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Abstract. We present a novel approach to construct a kind of tree belief network,
in which the “nodes” are subsets of variables of dataset. We call this model Large
Node Chow-Liu Tree (LNCLT). This technique uses the concept of the association
rule as found in the database literature to guide the construction of the LNCLT.
Similar to the Chow-Liu Tree (CLT), the LNCLT is also ideal for density estimation
and classification applications. More importantly, our novel model partially solves
the disadvantages of the CLT, i.e., the inability to represent non-tree structures, and
is shown to be superior to the CLT theoretically. Moreover, based on the MNIST
hand-printed digit database, we conduct a series of digit recognition experiments to
verify our approach. From the result we find that both the approximation accuracy
and the recognition rate on the data are improved with the LNCLT structure, when
compared with the CLT.
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1 Introduction

One of the interesting problems in Machine Learning is density estimation,
i.e., given a training dataset, how can we estimate the data distribution? The
estimated distribution can be used to perform classification or prediction.
The Naive Bayesian (NB) network demonstrates good performance in us-

ing the estimated distribution to construct classifiers, even when compared
with the state-of-the-art classifiers, e.g., C4.5 [22]. With a conditional inde-
pendency assumption among the features or attributes, i.e., P (Ai, Aj |C) =
P (Ai|C)P (Aj |C), with Ai, Aj , 1 ≤ i 6= j ≤ n and C representing the at-
tributes and class variable, respectively, NB estimates the joint probability
P (C,A1, A2, . . . , An) from data and classifies a specific sample into the class
with the largest joint probability. Furthermore, this joint probability can be



decomposed into a multiplication form based on its independency assumption.
Therefore, the decision function can be written as follows:

c = argmax
Ci

P (Ci, A1, A2, . . . , An)

= argmax
Ci

P (Ci)

n
∏

j=1

P (Aj |Ci), (1)

where, P (Ci), P (Aj |Ci) are usually estimated empirically.

C

A1 A2 An−1 An

Fig. 1. A Naive Bayesian Classifier. Ai, 1 ≤ i ≤ n, is the attribute. In this figure,
the attribute is independent of each other, given the class label C.

The success of the NB is somewhat unexpected since its independency
assumption typically does not hold in many cases. A representative example
is the so-called “Xor” problem. In this problem, attributes are two binary
random variables A and B. When A = B, C = 1; otherwise C = 0. Thus
the attribute A is not independent of B, when given the class variable C.
NB encounters problems in classifying the “Xor” data. The reason is that
P (C = 0), P (C = 1), P (A = 0|C = 0), P (A = 1|C = 0), P (A = 0|C =
1), P (A = 1|C = 1) will all be nearly 0.5 when the data samples are randomly
generated. It will be hard to assign any data into the class “0” or “1” since the
estimated joint probabilities, according to (1) for both classes, will be about
0.5× 0.5× 0.5 = 0.125.
By relaxing the strong assumption, i.e., the independency among the data

attributes, of NB, many researchers have developed other types of Bayesian
belief networks such as Semi-naive Bayesian networks [15, 10], Selective Naive
Bayesian networks [16], and Tree Augmented Naive Bayesian networks [7].
One of the competitive models in this trend is the so-called Chow-Liu

Tree (CLT) model [3]. Rather than assuming an independence among the
attributes, CLT assumes a tree dependence relationship among the attributes,
when given the class variable. The decision function of the CLT constructed
from the estimated distribution can be written as a decomposed form:



c = argmax
Ci

P (Ci, A1, A2, . . . , An)

= argmax
Ci

P (Ci)

n
∏

j=1

P (Aj |Pa(Aj), Ci), (2)

where Pa(Aj) represents the parent node of Aj in the tree structure. The
decomposed item P (Aj |Pa(Aj), Ci) is usually estimated empirically.
When compared with NB, CLT can generate a more accurate distribu-

tion [3] and achieve lower error rates in classification tasks [7]. Its advantages
are partly due to the relaxed restriction than NB [7], its decomposable ability
in approximating distribution, and the resistance to over-fitting problems.
However, there are still problems for the CLT, i.e., the tree dependence

assumption on the underlying structure of the training dataset will be still too
strong to be satisfied in many cases. For a simple example, see Fig. 2(a). If the
underlying structure of a dataset can be represented as a graph as Fig. 2(a),
the CLT method will not be able to restore this structure, since Fig. 2(a) is
not a tree due to its cyclic characteristic.
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Fig. 2. (a): The underlying structure of a dataset (b): A large node tree structure
we call ”LNCLT”

However, if we combine some nodes as a “large node”, then Fig. 2(a) can
be represented as a tree. Fig. 2(b) is indeed such a structure, which is com-
patible with Fig. 2(a), since they both represent “A, C, D are conditionally
independent of each other, when given B and E”.
Motivated from this finding, we develop a Large Node Chow-Liu Tree

(LNCLT), where the large node means a subset of attributes as {B,E} in
Fig. 2(b). Based on the improved techniques of association rules [1], we pro-
pose reasonable combination rules to construct the large node tree structure
directly from the draft structure by the CLT. Both theoretical results and ex-
perimental results demonstrate the superiority of our novel model over CLT.
One of the important features of our approach is that, implied by its name,

the resulting large node tree maintains a tree structure, where the estimated



distribution is easily decomposed and therefore naturally enjoys the resistance
ability to the overfitting problems.
The main contributions of this paper are described as follows. First, we

propose a novel Large Node Chow-Liu Tree, which outperforms Chow-Liu Tree
theoretically and experimentally. Second, we develop a theory to determine
the threshold used in mining association rules, which is usually set by hand.
This will, thus, save the time to adapt the threshold by some intuitive methods
such as Cross Validation methods [13].
This paper is organized as follows. In next section, we present the related

work. In Sect. 3, we describe the background for this paper including the no-
tations, the CLT algorithm and the concept of the association rule. In Sect. 4,
we introduce the main work of this paper, namely, the main theoretical results
in guiding the construction of the LNCLT and the practical algorithm. Fol-
lowing that, in Sect. 5, we demonstrate the advantages of the LNCLT based
on a serious of experiments. We then conclude this paper with final remarks
in Sect. 6. Some of the theoretical and experimental results in Sect. 4 and
Sect. 5 have been earlier presented in [9] and are expanded significantly in the
current paper, while other sections are new.

2 Related Work

It has been an active research topic to attempt to improve the CLT’s perfor-
mance by relaxing its tree assumption. Malvestuto [18] used acyclic hyper-
graph and brought out a local heuristic method to search the structure. The
similar work to learning hypergraph1 from data was presented by Srebro et al
in [23]. They aimed to solve this problem globally and proposed the approx-
imation method as well. Another school of approaches to extend the CLT is
the so-called Bayesian Networks [21]. Instead of assuming a dependence tree
structure, this method tried to search the dependence relationship among the
attributes from data.
However, the above models suffer from the difficulties in approximating

the good distributions from data. As shown by Srebro [23], it is an NP-hard
problem to find the optimal hypergraph. Even for the proposed approxima-
tion method, it cannot achieve satisfactory result [12]. Furthermore, it is also
NP-hard to obtain the optimal Bayesian Networks from data [6]. On the other
hand, unrestricted Bayesian Networks do not demonstrate an increase in ac-
curacy even when compared to the simple NB network [7].
Other extensions of the Chow-Liu Tree are also investigated recently.

Meila [19] proposed to model distributions as the mixture of the Chow-Liu
Trees. Dasgupta and Luby [4] suggested polytree Bayesian networks or trees
with oriented edges. Huang et al. invented a discriminative way to training
Chow-Liu Trees [11].

1 Srebro et al. named this structure as Markov network or hypertree.



In this paper, we do not aim to find an optimal large node tree structure.
Similar to [19], we perform the upgrading directly on the CLT. Instead of using
a linear combination of CLTs, we construct a more relaxed graph structure
than the CLT, namely, the large node tree, based on the improved techniques
from association rules. Moreover, we theoretically prove that the constructed
large node tree has a larger log likelihood than that of the CLT and therefore
generate a more accurate distribution approximation.

3 Background

In this section, we first describe the notations used in this paper. Next, the
concept of CLT and association rules, rather than the details of these two
topics will be introduced.

3.1 Notations

The notation here will largely follow that of [19]. Let V denote a set of n
random discrete variables and assume A is a subset of V . We denote xA as
one assignment of the variables in A. Moreover we consider a graph T = (V,E)
where V is the vertex set and E is a set of undirected edges. If T is a connected
acyclic graph, we call T a tree. If the number of edges |E| in a tree T is equal
to the number of vertex minus one: |V |− 1, we call T a spanning tree. Let V ∗

denote a set of the subsets of V , where V ∗ satisfies the following condition:

∪Ui∈V ∗Ui = V, (3)

Ui ∩ Uj = ∅ with Ui, Uj ∈ V ∗, i 6= j. (4)

A large node tree T ∗(V ∗, E∗) is defined as a tree where V ∗ is the vertex set
satisfying the above conditions and E∗ is the set of edges among V ∗. Here we
can see that each vertex of T ∗ is actually the subset of V and these subsets
have no overlapped variables. Figure 3(b) is an example of a large node tree.
According to the tree decomposition, the distribution encoded in the large

node tree can be written into:

P ∗(xV ) =

∏

(u,v)∈E∗ P (xu, xv)
∏

v∈V ∗ P ∗
v(xv)deg(v)−1

,

where, deg(v) refers to the number of edges which contain v as one vertex.
The directed large node tree distribution can be written into:

P ∗(xV ) =
∏

v∈V ∗

P ∗
v|Pa(v)P

∗(xv|xPa(v)).

The problem of learning Large Node Chow-Liu Tree can be informally stated
as: given the training dataset S with s independent observation x1, x2, . . . , xs,
find a large node tree structure that match S well, where xi is the n-
dimensional vector, which can be represented as {x1

i, x2
i, . . . , xn

i}.



3.2 Chow-Liu Tree

We here introduce the algorithm to construct the CLT from data. We will not
talk much about the Chow-Liu Tree techniques. Readers interested in this
method can refer to [3].

(1) a) Calculate all the mutual information denoted as I(Xi, Xj), between
any two nodes Xi, Xj , where, the mutual information between two
variables X,Y is defined as

I(X,Y ) =
∑

x,y

P (x, y) log
P (x, y)

P (x)P (y)
. (5)

b) Insert them into a set B.
c) Initiate tree T (V,E) where V = {all the nodes of a data set}, E = {},

(2) Do until E contains n− 1 edges (n is the number of nodes)
a) Find the nodes pair (Xm1

, Xm2
) with maximum mutual information

denoted as Im from B.
b) If no cycle is formed in T when the vertex Xm1

is connected with
Xm2

, add edge (Xm1
, Xm2

) in E, and delete Im(Xm1
, Xm2

) from B.
c) Otherwise, delete Im(Xm1

, Xm2
) from B

d) Go to (2).

The CLT structure obtained from this algorithm is proved to be the opti-
mal one in the sense of Maximum Likelihood criterion [3].

3.3 Association Rules

Mining association rules is recently under great attentions in data mining [1].
This method can be typically applied in the supermarket database analy-
sis problem. In such a problem, it is interesting to know what other goods
customers will buy when they buy a certain type of goods. A representative
example is that a large number of customers will buy the butter when they
buy the bread. Then bread → butter is called one association rule.
The notation of association rule is that: assuming that I = {i1, i2, ..., in}

is a set of items and T is a set of transactions, one transaction is a set of
items. We use X → Y (X

⋂

Y = ∅) associated with a confidence c ∈ [0, 1]
to specify an association rule that means customers will buy X item together
with Y item with the confidence level c if a fraction c of the transactions
consisting of X also consist of Y . The rule has a support s in T , if a fraction
s of the transactions in T consist of both X and Y . To make the association
reliable, this support s has to be greater than a threshold which is called the
minimum support. In our problem, T is the dataset and I is the attributes
set. Because we are concerned about the classification accuracy, we fix Y and
X as the class variable C and a subset of the attributes, respectively. Since we
construct each LNCLT or CLT for each class, mining the association rule will



be reduced to mining all the frequent itemsets X, whose supports are larger
than the minimum support.
With regards to the algorithm to mine association rules, we refer the in-

terested readers to [1, 8], since it is out of the scope of this paper to introduce
the algorithm in detail. In this paper, we use the algorithm called Apriori
developed in [1].

4 Learning Large Node Chow-Liu Tree

In this section, we first define a concept called combination transformation.
We then in Sect. 4.1 present the combination rules and give the theoretical jus-
tifications why these rules will improve the performance of the draft structure.
Following that, we propose the theory on how to determine the minimum sup-
port used in the combination rules. Finally, we detail the practical algorithm
in Sect. 4.2.

Definition 1 A combination transformation is defined to be a transformation
in a tree structure T . This transformation combines several nodes into a large
node and keep the connection relationship of T .

Figure 3 is an illustration of combination transformation. In Fig. 3, (a) is a
tree structure and (b) is the result after a combination transformation. In (b)
when nodes D, B are combined, the edge BE in (a) will be kept as the edge
(BD)E in (b).

A

B C

D E F

G

(a)

A

B C

E F

G

D

(b)

Fig. 3. An illustration of combination transformation

4.1 Main Results

In this subsection, we will present theoretical results on combination rules.
We first describe the combination rules.



Rule 1 Sibling rule: The nodes to be combined satisfy that the set of these
nodes are sibling relationship, i.e., there exists another node as their common
parent.

Rule 2 Parent-child rule: The nodes to be combined satisfy that the set of
these nodes can be sorted as a sequence based on a certain node as the root,
in which each node is the parent node of its sequent node.

Rule 3 Association rule: The nodes to be combined satisfy that, under a given
confidence level and a minimum support, the set of these nodes denoted by A
forms an association rule , i.e., A→ C, where C is the class label.

Rule 4 Bound rule: The nodes to be combined satisfy that the number of these
nodes is fewer than a given integer bound K.

We theoretically show that the resulting graphical structure after a com-
bination transformation satisfying Rule 1 or Rule 2 will have a larger log
likelihood and thus can approximate the dataset more accurately. We give
Proposition 1, Proposition 2 and further Corollary 1, Corollary 2 to prove
this.
We first present a preliminary lemma on the log likelihood of the CLT.

Lemma 1. Given a training dataset S and n variables defined as in Sect. 3.1,
the log likelihood lt(x

1, x2, . . . , xs) of the observations can be written as the
following when the dataset is fit as a maximum weight spanning tree, where
the weight is given by the mutual information between two nodes:

lt(x
1, x2, . . . , xs) =

n
∑

i=1

s
∑

k=1

logP (xk
i |

k
xj(i)), (6)

where j(i) represents the parent node of variable i obtained by the ordering
based on any certain node as the root in a tree and xk is an n-dimensional vec-
tor {xk

1 , xk
2 , . . . , xk

n with 1 ≤ k ≤ s}. Moreover, this log likelihood is maximized
when the spanning tree is obtained with Chow-Liu Tree method [3].

The proof can be seen in [3].

Proposition 1. Given a spanning tree T , if any two nodes satisfy parent-child
relationship based on a certain root, then the graphical structure T ∗ after a
combination transformation of these two nodes is, based on the Maximum
Likelihood criterion, superior to the original tree T .

Proof. Using Fig. 4 as an illustration, we assume that the left part (a) is one
sub-part of the spanning tree T and in this subpart we perform the combina-
tion of two variables X1 and X2. To be simple, we assume X1 has children:
X2, Xq, and X2 has only one child : Xm. We have the similar proof if X1

and X2 have multiple children. Figure. 4(b) is the structure after these two
nodes X1, X2 with parent-child relationship are combined. For the spanning
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Fig. 4. A parent-child combination (a): The original sub-tree. (b): The result sub-
tree after the combination of X1 and X2.

tree T , only the subpart (a) is changed into (b) when combining X1 and X2

and the other parts of T remain unchanged. We rewrite the log likelihood of
the training dataset according to tree T into two parts:

lt(x
1, x1, . . . , xs)

=
∑

i6=X1,X2,Xm,Xq

[

s
∑

k=1

logP (xi
k|

k
xj(i))] +

+

s
∑

k=1

[logP (
k

xX2
|

k
xX1

) + logP (
k

xXm
|

k
xX2

) +

+ logP (
k

xXq
|

k
xX1

) + logP (
k

xX1
|

k
xXp

)]. (7)

The same as (7), we can write the log likelihood encoded in the transformed
structure T ∗ with X1 and X2 combined into (8):

lt∗(x
1, x1, . . . , xs)

=
∑

i6=X1,X2,Xm,Xq

[

s
∑

k=1

logP (xi
k|

k
xj(i))] +

+
s

∑

k=1

[logP (
k

xXm
|

k
xX1

k
xX2

) + logP (
k

xXq
|

k
xX1

k
xX2

) +

+ logP (
k

xX1

k
xX2

|
k

xXp
)]. (8)

Further we can define the second part of (7) as R(lt) and write it into the
entropy form as in (9).



R(lt) =

s
∑

k=1

[logP (
k

xX2
|

k
xX1

) + logP (
k

xXm
|

k
xX2

) +

+ logP (
k

xXq
|

k
xX1

) + logP (
k

xX1
|

k
xXp

)]

=

s
∑

k=1

logP (
k

xX2
|

k
xX1

) +

s
∑

k=1

logP (
k

xXm
|

k
xX2

) +

+

s
∑

k=1

logP (
k

xXq
|

k
xX1

)−

s
∑

k=1

logP
k

xXp
+

+
s

∑

k=1

logP (
k

xX1
|

k
xXp

) +
s

∑

k=1

logP
k

xXp

= −H(X2|X1)−H(Xm|X2)−H(Xq|X1)−

−H(X1Xp) +H(Xp). (9)

In the same way, we can write the second part of (8) into (10).

R(lt∗) =
s

∑

k=1

[logP (
k

xXm
|

k
xX1

k
xX2

)+

+ logP (
k

xXq
|

k
xX1

k
xX2

) + logP (
k

xX1

k
xX2

|
k

xXp
)]

= −H(X2|X1Xp)−H(Xm|X1X2)−

−H(Xq|X1X2)−H(X1Xp) +H(Xp). (10)

According to the information theory, we have:

H(X2|X1) ≥ −H(X2|X1Xp),

H(Xm|X2) ≥ H(Xm|X1X2),

H(Xq|X2) ≥ H(Xq|X1X2).

Therefore, we have the following inequality:

R(lt) ≤ R(lt∗). (11)

From (7), (8), (11) we obtain that:

lt ≤ lt∗ . (12)

Proposition 1 shows that a single parent-child combination transform will
increase the log likelihood of a tree T , which means the data fitness will be
increased.

Proposition 2. Given a spanning tree T , if two nodes satisfy sibling relation-
ship based on a certain root, then the graphical structure T ∗ after a combina-
tion transformation of these two nodes is, based on the Maximum Likelihood
criterion, superior to the original tree T .



The proof of Proposition 2 is much similar to Proposition 1, we will not prove
it here.
Based on a sequence of combination transformation, We can easily expand

Proposition 1 and Proposition 2 into the following Corollary 1 and Corollary 2.

Corollary 1. Given a spanning tree T , if a subset of nodes can be sorted as a
sequence based on a certain node as the root, in which each node is the father
of its sequent node, then the graphical structure T∗ after a combination trans-
formation of these nodes in this subset is, based on the Maximum Likelihood
criterion, superior to the original tree T .

Corollary 2. Given a spanning tree T , if all the nodes in a subset are sib-
ling relationship, then the graphical structure T∗ after a combination trans-
formation of all the nodes in this subset is, based on the Maximum Likelihood
criterion, superior to the original tree T .

These two corollaries prove that the combination transformation of parent-
child relationship and siblings relationship will increase the approximation
accuracy on data. Another advantage of combining the nodes with parent-
child or sibling relationship lies in that the transformed graphical structure
will maintain a tree structure, which is easily decomposed and enjoys the
ability to resist the overfitting problem. On the other hand, combining nodes
without parent-child or sibling relationship may result in a non-tree structure.
Such example can be seen in Fig. 5.

X1

X2

Xm

Xp

Xq

Xp

{Xm, Xq}

X1

X2

Fig. 5. An example to illustrate that combining nodes without parent-child or
sibling relationship may result in a non-tree structure.

Here we argue that Rule 3 is reasonable. Since those attributes with an
association rule pointing to class label C will occur with one another more fre-
quently, they should be more dependent on one another than other attributes.
Thus they are more like a single node and should be combined with the higher
priority.
On the other hand, Rule 4 is also necessary. The bound K cannot be too

large, or the estimation of the probability of the large node will be unreli-
able. An extreme case is that, when K is equal to n, i.e., the number of the



attributes, all the nodes will be combined into one large node. In this case
the estimated distribution will be the empirical distribution, which is very
unreliable to represent the data.
Until now, we do not mention how to set the threshold, i.e., the minimum

support in using the associate rules. In the next section, we present how to
determine the minimum support theoretically.

4.2 How to Determine the Minimum Support?

Without loss of generality, we begin with the 2 − 1 association rule:X → Y ,
which means X contains just two attributes X = {i, j} and Y contains one
variable Y = {l} (in our problem, l is the class variable). The derivation
for the general case will be similar. In the following, we use the Chebyshev
Theorem to derive the suitable minimum support.
This theorem gives the lower bound on the probability that the frequency

f of an event c after n trials differs from the real probability p within a ε
variation:

P (|f − p| ≤ ε) ≥ 1−
p(1− p)

ε2n
. (13)

In our problem, the frequency is given by

f =
Nijl

Nij

,

where, Nij is defined as the number of the occurrence of the item {i, j} and
Nijl is similarly defined. The value p is defined as the real probability of the
event “the itemsets which consist of i, j will also consist of l”. If we rewrite
the absolute form of (13),we can have the following:

f − ε ≤ p ≤ f + ε.

In the association rule mining process, it is required that p is greater than
the confidence level pcf and p is also has to be less than 1. So we can simply
specify that:

f − ε = pcf ,

f + ε = 1.0.

From above, we obtain: ε =
(1−pcf )

2 . Combined this with (13), we have the
following:



P (|f − p| ≤ ε) ≥ 1−
p(1− p)

ε2n

= 1−
p(1− p)

(1−pcf )
2

2
n

≥ 1−
0.5(1− 0.5)

(1−pcf )
2

2
n

= 1−
1

(1− pcf )
2
n

. (14)

In order to obtain reliable association rule, the frequency: f =
Nijl

Nij
has to be

close to the real probability of c event. So the probability that the frequency is
close to the real probability must be at least greater than 0.5, which implies:

1−
1

(1− pcf )
2
n
≥ 0.5. (15)

Here n is equal to Nij , which at least achieves a number

n = Nij ≥ smN, (16)

where N is the number of the cases or samples in dataset, and sm is the min-
imum support. To satisfy (15), n should be big enough. Thus its lower bound
smN should be big enough. At last we obtain the bound of the minimum
support:

sm ≥
2

(1− pcf )
2
N

.

In a word, the above can be written into a lemma:

Lemma 2. In order to make the inference in mining association rule reli-
able, the minimum support of the association rule must satisfy the following
inequality:

sm ≥
2

(1− pcf )
2
N

, (17)

where N is the total number of cases in dataset, pcf is the confidence level
specified by the user.

4.3 Practical Algorithm

In this section, we describe the detailed algorithm to build up Large Node
Chow-Liu Tree from data. Our algorithm consists of three phases. In the first
phase we utilize Apriori in [1] to detect all the association rules satisfying



Rule 4. The second phase is basically the Chow-Liu Tree construction algo-
rithm. In the last phase, we combine the attributes, which satisfy combination
rules and have higher supports, and upgrade the Chow-Liu Tree structure into
the LNCLT structure iteratively.

Phase 1: Detecting all the association rules X → Y , where Y is specified by
the class variable C andX is a subset of attributes set, with the cardinality
fewer than a bound K.
(1) Determine a good value of the minimum support, based on (17). Call

the Apriori procedure to generate the association rules, whose X’s
have the cardinality fewer than K.

(2) Record all the association rules together with their supports into list
L.

Phase 2(3): Drafting Chow-Liu Tree [3].

Phase 3: Adapting the tree structure based on combination transformation
(4) According to tree T , filter out association rules from L whose X’s do

not satisfy combination conditions, i.e., Rule 1 or Rule 2 from L. We
get the new L

′

.
(5) Sort L

′

in descending order based on the supports of the association
rules.

(6) Do until L
′

is NULL.
(a) Do the combination transformation based on the first itemset l1

of L
′

.
(b) Delete l1 and any other association rules li in L

′

which satisfy the
following condition:

l1.X ∩ li.X 6= ∅,

where l1.X and li.X refers to the X part of l1 and li, respectively.
(c) Examine whether the newly generated items satisfy the combina-

tion rules. If yes, insert them into L
′

and sort L
′

.
(d) Go to (a).

5 Experiments

In this section, we first present the setup information of our experiments.
Following that, we describe our pre-processing methods including handling
zero-counts problems and feature extraction. In Sect. 5.3, we demonstrate the
experimental results.

5.1 Setup

Our experiments are implemented on MNIST datasets [17]. The MNIST
datasets consist of a 60000-digit training dataset and a 10000-digit test



dataset. Both the training dataset and the test dataset consist of 28 × 28
gray-level pixels digits. As mentioned before, the bound K in Rule 4 cannot
be set to a big value, we set K to 3 in our experiment.

5.2 Pre-Processing Methods

5.2.1 Feature Extraction Methods

We use the same method as [2] to extract 96-dimensional binary features from
the digits. Since this method requires the binarization of the images, we first
use a global threshold to binarize the training and test dataset. Then we seg-
ment the digit images into 2×3 sub-regions uniformly. In each sub-region, we
judge whether four configurations given in Fig. 6 and their rotated configu-
rations in other three main directions exist. Each configuration corresponds
to a binary feature; therefore, the total number of the features will thus be
2× 3× 4× 4 = 96.

Fig. 6. Four configurations to extract features with ×’s and ◦’s representing black
pixels and white pixels respectively. These configurations will be rotated clockwise
with angles 90o, 180o and 270o, respectively

5.2.2 Attacking Zero-Counts Problem

Zero-counts problems happen when a given class label and some value of
the attribute never occur in the training dataset. This may cause problems
in using the estimated probabilities to construct the decision function. For
example, in the CLT’s decision function, if one value ak

j for an attribute Aj

is never achieved, the empirically estimated P (Aj = ak
j |Al = ap

l , C = Ci)

will be zero. Consequently, when Aj = ak
j , the joint probability in the right

part of (2) will be 0, whatever its parent is and the other terms are. Similar
problems also happen for LNCLT. To tackle this problem, we use the popular
Laplace correction method [20]. The modified estimated empirical probability
for P (Aj = ak

j |Al = ap
l , C = Ci) is given by

(#(Aj = ak
j , Al = ap

l , C = Ci) + f)/(#(Al = ap
l , C = Ci) + fmj), (18)

instead of the uncorrected one,



#(Aj = ak
j , Al = ap

l , C = Ci)/#(Al = ap
l , C = Ci), (19)

where mj is the number of values for attribute Aj , #(Aj = ak
j , C = Ci)

denotes the number of the occurrence that the attribute Aj achieves its k-th
value ak

j and the class label C achieves Ci. Other #(·)’s are similarly defined.
We take the same value 1/N for parameter f as [5, 14], where N is the number
of samples in training database. The technique is similarly used in estimated
the probability of large nodes in LNCLT.

5.3 Results

In this subsection, we compare the performance of the LNCLT with the CLT in
the tasks of approximating the dataset and performing classification. We built
10 LNCLTs for 10 digits. When examining the performance in approximating
the dataset of the LNCLT and the CLT, we use the log likelihood criterion.
When performing classification, we calculate the 10 probabilities for the test
sample based on 10 LNCLTs and output the digit, whose LNCLT has the
maximum probability, as the result.

5.3.1 Log Likelihood

Table 1. Minus Log Likelihood

Digit Training (bits/digit) Testing (bits/digit)
LNCLT CLT LNCLT CLT

0 30.14 30.87 30.05 31.00

1 13.08 13.75 12.12 12.86

2 33.78 34.68 33.03 34.05

3 34.49 35.51 33.87 34.95

4 27.98 28.70 27.58 28.34

5 32.45 33.17 32.31 33.18

6 26.96 27.63 26.60 27.26

7 25.01 25.83 24.84 25.79

8 34.15 34.94 33.75 34.58

9 26.90 27.52 26.12 26.63

From Table 1, we can see that the log likelihood of the LNCLT is larger
than that of the CLT for all the ten digits both in training dataset and test
dataset. This result shows that the LNCLT approximates the data more ac-
curately, which is consistent with our theoretical analysis in the previous sec-
tions.



5.3.2 Recognition Rate

We first use the 60000-digit training dataset to train the LNCLT and CLT. To
test the performance of the LNCLT and CLT, we extract 1, 000 digits from the
10000-digit test dataset randomly as our test dataset. We do the 1000-digit
test for 10 times to evaluate the performance difference between the LNCLT
and CLT. Table 2 describes the result. From Table 2, it is clearly observed
that the LNCLT performs better than CLT in all of 10 test datasets. We note
that, when compared with the results of other approaches on MNIST, the
recognition rate here is relatively low. The simple binarization method and
different feature extraction method may partly explain this phenomenon.

Table 2. Recognition Rate

Dataset 1 2 3 4 5

CLT(%) 83.20 84.70 84.10 83.50 83.70

LNCLT(%) 83.70 85.90 84.70 84.20 84.90

Dataset 6 7 8 9 10

CLT(%) 85.10 84.30 83.30 83.50 83.80

LNCLT(%) 86.00 85.40 83.50 83.90 85.70

6 Conclusion

In this paper, we have described a method for constructing a kind of “tree”
belief network: Large Node Chow-Liu Tree. This method can be seen as the
extension of Chow-liu Tree algorithm. With the combination of improved as-
sociation rule techniques, our novel model can partially overcome the disad-
vantages of Chow-Liu Tree, i.e., the inability to represent non-tree structures
and maintain the advantages of Chow-Liu Tree, such as the decomposition
ability in estimating the distribution. we demonstrate that the Large Node
Chow-Liu Tree is superior to the CLT both theoretically and experimentally.
Two issues need to be checked in the near future. First, although the

LNCLT model achieves performance superior to the CLT model, the proposed
iterative process of combining nodes into large nodes may be time-consuming.
How to reduce the time-complexity thus becomes part of our future work.
Second, the parameter K, namely, the maximum number of nodes which can
be combined, is simply set to 3, which is unnecessarily the optimal value.
To propose efficient parameter selection methods remains one of our research
directions.
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