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Abstract 

In this paper, we propose a low-cost hand-held flexible display system which uses a projector to 

project display content onto an ordinary white paper that can be twisted freely. The ultimate goal 

is to develop an interactive viewing tool for displaying content on flexible surface that can be 

deformed by the user, i.e., when the user twists the paper, the display content on the paper deforms 

simultaneously. Such a system may have a lot of potential in the entertainment and education 

industries. A pair of cameras is employed to track the pattern printed on the back of paper. They 

and the projector are calibrated off-line via a simple and convenient method. A real-time algorithm 

is proposed to recover the 3D surface of the paper. The display content is then pre-warped 

according to the recovered surface and projected onto the front of the paper. Two demonstrative 

applications are elaborated to illustrate the potential of the proposed system. Our system is easy to 

set up and runs in real-time. Experimental results show that the flexible display is created with 

satisfactory accuracy and robustness. 
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1 Introduction 

In this paper, we present a flexible display system which employs a projector to project 

display information onto a hand-held flexible surface (e.g. an ordinary white paper) that 

can be twisted freely. While the user twists the projection surface, the system projects 

well-tailored information onto the surface corresponding to the deformation so that the 

viewer sees the information as if it is printed on the paper. 

Traditional display systems usually display information on static flat monitors and the 

viewer interacts with it using indirect pointing devices such as keyboard and mouse. The 

shape of the screen is fixed and the control of the display such as the viewing angle is 

limited. As display technology being widely used in different disciplines, static display 

technology is not sufficient for many emerging applications. For example, in the medical 

field, a common way for clinicians to analyze medical volumetric data such as MRI and 

CT is to view the cross-sectional slices of the data obtained. With a traditional static 

display system, the slices can only be displayed on a fixed screen and the interaction is 

achieved via keyboard and mouse; the user’s viewing experience is limited and the 

interaction is unnatural. An alternative way is to interact with these cross-sectional slices 

directly using a projector and a hand-held screen. The projection frustum forms a virtual 

object model in space, the user inserts the portable screen into the frustum and the 

corresponding cross-sectional slice of the volumetric data is displayed. The user can 

observe any cross-sectional slices he wants. This mobile type of display provides the user 

with an immersive experience and a more natural and direct way of interaction. Also the 

human internal organs are usually not planar but curved, so a flexible slicing tool that not 

only displays planar slices but also curved slices may help the doctor diagnose the 

disease. Though several flexible display systems like [5][6] have been proposed, they 

have limitation of requiring sensors attached onto the surface and only allow very limited 

deformation. These reasons motivate us to develop a more flexible, low cost, easy-to-

setup and real time hand-held display system. Such a system is expected to have a lot of 

potential in practice, not only in medical fields but also in entertainment and education. 

For example, it can be used as a model-preview tool in manufacturing to preview the 

appearance of flexible models and how it can be twisted by users before it is put into 

production.  

The proposed system is based on computer vision technology and the devices used 

consist of a projector and three webcams. Neither special hardware nor sensors are 

needed. The configuration of our system is shown in Figure 1. The projector and one 

webcam are fixed on a rig and another two webcams are placed on the floor. An ordinary 

white paper with printed checker pattern on the back is used as the projection screen. 
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When the user manipulates the paper screen within the viewing field of the projector and 

the cameras, the camera pair on the floor tracks the checker pattern and the projector will 

project pre-warped images onto the top of the paper. The facing down camera on the top 

is included as an observation camera when calibrating the projector since the facing up 

cameras on the floor cannot observe the projection result. If we reuse one of the tracking 

cameras as the observation camera, the total number of cameras needed is actually two. 

Figure 1. The configuration of our system: (a) The overall diagram of our system; (b) From top to 

down: the facing down projector and camera, the facing up tracking camera pair, and an ordinary 

paper with checker pattern printed on the back as the flexible surface. 

The potential use of the proposed system is demonstrated with two applications. The first 

one is the flexible image projection application that can be used as a model previewing 

tool to view different appearances of curved model surfaces. The second one is a flexible 

slicing tool that not only views planar but also curvilinear cross-sections of medical 

volumetric data. The use of the system is not limited to these two examples. Other 

applications can be implemented using the similar method depending on one’s 

imagination.  

The major contribution of this work is the proposal of a new flexible display system and 

an effective approach to realize it with several low-cost and off-the-shelf devices. The 

advantage of the proposed method mainly lies in a simple calibration technique and an 

efficient algorithm to track and recover the deformation of the flexible surface. The rest 

of the paper is organized as follows: we first briefly review some related work in Section 

2 and then give an overview of the system architecture in Section 3. In Section 4 we 

introduce the calibration of the system. In Section 5 we describe how to track and recover 

the surface of the paper. In Section 6 we present some potential applications of our 

(a) (b) 
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system. Implementation and experimental results are detailed in Section 7. We conclude 

the paper in Section 8. 

2 Related work 

There are a large number of projector camera systems proposed in the literature. The 

problem of non-rigid surface recovery is also a widely-studied topic. In this section, we 

review several related projection systems and recovery algorithms. 

2.1 Projector camera system 

Research of building projector camera systems is popular in Human Computer Interaction 

(HCI) since such systems provide easy ways of man machine interaction. In most existing 

systems, the screens are static and non-deformable. For example, Sukthankar et al. [12] 

proposed a smart presentation system to correct the keystone distortion caused by the 

arbitrary projector-screen geometry. Raskar et al. [9] proposed a spherical screen to create 

an immersive large display. Although movable display systems such as [13][7] allow 

more freedom in control, they still project on rigid projection surfaces. 

As one of the few flexible screen systems, Lee et al. [6] proposed to display content on 

some regularly-foldable surfaces such as scroll, fan and umbrella. They attached IR LED 

markers on the control points of the surface and tracked them using a Wiimote. The 

surface is then recovered via the markers. Since the Wiimote can track at most 4 IR LEDs 

at the same time, the foldable surfaces are limited to those having fairly high folding 

symmetry. Konieczny et al. [5] built a flexible projection system to project display 

content onto a flexible surface. However, this approach uses position sensors to track the 

surfaces. Moreover, it only allows the surface to bend in one dimension. Our approach 

goes beyond that in two aspects: (1) we do not need specially designed surface or sensors. 

Computer vision technology is used to track and recover the surface of an ordinary white 

paper; (2) we allow more freedom in the deformation of the surface. The user can twist 

the paper freely. 

2.2 Non-rigid surface recovery 

The non-rigid surface recovery problem refers to estimating the 3D shape of the surface 

based on its 2D image observation. It is a severely ill-posed problem in the case of a 

monocular camera since the depth information is lost under perspective projection. Many 

prior models and regularization methods have been proposed to solve the ill-posedness. 

For example, Bregler et al. [2] proposed a factorization method to build the 3D model 
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from the tracked 2D feature points. They simply represented the 3D model as a linear 

combination of a set of basis vectors, which may limit the deformation ability of the 

model. Physics based methods [3] have better approximation to model the behavior of a 

general surface, but the complexity of the model may be very high. Statistical learning 

techniques [14][11] are usually employed to simplify complex nonlinear models. 

However they need a lot of training data in order to obtain a good model. 

Recently Salzmann et al. [10] proposed a tracking method for 3D surface recovery based 

on a simple triangulation model. They proposed to constrain the edge orientations of the 

triangulation model between consecutive frames and formulated it as a Second Order 

Cone Programming (SOCP) problem. Though state of art result can be obtained, the 

computation time is very long, about 10 seconds is needed to process a frame. In order to 

achieve real time recovery, we use a stereo camera pair to solve the depth ambiguity. A 

flexible triangulation model which allows more freedom of deformation is also proposed. 

3 System overviews 

P

,K M

 

Figure 2. The overview of our system 

Our system is an integration of three parts. Figure 2 shows the overview of the system. 

The first part is the calibration module. In order to recover the flexible surface and guide 

the projection to fit the deformation, we need to calibrate the geometric relationships 

among the two tracking cameras and the projector. In our approach, it is unnecessary to 

explicitly estimate the relative poses between them. Instead we simply estimate two 

projection matrices. A simple and convenient calibration method is proposed. The second 

part is tracking and recovering the surface of the paper. To simplify the tracking process 

and enable real time recovery, a checker pattern is printed on the back of the paper and a 

stereo camera pair is used. We track corners of the checker pattern and recover their 3D 

positions. The surface of the paper is then approximated by a triangulated mesh of the 3D 
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corners. We employ a flexible triangulation model that can enhance the deformation 

ability of a fixed triangulation model. The last part is to project the display content onto 

the paper. Based on the calibrated projection matrix and the recovery result, the display 

content is pre-warped to fit the surface of the paper. In Section 4, 5, and 6, we describe 

each module in detail. 

4 System calibrations 

The calibration step finds the geometric relationships among the two tracking cameras 

and the projector. In our approach, we first calibrate one tracking camera using the 

OpenCV toolbox [4] and choose it as a reference camera. Then we calibrate two 

geometric relationships, one between the reference camera and the projector and the other 

between the two tracking cameras. Without the need to known explicit geometric 

parameters, we simply estimate two projection matrices, one from the 3D camera 

coordinate of the reference camera to the projector image plane, and another to the second 

tracking camera image plane. Both projection matrices are constant and independent from 

the deformation of the paper. While designing the calibration method, we keep in mind 

that the calibration process should be as easy as possible since the layout of the cameras 

and the projector might change frequently in practice. It should not take the user too 

much time and labour to calibrate the system. 

4.1 The projective model 

The projective model of the projector is similar to the camera model except for the 

projection direction. The projection from a 3D world point to the 2D projector image 

pixel is related by a 3 4×  perspective projection matrix. We assume that the world 

coordinate is identical to the reference camera coordinate in this paper. Then any 3D 

point in the reference camera coordinate, for example a point ( , , )x y zX  on the paper, 

corresponds to its projector pixel ( , )u vx  via a projection matrix P : 

s =x PX%%      (1) 

and 

 

11 12 13 14

21 22 23 24

34 32 33 34

p p p p

p p p p

p p p p

 
 

=  
 
 

P                         (2) 

where x% , X%  are the homogenous coordinates and s  is a scale factor. 
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Similarly, the 3D point X  in the reference camera coordinate, and its projection y  in 

the second tracking camera are also related via a 3 4×  projection matrix M : 

 s =y MX%%                             (3) 

and 

11 12 13 14

21 22 23 24

34 32 33 34

m m m m

m m m m

m m m m

 
 

=  
 
 

M                       (4) 

The target of the calibration is then subject to estimating the two projection 

matrices P and M . 

4.2 Calibration method 

Figure 3. The corresponding images captured by (a) the observation camera and (b) the reference 

camera. The cross in the reference camera found via the homography is shown in (b). 

To estimate the projection matrix P , the main idea of the proposed method is to collect a 

number of correspondences between the 3D points in the reference camera coordinate and 

their 2D projections in the projector image. The collecting process is conducted as 

follows: we hold a thin cardboard with identical checker pattern printed on both sides 

between the projector and the reference camera. A cross with a known position is 

projected to the top side of the cardboard. The reference camera and the observation 

camera can observe the checker pattern on each side but only the observation camera can 

observe the cross. When the user moves the cardboard slowly, our calibration program 

will detect the checker pattern in both cameras and the cross in the observation camera 

automatically. If two checker patterns and the cross are all detected, the program reports a 

correspondence and asks the user if it is acceptable. This allows the user to discard bad 

correspondences since the detection of the checkers and cross may be wrong. If the user 

accepts it, our program will record the image positions of the detected checkers and cross. 

An example correspondence is shown in Figure 3. We repeat the above process to collect 

a number of correspondences. For each correspondence, the projector image position of 

(b) (a) 
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the cross is predefined. What leaves for us to solve is its 3D position in the reference 

camera coordinate. 

Based on the recorded image positions of the checker corners in the reference camera, we 

can compute their 3D coordinates by a pose estimation algorithm [15]. Accordingly, it is 

possible to calculate the 3D coordinate of the cross on the cardboard given its 2D image 

position. However, the facing up reference camera cannot observe the cross directly. So 

we need to find its image position in the reference camera. Since the checker patterns on 

the two sides are identical, they are assumed to have the same 3D positions and thus the 

checker corners in the two cameras are related by a homography: 

  s =x Hy% %                              (5) 

and 

11 12 13

21 22 23

31 32 33

h h h

h h h

h h h

 
 

=  
 
 

H                         (6) 

where ( , )u vx  and ( , )α βy  are the corresponding corners in the reference camera and 

observation camera respectively. The homography matrix has 8 unknowns (up to a scale 

factor) and four corresponding corners are enough to estimate it. Substituting each pair of 

corresponding checker corners into (5) and re-arranging it to the form in (7), we can 

estimate the homography by Singular Value Decomposition (SVD). The image position 

of the cross in the reference camera is then calculated via the homography given the 

detected image position of the cross in the observation camera. 

11
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31

32

33

1 0 0 0
0

0 0 0 1

h

h

h

h
u u u

h
v v v

h

h

h

h

α β α β

α β α β

 
 
 
 
 
 − − −   =  − − − 
 
 
 
 
 
 

             (7) 

Next we calculate the 3D coordinates of the cross in the reference camera coordinate. We 

first calculate the 3D positions of the checker corners via the pose estimation algorithm 

[15] given the intrinsic parameters of the reference camera and the physical width of the 

checker. After obtaining the 3D positions of the checker corners, we can construct the 

planar equation of the cardboard: 
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 0ax by cz d+ + + =                        (8) 

where , , ,a b c d are the coefficients of the planar equation. Since the 3D cross point is on 

the cardboard, it should satisfy the planar equation (8). Meanwhile, the 3D cross point 

and its 2D projection should satisfy the projection equation of the reference camera: 

1

u x

s v y

z

   
   

=   
   
   

K                          (9) 

and 

 

11 12 13

21 22 23

31 32 33

k k k

k k k

k k k

 
 

=  
 
 

K                       (10) 

where K  is the calibrated intrinsic parameter matrix of the reference camera and 

( , )u v  have been obtained via the homography transformation in (5). From (8) and (9), 

we can solve the 3D coordinates of the cross point. Until now, we have obtained full 

information from feature correspondences to estimate the matrix P . 

The projection matrix in Eq. (4) has 12 unknowns (up to a scale factor), so a minimum 

number of 6 correspondences are enough to solve it. Substituting each pair of the 2D and 

3D coordinates of the cross into Eq. (1), we can obtain a solution using SVD in the same 

way we estimate the homography. In order to compensate for the detection errors of the 

cross and the checkers, a fine adjustment is carried out. It minimizes the following sum of 

squared back-projection errors: 

2 2

11 12 13 14 21 22 23 24

31 32 33 34 31 32 33 34

i i i i i i
i i

i i i i i i i

p x p y p z p p x p y p z p
u v

p x p y p z p p x p y p z p

   + + + + + +
− + −   

+ + + + + +   
∑    (11) 

Taking the SVD solution as initialization, we use the Levenberg-Marquardt method [8] to 

minimize the error. After this step, the accuracy of the estimated projection matrix is 

further improved. 

The calibration of the projection matrix M  can be done in a similar way. Each corner 

pair of the checker pattern in the two tracking cameras forms a correspondence. The 

calibration process is thus easier since the correspondence can be directly observed. 

The proposed calibration approach is easy, flexible and automatic. The whole process 

involves little labour of the user. It takes about a few minutes to complete a whole 

calibration, including collecting the correspondences and estimating the two projection 

matrices. 
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5 Paper Surface tracking and Recovery 

We propose a real-time surface tracking and recovery algorithm to recover the 3D surface 

of the paper in each frame. In our implementation, to simplify the tracking and save 

computation time, a checker pattern is printed on the back of the paper, which can be 

easily detected and tracked by the Lucas-Kanade tracker [1]. Moreover, the calibrated 

tracking camera pair is used to solve the depth ambiguity. The recovery task is subject to 

recovering the 3D positions of the checker corners in each frame based on their tracked 

image positions. Assuming there are totally n  corners, and the tracked positions in the 

two tracking cameras are ( , ), ( , ), 1
i i i i i i

x u v y i nα β = L , the corresponding 3D positions 

( , , )
i i i i

x y zX  are then the unknown variables to be estimated. 

Figure 4. An example of the flexible triangulation of a 4 3×  checker pattern. The triangulation in 

(b) is re-projected to the paper in (a). 

To allow more deformation freedom, we apply a flexible triangulation scheme to the 

corners. In detail, each checker is triangulated through introducing a diagonal line. 

However, different from existing fixed triangulation models, the choice of which diagonal 

line to triangulate along is not fixed beforehand but to be determined during the recovery 

process. In other words, the model allows each checker to deform along either one of its 

two diagonal lines. The flexible triangulation model enhances the deformation ability of 

the fixed triangulation model, especially for our small size checker pattern. We introduce 

a variable ω  for each checker to indicate along which diagonal to triangulate. The 

variable has two possible values, 1 or -1. The value 1 indicates the checker deforming 

along the left-top to right-bottom diagonal line while -1 indicates the deformation along 

the other diagonal line. Supposing there are m  checkers in the pattern, the indication 

variables , 1
i

i mω = L  are also the unknowns to be estimated. An example of a flexible 

triangulation to a 4 3× checker pattern is shown in Figure 4. 

To solve the 3D positions and the indication variables, we minimize an energy function 

composed of two parts, the back-projection errors of the checker corners in two tracking 

cameras and a smoothness term to regularize the triangulation model. Substituting each 

(a) (b) 
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corner into Eq. (9) and Eq. (3), we can formulate the energy function of back-projection 

errors as: 

2 2 2 2
T T T T

1 2 1 2

T T T T
0 3 3 3 3

n
i i i i

p i i i i

i i i i i

u v α β
=

          
   = − + − + − + −                    

∑
k X k X m X m X

E
k X k X m X m X

% %

% %
 (12) 

where
T T T

1 2 3, ,k k k are three row vectors of K and 1 2 3, ,T T T
m m m  are three row vectors of 

M . To regularize the triangulation model, an intuitive idea is to preserve the original 

edge length of each triangle. However, such a regularization term is difficult to optimize. 

Salzmann et al. [10] proposed to preserve the orientation of the edge in consecutive 

frames and obtained good results. We employ the same constraint in our formulation and 

formulate it as a quadratic term. Assuming that the surface { }, 1t

i
i n=X K  at time t is 

known, for each edge i jX X in the triangulation model, the edge orientation constraint is 

formulated as the difference of orientation between consecutive frames, namely: 

1 1t t t

ij i j ij
δ θ+ += − −X X                        (13) 

and 

t t

i jt

ij ij t t

i j

Lθ
−

=
−

X X

X X
                        (14) 

where
ij

L is the original length of the edge. According to our triangulation model, there 

are two types of the edges. One is the side edge of the checker and another is the diagonal 

line. However, for the second type, we should choose the diagonal line to regularize 

according to the value of the indication variable. If it is 1, we constrain the left-top to 

right-bottom diagonal line; If -1, we constrain the other diagonal line. The total 

smoothness term is the sum over all edges, namely: 

2 2 2

1 ( , )

1 1

2 2

m
k k

r ac bd ij

k i j

ω ω
δ δ δ

= ∈

+ − 
= + + 

 
∑ ∑

Ω

E                (15) 

where , , ,a b c d  are indices of the four corners of the 
th

k  checker, ac and bd  are 

the two diagonals, Ω is the set of side edges. The recovery is then subject to minimizing 

the sum of the two energy functions. 

,
min

i k

p r
ω

λ+
X

E E                          (16) 

where λ  is a weight of the smoothness term. There are totally 3n m+  variables to be 

solved. Simultaneous minimization over X  and ω  is difficult because the indication 
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variables are discrete and there are enormous combinations of them even with a small 

size checker pattern. Our solution is to separate X  and ω  and minimize over them 

alternately. Specifically, when minimizing over X , we keep ω  constant, and vice visa. 

The two minimization phases in one iteration are detailed as follows: 

minimization over X  All 
i

X  are involved in both 
p

E  and 
r

E . They are quadratic 

in 
r

E  but non-quadratic in
p

E . To simplify the optimization, we reformulate 
p

E  to 

quadratic form. The idea is to restrict the back-projection errors under a boundγ , and 

rewrite it to a quadratic form: 

( ) ( ) ( )

( ) ( ) ( )

2 2 2
T T T T 2 T

1 3 2 3 3

2 2 2
T T T T 2 T

1 3 2 3 3

i i i i i i i

i i i i i i i

u v γ

α β γ

− + − ≤

− + − ≤

k X k X k X k X k X

m X m X m X m X m X% % % % %

       (17) 

p
E  then becomes: 

( ) ( ) ( )( )
( ) ( ) ( )( )

2 2 2
T T T T 2 T

1 3 2 3 3

0

2 2 2
T T T T 2 T

1 3 2 3 3

0

n

p i i i i i i i

i

n

i i i i i i i

i

u v γ

α β γ

=

=

= − + − −

+ − + − −

∑

∑

E k X k X k X k X k X

m X m X m X m X m X% % % % %

    (18) 

and the minimization becomes: 

min
i

p rλ+
X

E E                         (19) 

All terms in the total energy are quadratic, so the energy function can be easily minimized 

by solving the linear equations: 

( )
0

p r

i

λ∂ +
=

∂

E E

X
                      (20) 

minimization over ω  The variables ω  are only involved in the diagonal line of the 

regularization term. So we can ignore other terms. The minimization becomes: 

2 2

1

1 1
min

2 2k

m
k k

ac bd

k
ω

ω ω
δ δ

=

+ − 
+ 

 
∑                   (21) 

Since each 
k

ω  is independent, the optimization is actually a comparison of
ac

δ  and 

bd
δ  for each checker. If 

ac
δ  is smaller, 

k
ω is then set to 1. Otherwise, 

k
ω  is set to -1. 

The initial values of X andω are set to the result of the previous frame. For the first frame, 

a tricky method is used. We require the paper in the first frame to be planar. So X  in 
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the first frame can be obtained simply by the pose estimation algorithm [15]. Forω , we 

simply set all of them to 1 in the first frame. Although the paper may not be ideally planar 

in practice, it works well in our experiment. The above alternate minimization converges 

quickly and we usually run a few iterations for each frame. 

6 Applications 

From the tracking and recovery algorithm, we obtain the 3D surface of the paper in each 

frame, represented as a triangulated mesh of 3D corners. In combination with the 

calibration result, we can make the flexible surface a versatile interface for visualizing 

images and data. In this section, we describe two demonstrative applications to illustrate 

the use of our proposed system.  

6.1 Flexible image projection 

The first one is to display a “flexible” image on the paper, i.e. when the user twists the 

paper, the image bends simultaneously with the paper deformation, just like it was printed 

on the paper. This application can be viewed as an example of shader lamp [16], in which 

the object to be modified is the projection surface itself. It would be useful as a model 

previewing tool to view different appearances of a curved surface. This kind of flexible 

projection can be widely used in entertaining and educational field to produce a more 

immersive user experience. 

The display relies on a pre-warping of the display content before projected to the paper. 

Given the display content image SSSS , the warping of the projection image PPPP  is 

conducted as follows. For each triangle of the surface, we first project its three vertices to 

the projection image plane using the projection matrix P . For example, a triangle 

composed of , ,
i j k

X X X  is projected to , ,
i j k

x x x . Then for each pixel x within the 

projected triangle, we find its corresponding point X  on the paper. We write X  in 

barycentric coordinates in terms of its three vertices: 

1 2 3i j k
ξ ξ ξ= + +X X X X                       (22) 

Since point X  projects to the pixel x  via the projection matrix P , we can obtain the 

barycentric coordinates by solving the following linear equations: 

1 2 3 1

s

ξ ξ ξ

=

+ + =

x PX%%
                          (23) 
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The target is then to set the content of ( )xPPPP  to what should be display on X . We apply 

the same triangulation of the surface to SSSS , and for each x , with the barycentric 

coordinates 1 2 3, ,ξ ξ ξ  calculated we can find the corresponding pixel y in SSSS . The 

colour of ( )ySSSS  is then copied to ( )xPPPP . By reversing the projection direction, the 

content of each triangle in SSSS  will be projected onto a corresponding triangle region on 

the surface. 

A depth image ZZZZ  with the same size of the projection image is used to handle the 

possible mutual occlusion of the triangles. Each ( )xZZZZ keeps the minimum depth among 

all the points that project to x  in the projection image. We initialize it with a very large 

depth. During the warping, for each X , if it is nearer than the depth kept in ( )xZZZZ , we do 

the warping and replace ( )xZZZZ  with the depth of X . Otherwise, it means X  is 

occluded and we simply ignore it. 

Through the above warping, the display content can be shown to deform with the paper 

simultaneously when projecting the pre-warped images.  

6.2 3D Volume Visualization 

The second application is to use the flexible screen as 3D volume data visualization tool, 

which would be very useful for viewing cross sections of medical volumetric data such as 

MRI and CT. Rather than displaying the volumetric data on a fixed screen, the proposed 

system can be used as a slicing tool to examine the slices of the volume data in their 

actual positions. With this slicing tool, we can simulate a virtual volume placed at a 

certain position in front of the projector. When the user moves the paper within the virtual 

volume, the slice of the volume data is shown on the paper, just like the user is holding 

the actual slice of data. This would give the user a more intuitive and immersive 

experience, and also more freedom in interaction compared with traditional keyboard-

mouse display system. Moreover, since most real volume data rarely follows a perfect 

plane, e.g, spine, or kidney, it is desirable that the viewer be able to view curved slices of 

data. With the help of our system, the observer can see details of the inner surface simply 

by adjusting the position and shape of the paper held by his hands. This is very useful 

when the doctor is analyzing the health condition of a patient or when a medical teacher 

is teaching the student about the structure of the human body. We believe the proposed 

system will have great potential in medicine and education. 
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The generation of the projection image is the same as the first application except for the 

setting of ( )xPPPP .The volume data is first loaded as a 3D texture and aligned at a certain 

position in front of the projector. It is also scaled to match the size of the projection 

screen. After that, we solve the intersection of X with the volume data. The intersected 

voxels of data are then interpolated to give the value that should be display at X . This is 

also the value that should be set to ( )xPPPP . Through this process, the cross section image 

is created and then projected onto the surface. 

7 Experimental Results 

We have built a prototype system with the following devices: an off-the-shelf projector 

with resolution of1280 1024× , and three Logitech Quickcam Pro 4000 webcams with 

resolution of320 240× . A dual core 2.16 GHz PC with 1 GB memory is used as the 

testing platform. Since we are not using any special devices, the cost of our system is low. 

Experimental results show that the display system achieves satisfactory accuracy and 

robustness with these ordinary devices.  

7.1 System calibration 

Figure 5. The distribution of the back projection error for the two calibrations: (a) Estimation 

of P ; (b) Estimation of M . 

We use a thin but hard cardboard with 3 2×  checker pattern printed on both sides (see 

Figure 3) to collect correspondences. The width of each checker is 50 mm. We collect 

totally 48 correspondences to calibrate the projector camera pair and 72 correspondences 

to calibrate the tracking camera pair by changing the position and orientation of the 

cardboard. The whole process takes about 10 minutes. Most of the time is spent in 

eliminating the false detections of the cross. The calibration time can be further reduced 

by improving the detection. The accuracy of the estimated projection matrix is measured 

by the distribution of the back projection error, which is the percentage of the points with 

back projection error below some pixel level (inliers). The evaluation is conducted on 

(a) (b) 
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another stand-alone correspondence set. The error distributions of the two calibrations are 

shown in Figure 5. The back projection error corresponding to 80% inliers for the 

tracking camera pair is 2.6 pixels and that for the projector camera pair is 5.3 pixels. It is 

an acceptable accuracy for our display application. 

7.2 Paper surface recovery and tracking 

The parameters of the recovery algorithm are set as follows in our experiments: the 

weight λ  of the smoothness term is set to 
51 10×  and the back-projection error bound 

γ  is set to 2 pixels. We run the alternate minimization between X  and ω  for 3 

iterations. To evaluate the performance of the recovery algorithm, we generate a sequence 

of 200 synthetic surfaces by simulating a paper bending process. Some frames are shown 

in Figure 6. A 4 3×  lattice is used and the width of each checker is 50 mm, which is the 

same as our checker pattern. The 3D corners are then projected to 2D with the intrinsic 

parameter matrix K of the reference camera and the calibrated projection matrix M . 

Gaussian noises with standard deviation 2σ =  are added to the 2D projections. We test 

our algorithm with fixed and flexible triangulation models on the same synthetic data. 

The accuracy of the surface recovery is measured in two aspects: the mean distance 

between the recovered corners and their ground-truth positions, and the back-projection 

errors. The result is shown in Figure 7. We can see that the proposed method achieves 

good accuracy in both mean error distance and back-projection errors, and the result with 

a flexible triangulation model is more accurate and stable. 

 

Figure 6. Some frames of the synthetic 4 3×  surface sequence. 

 

Figure 7. The performance of our algorithm on a synthetic sequence. The flexible triangulation 

achieves better accuracy and stability. 
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To evaluate the performance of our recovery algorithm in real scenarios, we test it with 

live webcam captures. Figure 8 shows several resulting frames of tracking and recovering 

a paper printed with a 4 3×  checker pattern. The recovered surfaces are shown in 

another perspective (from the user's view). The performance of our algorithm on real data 

is difficult to evaluate quantitatively since the ground-truth 3D corners of the check 

pattern are difficult to measure. Here, we simply evaluate the recovering accuracy of the 

curvature of the paper since the ground-truth curvature of the paper can be measured by 

the height and width of the arch. We compute the curvature of the recovered surface 

according to the 3D corners, and then compare it with the manually measured data. Five 

set of deformations are evaluated and the recovering error is plotted in Figure 9. In 

general, our algorithm can recover the paper with a maximum curvature about 0.5 (its 

corresponding recovering error is about 0.05), which is enough for most of applications.  

Figure 8. Recovering the surface of a paper printed with 4 3× checker pattern in a live webcam 

capture. The first row shows the tracked checker patterns. The second row shows the recovered 

surface in another perspective. 

 

Figure 9. (a) The recovering accuracy of the curvature. The errors between recovered curvature 

and ground-truth are also plotted. (b) The approximate maximum acceptable deformation of the 

paper. 

 

(a) (b) 
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The working area of the camera pair is also investigated. In general, the working area is 

the intersection of the field of view of the two cameras, but limited to a range in depth. To 

find out its size, we move the paper to everywhere it can be tracked by the camera pair. 

The position of the paper is estimated for each frame based on the recovered 3D paper 

surface and the size of the working area is then evaluated as the maximum allowed 

moving range of the paper. It is approximately 0.9 m in height, and 0.9 m in width at the 

top for our prototype configuration. The working area is not fixed, i.e., it can move in 

depth depending on the size of the paper. Specifically, if the paper is bigger, it 

will go further from the camera, and vice visa. It is thus no problem to track a 

bigger paper, e.g. an A3 paper. Figure 10 shows several tracking frames with an 

A3 paper printed with 6 4× checker pattern on the back. 

 

Figure 10. Tracking and recovering the surface of an A3 paper printed with 6 4× checker pattern 

in a live webcam capture. The first row shows the tracked checker patterns. The second row shows 

the recovered surface in another perspective. 

7.3 Display results 

To evaluate the projection accuracy, we project a green grid onto the paper on which a 

black grid is printed. In this case, the black grid is the ground-truth. Therefore, by 

observing and measuring the offset between the green grid and the black grid, we can 

access the projection accuracy. An evaluating video is recorded and the projection errors 

between the green and black grid are manually measured. The average projection error of 

the corner is about 2.3 pixels. Two evaluating frames are shown in Figure 11. 
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Figure 11. The green grid is projected while the black grid is printed. The coincidence of the green 

grid with the black grid indicates the projection accuracy of the system. 

Some results of the flexible image display application are shown in Figure 12. The 

cooperation of the surface recovery and the image pre-warping routine can successfully 

project correct content on the surface under different kinds of deformations. Figure 13 

illustrates some results of virtually slicing a MRI brain. From these images, it can be 

easily seen that a curved slice of the brain can be exhibited to the user owing to our 

system. In both experiments, we find that the system can warp the projection image 

correctly and create the flexible display with satisfactory accuracy and robustness. It runs 

smoothly and no obvious latency and flickering effect is observed. Continuous display 

results can be found in the supplementary video 

(http://www.cse.cuhk.edu.hk/~zrli/flexibledisplay.mpg ).  

 

Figure 12. Some results of flexible image projection. 
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Figure 13. Some results of slicing a MRI brain. 

Our system can achieve real-time performance on the above platform. The running time 

of each frame is mainly occupied by the checker pattern tracking (about 5 ms), the 

surface recovery (about 10 ms) and the projection image warping (about 15 ms). The 

surface recovery is actually fast while the projection image warping is slow. When 

running with live webcam capture, our system can still achieve real time processing 

smoothly (a frame rate about 18 fps). This speed is acceptable even for carrying out some 

fast deformations (see supplementary video). However, limited by the frame rate of the 

webcam and the KLT algorithm (which expects tiny variance between consecutive 

frames), our system cannot accurately handle drastic deformations and will exhibit 

perceivable latency. But if cameras with higher frame rates (like embedded cameras) can 

be used, this problem will be greatly relieved, and the recovery ability of the system can 

be further enhanced. 

7.4 Discussions 

Although the performance of the system is satisfactory, there are still several aspects that 

can be further improved. First, there is some limitation on the working area of the system, 

which is generally confined to the working area of the camera pair. Although it is 

sufficient for many visualization applications like the two demonstrated in this paper, it 

may be limited for some interactive applications that require large movement of the 
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projection surface. Possible ways to enlarge the working area include using cameras with 

bigger field of view and focus area, or using an array of cameras to ensure the pattern can 

always be seen by two of them. Second, there is limitation on the depth field of the 

projector. The projector used in our system has quite limited depth of field, which allows 

the projection to be in focus only within a particular range of depth. A solution to this 

problem is to use multiple projectors. Third, there may be applications that require fine 

representation of the surface. The proposed system may fail as we are using a coarse 

checker pattern to approximate the surface for the benefit of easy tracking. Increasing the 

size of the checker pattern or using texture-abundant patterns could achieve a better 

approximation, but it would increase difficulty in feature tracking and matching, and also 

increase the running time greatly. A fast and robust tracking algorithm may be needed to 

make the system real time for large scale applications. 

8 Conclusions 

We have proposed a flexible projector-based hand-held display system using ordinary 

devices and computer vision technology. A projector and a camera pair are used as the 

projection and tracking device and an ordinary white paper is used as the flexible 

projection surface. No sensors or special hardware is needed in our system. An offline 

flexible, easy and automatic calibration method is employed to calibrate the system. A 

real-time tracking and recovery algorithm is proposed to track and recover the 3D surface 

of the paper. The display content is pre-warped and projected to the paper based on the 

calibration result and the recovered surface. Two model applications are elaborated to 

demonstrate the potential of our system. Experimental results show that our system can 

successfully create the flexible display on the deformable surface with satisfactory 

accuracy and robustness. Future work will be carried out to improve the freedom of 

control and interactivity of the system. 
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