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ABSTRACT

Recently, Support Vector Machine (SVM) has become a
very dynamic and popular topic in the Neural Network com-
munity for its abilities to perform classification, estimation,
and regression. One of the major tasks in the SVM algo-
rithm is to locate the points, or rather support vectors, based
on which we construct the discriminant boundary in clas-
sification task. In the process of studying the methods for
finding the decision boundary, we conceive a method, β-
skeleton algorithm, which reduces the size of the training
set for SVM. We will describe their theoretical connections
and practical implementation implications. In this paper, we
also survey four different methods for classification: SVM
method,K-Nearest neighbor method, β-skeleton algorithm
used in the above two methods. Compared with the meth-
ods without using β-skeleton algorithm, prediction with the
edited set obtained from β-skeleton algorithm as the train-
ing set, does not lose the accuracy too much but reduces the
real running time.

1. INTRODUCTION

Given a data set which contains the data coming from two
or more different classes, either linearly separable or non-
separable, the classification problem is to find the optimal
separating hyperplane (Decision Boundary) to separate the
data according to their class type. Support Vector Machines
(SVMs), introduced by Vapnik in the late seventies [10],
have attracted wide interest as a means to implement struc-
tural risk minimization for the problem of classification and
regression estimation. To understand SVMs better, a geo-
metric interpretation from the dual perspective can be use-
ful.

Convex hull could be a simple intuitive geometric ex-
planation of SVM [2]. And also we know that Convex hull
could be used to solve many problems, such as half space in-
tersection, Delaunay triangulation, Voronoi diagrams, etc [1].

The Voronoi diagram and Delaunay triangulation are
two of the possible representations for K-Nearest neighbor
rule. The K-Nearest neighbor rule can be thought as the

non-parametric decision rule which needs no prior knowl-
edge of the data points’ distributions [3]. Decision rules are
used in many areas such as pattern recognition and database.
Here, they are used to determine the class membership for
a point based on some computational measurements for the
point. Despite simplicity and good performance ofK-Nearest
neighbor rule, the traditional criticism of the method is that
it needs a large storage space for the entire training data
and the necessity to query the entire training set in order to
make a single membership classification. As a result, there
has been considerable interest in editing the training set to
reduce its size.

Just as SVMs choose support vectors which are a small
part of the whole training set to find the separating hyper-
plane, different proximity graphs (such as Delaunay trian-
gulation and Gabriel graph) provide efficient geometric ap-
paratus for solving the problem and finding the decision
boundary. The Gabriel graph of a set of points is a sub-
graph of Delaunay triangulation for that set, which is a dual
of Voronoi diagram [3]. Similarly, Relative neighborhood
graph of a set of points is a subgraph of Gabriel graph of that
set. And both of Gabriel graph and Relative neighborhood
graph can be described by the β-skeleton with the different
parameter setting.

This paper tries to bring all these mentioned concepts
to a unified application domain. We use Convex hull as a
bridge which connects SVM and β-skeleton [12]. Then we
use the edited set as the training set for SVM andK-Nearest
neighbor method. We also perform experiments to show the
performance of the four methods and discuss their advan-
tages and drawbacks.

In the next section, we will present the three main con-
cepts: SVM, K-Nearest neighbor, and β-skeleton and then
show the relationship among them. In Section 3, we conduct
a series of experiments on different data sets and compare
the performance of the different methods. The discussion of
these results is shown in Section 4. Lastly, we conclude and
make some final remarks in Section 5.



2. RELATED BACKGROUND

In this section, we survey three different concepts for doing
classification in a data set. These concepts come from dif-
ferent disciplines in Computer Science, ranging from Com-
putational Geometry to statistical learning theory. We aim
to show the similar relationship among these different con-
cepts arising from different disciplines.

2.1. Support Vector Machine

Given the training data, xi, yi, i = 1, · · · , l, yi ∈ {−1, 1},
xi ∈ Rn, suppose there exists a hyperplane separating the
positive from the negative data set. It means that any point
x which lies on the hyperplane satisfy ω · x+ b = 0, where
ω is normal to the hyperplane, |b|/ ‖ω‖ is the perpendicu-
lar distance form the hyperplane to the origin, and ‖ω‖ is
the Euclidean norm of ω. Define the margin as the sum
of the distances of the separating hyperplane to the closest
positive and negative points [4]. In fact, the basic concept
behind SVM is to find the tradeoff between the largest mar-
gin(distance) and training error, so the generalized optimal
separating hyperplane is regarded as the solution to Eq. (1)
as follows,

min(
1

2
‖ω‖2 + C

m∑

i=1

ξi) (1)

subject to yi(x · ω + b) ≥ 1− ξi, ξi ≥ 0, C > 0.

Let α = α1, α2, · · · , αm be the m nonnegative La-
grange multipliers, one for each inequality constraints in
Eq. (2), the solution to Eq. (1) equals to the solution to the
constrained quadratic optimization problem using the Wolfe
dual theory [4] as,
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subject to 0 ≤ αi ≤ C,
∑

i

αiyi = 0.

For solving high dimension problems, SVM maps the
space of covariates X to a Hilbert space H of a higher di-
mension (maybe infinite), and fits an optimal linear clas-
sifier in H. It does that by choosing a mapping function
φ:Rn→H in such a way that φ(x) · φ(y) = K(x, y) for
some known and easy-to-evaluate set of functions, K [11].
Set Qij = yiyjK(xi, xj), such that α · y = 0, 0 ≤ αi ≤ C,
i = 1, · · · ,m, the objective function is changed as follows:

R(α) =
1

2
α · (Q · α)− α. (3)

From a Computational Geometric viewpoint, the solu-
tion to the Convex hull problem provides a way to locate

support vectors [2]. And it can be used to compute a Delau-
nay triangulation. Gabriel graph can be computed by dis-
carding edges from Delaunay triangulation. However, ac-
cording to the time consumed, this approach to obtain the
Gabriel graph is not a very attractive one when number of
dimensions is large.

2.2. K-Nearest neighbor and β-skeleton

The K-Nearest neighbor classifier is a conventional non-
parametric classifier that provides good performance for op-
timal value of k. In K-Nearest neighbor classification, we
classify an object (point) in d-dimensional space accord-
ing to the dominant class among its k-nearest neighbors
from the training data set. It is useful if we can find some
representatives from the training set to classify new point
while preserving a high accuracy. Both Voronoi diagram
and Gabriel graph can be used for such a purpose. The gen-
eral idea is found in [3].

A Voronoi diagram is a partition of special points into
regions such that each region consists of points closer to
one particular node than to any other nodes. Therefore, a
new point in a Voronoi region must be closer to the region’s
node than to any other nodes. So, we can assign the new
point to the class represented by the region’s node. More-
over, the boundaries of the Voronoi regions separating those
regions whose nodes are of different class can be used as
the decision boundary of the classifier. However, it is clear
that the nodes whose boundaries did not contribute to the
decision boundary are redundant and can be safely deleted
from the training data.

Gabriel graph of a set of points, S, has an edge between
points p and q in S if and only if the diametral sphere of p
and q does not contain any other points. The resulting points
from the above process make up of the Gabriel edited set.
We shall see that the decision boundary can be constructed
from those Gabriel neighbors (p and q) such that p and q are
of different classes.

The Gabriel edited set is always a subset of the Voronoi
edited set because of the fact that a Gabriel graph of a set
of points is a subgraph of Delaunay triangulation for that
set. Thus, Gabriel editing which is the procedure of finding
the Gabriel neighbors, reduces the size of the training set
more than Voronoi editing. Although, the resulting Gabriel
editing does not preserve the original decision boundary, the
changes occur mainly outside of the zones of interest.

The parameterized family of neighborhood graphs, in-
troduced by Kirkpatrick and Radke [7], is called β-skeleton.
Let V be a set of points in Rn, each pair of points (p, q) ∈
V ×V with a neighborhoodUp,q ⊂ Rn, let P be a property
defined on U = {Up,q|(p, q) ∈ V × V }, δ(x, y) denotes
the distance between point x and y, and B(x, r) denotes
the circle centered at x with the radius r. That is to say
B(x, r)={y|δ(x, y) < r}. A neighborhood graph defined



Table 1: Training and Testing Time Complexity

Training Testing
Methods Best Average Worst Average

Case Case Case

SVM O(n) uncertain O(n5 logn /ξn) O(c2m)

β-skeleton O(dn2) O(dn3) O(dn3) /
K-Nearest neighbor / / / O(mnlogn)

on the propertyP consists of vertices V and the set of edges
E, which is required to satisfy the condition that (p, q) ∈ E
if and only if Up,q has the property P . The neighborhood
Up,q(β) is defined, for any fixed β(1 ≤ β < ∞) as the
intersection of two spheres:

Up,q(β) =

B((1− β
2 )p+ β

2 q,
β
2 δ(p, q))∩B((1− β

2 )q+ β
2 p,

β
2 δ(p, q)).

So β-skeleton of V , Gβ(V ), is a neighborhood graph with
the set of edges:

(p, q) ∈ E if and only if Up,q(β) ∩ V = φ.

A special feature for this parameterized family is its
monotonicity with respect to β, i.e. Gβ1(V ) ⊂ Gβ2(V )
for β1 > β2. So we can easily see that β-skeletons contain
Gabriel graph and Relative neighborhood graph. Specially,
when β=1, G1(V ) = GG(V ), Gabriel graph of V ; when
β=2, G2(V ) = RNG(V ), Relative neighborhood graph of
V . According to the feature of β-skeleton, it is easy to see
that RNG(V ) ⊂ GG(V ) [9].

If we change slightly the definition of the neighborhood
by using the different intersection of the spheres, we can
obtain a different class of graphs. In the following section,
we will design a uniform algorithm for the whole spectrum
of β-skeletons for 1 ≤ β ≤ 2.

3. EXPERIMENTS AND RESULTS

3.1. Time Complexity

Table 1 summarizes the theoretical analysis from the re-
search result of Hush and Scovel [8] and Bhattacharya [3],
where n is the size of training set, m is the size of testing
set, d is the dimension of samples, C is the number of the
classes. Here, ξn is obtained through an appropriately nor-
malized objective function(R) and depends on n.

In training ,

1. The best Case of any algorithm is to visit each data
point once. For average case analysis with SVM, it
typically requires some knowledge of the distribution
over problem instances. Moreover, it is not uncom-
mon to see run time estimates varying from n2 to n3

reported from experiments with these types of algo-
rithms [8]. But the bounds of iteration steps to find
the optimal solution are uncertain.

Table 2: Problems Description

Problem class attribute training data testing data

Iris Plants 3 4 150 0
Wine Cultivars 3 13 178 0
Glass 6 9 214 0
Satimage 6 36 4435 2000

2. The β-skeleton algorithm requires O(n2) operations
to yield O(n2) pairs of neighbors. For each such pair
of points (A,B), the algorithm requires O(nd) oper-
ations. Hence the overall average complexity of the
algorithm is O(dn3).

From Table 1, we see that β-skeleton is more sta-
ble in different cases (linear-separable or nonlinear-
separable cases and different data sets) but has poor
performance with high-dimension data. Up to now
we have not found an exact way to measure the itera-
tions that the algorithm of SVM will take to obtain the
optimal solution. In other words, the performance of
SVM is data-sensitive, i.e., it changes with different
data sets. The dimension has little effect on SVM.

3. The worst case for SVM is that in this algorithm of
SVM, the criterion function converge to the optimum
solution in O(Cn

4

ξn
) iterations. In each step it will

take O(n log n) time to see whether the result satis-
fies the constraints for the optimal solution. Although
this does not happen often in the real world, it should
be considered when implementing the algorithm.

We do the following empirical experiments with several
datasets: Iris dataset, Wine Cultivar discrimination, Glass
identification data set and Satimage database. The three
databases are available via anonymous file transfer proto-
col(ftp) from the University of California Irvine UCI Repos-
itory of machine learning databases. The last one is from
Statlog collection. And in the Satimage database, there is
one missing class. That is, there are no examples with one
class in this dataset. We scale all training data to be in [-1,1]
for SVM method. Table 2 gives out the number of classes,
attributes and size of each database.

First, we use Libsvm [5], an integrated software for sup-
port vector classification, (C-SVC, nu-SVC), regression (xi-
SVR, nu-SVR) and distribution estimation (one-class SVM)
to implement SVM method. It provides both C++ and Java
source codes. To reduce the search space of the parameter
sets, we train all datasets only with the RBF kernel function.
Better solutions may result with different choice of γ andC.
For each problem, we estimate the generalized accuracy us-
ing different parameters C and γ: γ = [24, 23, . . . , 2−10]
and C = [212, 211, . . . , 2−2] [6]. Then we can use the ac-
curacy as criterion to choose the optimal parameters. For all



Table 3: SVM parameters setting and Accuracy for different
dataset

Problem Error Penalty Gamma

Iris 212 2−9

Wine 27 2−10

Glass 211 2−2

Satimage 21 20

SatGG 21 2−1

Satβ1.5 21 2−1

SatRNG 20 2−2

the datasets where test data may not be available, we sim-
ply conduct a 10-fold cross-validation on the whole training
data to estimate generalization on future data and report the
cross-validation rate(See Table 3).

Second, we implement β-skeleton algorithm with Vi-
sual C++ in an uniform algorithm template and with differ-
ent values of β, we can get the different proximity graph.
When β is set as 1, it uses the Gabriel graph algorithm;
while β equals to 2, it represents the Relative neighborhood
graph algorithm. We try some different values between 1
and 2, then we can obtain some distinct graphs, which use
the diverse nearest neighbor rules to define the neighbor in
the graph.

Third, theK-Nearest neighbor algorithm is implemented
in C language. For each problem we use the different value
of k from 1 to 15 to obtain the optimal result, which has the
highest prediction accuracy.

Then for the first three datasets, we choose the set of
support vectors with highest cross-validation accuracy and
do the experiments to record and compare the similarity
among the set of support vectors and several edited sets
of β-skeleton with different β value(See Table 4, 5). In
the following step, we do the four kind of experiments on
Satimage database, which include the training data and test-
ing data, and then compare the prediction accuracy of the
four experiments.(See Table 6, H means hour.) For each
method, we need to do model selection step. First, the train-
ing set for SVM is scaled Satimage database. Second, the
edited set obtained from the β-skeleton algorithm is used as
the training set for SVM. Third, we useK-Nearest neighbor
method to do prediction without training step. Fourth, after
we obtain the edited set from the β-skeleton algorithm, we
do prediction by K-Nearest neighbor method. All the ex-
periments were done under WINNT operating system, Pen-
tium4 1.4G, 512MB memory.

Table 4 shows the number of support vectors for SVM
algorithm and the size of edited set for the other two algo-
rithms, the edited size ofβ-skeleton with β=1.4/1.5(Satimage).
Table 5 demonstrates the relationship among support vec-
tors, points left in edited set of Gabriel graph, points in

Table 4: Size of Database, Number of Support Vectors, Size
of the edited sets

Dataset Size Support GG RNG β-skeleton
of Data set Vectors Edited Set Edited Set Edited Set

Iris 150 18 49 18 32
Wine 178 60 150 38 90

Glass Data 214 120 196 121 170
Satimage 4435 1615 3654 1191 2441

Table 5: Number of intersection between Support Vectors
and Points in other Edited Sets

Number of Intersection with SV
Dataset Number of SV V ∈GG(V) V ∈ RNG V ∈β=1.4

Iris 18 18 12 16
Wine 60 60 34 54
Glass 120 120 92 113

Table 6: Time Consuming and Accuracy Compare
Method Training time Testing Time Accuracy

SVM 37 18 91.85
SVMGG 2H+22 16 89.4
SVMβ1.5 2H 15 16 89.7
SVMRNG 2H+5 11 85.8
KNN(k=7) 0 137 72.1

KNNGG(k = 4) 2H 112 70.35

the edited set of Relative neighborhood graph, and points
in edited set of β-skeleton, with β=1.4.

4. DISCUSSIONS

As described in above sections, the Convex hull could be
one intuitive geometric explanation for SVM and it also can
be used to solve the Voronoi diagram problem. In fact, the
edited set of Voronoi diagram is the super set of the edited
set of Gabriel graph. There exist some relationships be-
tween SVM and β-skeleton.
Observation #1 From the experiments on several dataset,

it is always true that RNG(V) ⊂ β-skeleton(V)(β =
1.4)⊂ GG(V).

Observation #2 From the experiments(See Table 4), we ob-
serve that the number of support vectors is always
smaller than the size of the Gabriel graph edited set,
and approximately equals to or larger than the size
of the Relative neighborhood edited set. When we
record the exact points, which are the intersection of
support vectors and the points in the GG edited set
and RNG edited set, we find that support vectors are
always in the subset of the Gabriel edited set, and
have some intersection with the Relative neighbor-



hood edited set. And when we choose β value as
1.4, we can also obtain some edited set whose com-
ponents have more common intersection with support
vectors(See Table 5). If we choose some other β val-
ues between 1 and 2, whether the edited set of the cor-
responding graph will be more similar with the sup-
port vectors is a point worth to consider [12].

Observation #3 We may find that the prediction accuracy
with the edited set as the training set for SVM is not
lowered too much while the size of the training set
is reduced hugely. While the speed of training data
with β-skeleton is slower than that of SVM from Ta-
ble reftimecompare. So We will do paralleling to
speed up the β-skeleton algorithm in future work.

Observation #4 According to the observation 2,3 and if the
conclusion can be the same with the experiments on
most of the other datasets, we could improve SVM al-
gorithm with the help of β-skeleton algorithm as fol-
lows:

1. Obtain the edited set with β-skeleton algorithm
(paralleled).

2. Use the edited set instead of the training set in
SVM method to construct SVM-model and do
the prediction.

As a result of the steps above, the reduced training
data will accelerate the convergence of finding the op-
timal quadratic solution.

5. CONCLUSION

In this paper, we have demonstrated how the SVM, β-skeleton
andK-mean can be used to solve the classification problem.
Moreover, we have shown the relationships among these al-
gorithms. When used as training set in SVM method or K-
Nearest neighbor method, β-skeleton will reduce the train-
ing set size and not lower the accuracy of prediction with
the optimal parameters through empirical observations. We
could improve SVM’s performance in general by using the
β-skeleton’s training data set reduction algorithm. In light
of this, we plan to investigate the following in future:

1. Given more dataset, compare the points in different
edited sets with support vectors and prediction accu-
racy for different kind of training sets.

2. Theoretically prove that support vectors are the subset
of Gabriel edited set.

3. Parallel the β-skeleton algorithm.
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