. Now, we will 

calculate the coordinates of the image point x in the image plane of the first camera. 
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With reference to the coordinate system at the first camera center C: 

[ ]TyxC fsvsux ,, ××=              (A1) 

Where (u, v) are the image coordinates in pixels of x, (sx, sy) are respectively the 

horizontal and vertical distances, in the image plane, between any two adjacent pixels 

in meters, and f is the focal length of the first camera in meters. 

 
Fig.11. AG Triangulation 

With reference to the global coordinate system at O: 

tRxx CO +=              (A2) 

Where R, and t are respectively the rotation and translation of the first camera center, 

C, with reference to the global coordinate system at O. Global coordinates of x′ , and 

x ′′ can be obtained in the same way.  

What we note about this solution is that it is capable of resolving the scale factor 

ambiguity since the camera centers are known with reference to a global coordinate 

system. Additionally, the outliers can be detected and removed easily if we assume for 

example that if a midpoint is far from the average (by 3×standard deviation of the 

midpoints in the direction of any coordinates axis), it will be considered as an outlier. 

Furthermore, if the midpoint occurred behind the camera centers, which is detected by a 

sign reversal, the correspondence will be due an outlier. 
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B. Using a Fixed Coordinate System in the Scene 

As mentioned in subsection 3.2, we will consider here the first camera starts 

from non-zero rotation angles and hence non-identity rotation matrix. Referring to 

Fig.1, assume that at the time of calibrating the rotation and translation of the kth 

camera with respect to the first we find that: 

The rotation matrix of the first camera around a reference coordinate system is r1calib, 

the rotation matrix of the kth camera around the same coordinate system is rkcalib, and 

the translation vector of the kth camera from the first, with reference to the same 

coordinate system, is Dkcalib. 

Then, R1k, the inter-rotation between the kth camera and the first (as if the first has an 

identity rotation matrix) is given by: 

calibrRcalibr kk =× 11             (B1) 

Multiplying both sides by Tcalibr1 which is the transpose and inverse of calibr1 : 

calibrcalibrR k
T

k ×= 11           (B2) 

Now, if R1 the initial rotation matrix of the first camera is different from that at the 

calibration time then, following (B1), the initial rotation of the kth camera is: 

kk RRR 11 ×=             (B3) 

Additionally, if relativeR is the relative rotation between 1R and calibr1  such that: 

calibrRR relative 11 ×=           (B4) 

Then T
relative calibrRR 11 ×=          (B5) 

And accordingly Dk, the initial translation vector of the kth camera will be: 

calibDRD krelativek ×=           (B6) 

Now that we have computed kR and kD in (B3) and (B6) respectively, we can feed 

both of them into equation (3) and start processing.  



Internal report number: 
khw_irep_070516 

The CSE Dept., The Chinese University of Hong Kong, Internal report, 
2007-May-16 

 

 31

References 

[1] A. Azarbayejani and A.P. Pentland, “Recursive estimation of motion, structure, and focal length”, IEEE Trans. on PAMI, vol. 17, no 6, June 

1995. 

[2] M. Baeg, H. Hashimoto, F. Harashima, and J. B. Moore, “Gradient Flow Approach for Pose Estimation of Quadratic Surface”, Industrial 

Electronics, Control, and Instrumentation, 1995., Proceedings of the 1995 IEEE IECON 21st International Conference on, pp. 161 - 166 vol.1, 

6-10 Nov. 1995. 

[3] Baker, P., Fermuller, C., Aloimonos, Y., and Pless, R., “A spherical eye from multiple cameras (makes better models of the world)”, Computer 

Vision and Pattern Recognition, 2001, vol 1, 8-14 Dec. 2001, pp. 576-583. 

[4] Y. Bar-Shalom and X.-R. Li, Estimation and Tracking: Principles, Techniques and Software. Norwood, MA: Artech House, 1987. 

[5] Y. Bar-Shalom, and X. R. Li, and T. Kirubarajan, Estimation with Applications to Tracking and Navigation Theory Algorithms and Software, 

John Wiley, 2001. 

[6]  P.A. Beardsley, A. Zisserman, and D. W. Murray, “ Sequential Updating of Projective and Affine Structure from Motion”, International 

Journal of Computer Vision 23(3), 235-259, 1997. 

[7]  G. A. Borges, and M. Aldon, “Optimal Mobile Robot Pose Estimation Using Geometrical Maps”, Robotics and Automation, IEEE 

Transactions on, Volume 18,  Issue 1,  Feb. 2002.  

[8]  T. J. Broida, S. Chanrashekhar, and R. Chellappa, “ Recursive 3-D Motion Estimation from a Monocular Image Sequence,” IEEE Trans. 

Aerospace and Electronic Systems, vol. 26, no. 4 July 1990. 

[9] M.F.M. Campos, and L.S. Coelho, “Autonomous Dirigible Navigation Using Visual Tracking and Pose Estimation”, Proceedings of the 1999 

IEEE International Conference on Robotics& Automation, Detroit, Michigan, May 1999. 

[10]  W. Chang, and C. Chen, “Pose Estimation for Multiple Camera Systems”, Proceedings of the 17th (ICPR’04), pp. 262 - 265 Vol.3, 23-26 Aug. 

2004. 

[11] A. Chiuso, P. Favaro, H. Jain, and S. Soatto, “Structure from Motion Causally Integrated Over Time,” IEEE Trans. on PAMI, vol. 24, no 4, 

April 2002. 

[12] M. Grossberg and S. Nayar, “A general imaging model and a method for finding its parameters,” Proc. Int. Conf. Computer Vision, 2001. 

[13]  R. M. Haralick, H. Joo, C. Lee, X. Zhuang, V. G. Vaidya, and M. B. Kim, “Pose Estimation from Corresponding Point Data”, IEEE Trans. On 

Systems, Man, And Cybernetics, vol. 19, No. 6, November/December 1989. 

[14]  R. Hartley and A. Zisserman, Multiple View Geometry in computer vision, Cambridge University Press, 2003. 

[15] K.S. Huang, and M.M. Trivedi, “Robust Real-Time Detection, Tracking, and Pose Estimation of Faces in Video Streams, Pattern Recognition, 

2004, ICPR 2004, Proceedings of the 17th International Conference on, pp. 965 - 968 Vol.3, 23-26 Aug. 2004. 

[16] M. Isard, and A. Blake, “Contour tracking by stochastic propagation of conditional density”, In Proc. European Conf. Computer Vision, 1996, 

pp. 343-356, Cambridge, UK. 

[17] A. H. Jazwinski, Stochastic Processes and Filtering Theory. NewYork: Academic, 1970. 

[18] V. Lippiello, B. Siciliano and L. Villani, “Position and Orientation Estimation Based on Kalman Filtering of Stereo Images”, Proceedings of the 

2001 IEEE International Conference on Control Applications September 5-7, 2001. 

[19] P.S. Maybeck, Stochastic Models, Estimation, and Control, vol. 1., New York, Academic Press, 1979. 

[20]  D.P. McReynolds and D. Lowe,"Rigidity Checking of 3D Point Correspondences under Perspective Projection," IEEE Trans. Pattern Analysis 

and Machine Intelligence, vol. 18, pp. 1174-1185, 1997. 

[21] G. Medioni, and S.B. Kang, Emerging Topics in Computer Vision, NJ, USA, Prentice Hall, 2004. 



Internal report number: 
khw_irep_070516 

The CSE Dept., The Chinese University of Hong Kong, Internal report, 
2007-May-16 

 

 32

[22] L. P. Morency, A. Rahimi, and T. Darrell, “Adaptive viewbased appearance model”, In Proceedings IEEE Conf. on Computer Vision and 

Pattern Recognition, 2003. 

[23]  C. Nakajima, and N. Itho, “A Support System for Maintenance Training by Augmented Reality”, Image Analysis and Processing, 

2003.Proceedings, 12th International Conference on, pp.158 – 163, 17-19 Sept. 2003. 

[24]  D. Nistér, “An Efficient Solution to the Five-Point Relative Pose Problem”, IEEE Trans. On PAMI, vol. 26, No. 6, June 2004. 

[25] R. Pless, “Using many cameras as one,” Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition, 2003. 

[26]  I. D. Reid and D. W. Murray. Active tracking of foveated feature clusters using affine structure. International Journal of Computer Vision, 

18(1):41-60, 1996. 

[27] S.D. Roy, S. Chaudhury, and S. Banerjee, “Recognizing Large Isolated 3-D Objects Through Next View Planning Using Inner Camera 

Invariants”, IEEE Trans. on Systems, Man, and Cybernetics—Part B: Cybernetics , vol. 35, no. 2, April 2005. 

[28] D. C. Schuurman, and D. W. Capson, “Direct Visual Servoing Using Network-synchronized Cameras and Kalman Filter”, Proceedings of the 

2002 IEEE International Conference on Robotics and Automation, Washington, DC., May 2002. 

[29]  A. Shademan, F. Janabi-Sharifi, “Sensitivity analysis of EKF and iterated EKF pose estimation for position-based visual servoing”, Control 

Applications, 2005. CCA 2005. Proceedings of 2005 IEEE Conference on, pp. 755 – 760, 28-31 Aug. 2005. 

[30] R. Szeliski, and S. B. Kang, “Shape Ambiguities in Structure From Motion”, IEEE Trans. On PAMI, vol. 19, No. 5, May 1997. 

[31] S. Tariq and F. Dellaert, “A Multi-Camera 6-DOF Pose Tracker”, Mixed and Augmented Reality, 2004. ISMAR 2004. Third IEEE and ACM  

International Symposium, 2 -5 Nov., 2004, pp. 296-297 

[32]  C. Tomasi and and T. Kanade. Shape and motion from image streams under orthography: A factorization approach. International Journal of 

Computer Vision, 9(2):137-154, November 1992. 

[33]  W. Triggs, P. F. McLauchlan, R. I. Hartley, and A. Fitzgibbon. Bundle adjustment for structure from motion. In Vision Algorithms: Theory 

and Practice. Springer-Verlag, 2000. 

[34]  E. Trucco, and A. Verri, Introductory Techniques for 3-D Computer Vision, New Jersey, Prentice Hall, 1998. 

[35]  A.T. Tsao, Y.P. Hung, C.S. Fuh, Y.S. Chen, “Ego-motion Estimation Using Optical Flow Fields Observed FromMultiple Cameras”, in CVPR 

1997, pp. 457-462. 

[36] J. Weng, N. Ahuja, and T.S. Huang, “ Optimal Motion and Structure Estimation,” PAMI, vol. 15, No. 9, September 1993. 

[37] M. Yang, Q. Yu, H. Wang, and B. Zhang, “Vision based Real-Time Pose Estimation for Intelligent Vehicles”, 2004 IEEE Intelligent Vehicles 

Symposium, Parma, Italy, June 14-17, 2004 

[38]  Y. K. Yu, K.H. Wong, and M. Chang, “Recursive Three-Dimensional Model Reconstruction Based on Kalman Filtering”, IEEE Trans. On 

Systems, Man, And Cybernetics, vol. 35, No. 3, June 2005. 

[39]  X. Zhang, N. Navab, “Tracking and Pose Estimation for Computer Assisted Localization in Industrial Environments”, Applications of 

Computer Vision, 2000, Fifth IEEE Workshop on, pp. 214 – 221, 4-6 Dec. 2000. 

[40] X. Zhuang, and Y. Huang, “Robust 3D-3D Pose Estimation”, Computer Vision, 1993. Proceedings., Fourth International Conference on,  pp. 

567 – 571, 11-14 May 1993. 

[41]  http://sun.uni-regensburg.de/idl-5.5/html/idl4/jhuapl.doc/vectors/v_skew.html 

[42]  http://www.ces.clemson.edu/~stb/klt/ 

[43] http://www.vision.caltech.edu/bouguetj/calib_doc/ 


