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ABSTRACT 

 
Figure 1. A Structured P2P Network with Scores 

Hybrid Peer-to-Peer (P2P) networks based on the direct connec-
tion model have two shortcomings which are high bandwidth 
consumption and poor semi-parallel search. However, they can 
further be improved by the query propagation model. In this pa-
per, we propose a novel query routing strategy called GAroute 
based on the query propagation model. By giving the current P2P 
network topology and relevance level of each peer, GAroute re-
turns a list of query routing paths that cover as many relevant 
peers as possible. We model this as the Longest Path Problem in a 
directed graph which is NP-complete and we obtain high quality 
(0.95 in 100 peers) approximate solutions in polynomial time by 
using Genetic Algorithm (GA). We describe the problem model-
ing and proposed GA for finding long paths. Finally, we summa-
rize the experimental results which measure the scalability and 
quality of different searching algorithms. According to these re-
sults, GAroute works well in some large scaled P2P networks. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval – retrieval models, search process 

General Terms: Algorithms, Performance 

Keywords 
Query Routing, P2P, Genetic Algorithm, Longest Path Problem 

1. INTRODUCTION 
The query flooding problem [2] in pure P2P networks is not only 
solved by some existing query routing algorithms like CAN [4], 
but also some hybrid P2P networks like YouSearch [3]. Hybrid 
P2P networks depend on centralized components for storing con-
tent summaries of each peer. By querying centralized components, 
each peer obtains a list of relevant peers so that it directly con-
nects to all relevant peers to obtain document lists. Thus, the 
query flooding problem does not exist due to the direct connec-
tion model. However, such model has two shortcomings which 
can further be improved: (1) The query initiating peer sends a 
query packet to each relevant peer individually. Therefore, the 
query initiating peer consumes high bandwidth for the network 
transmission. (2) The query initiating peer spawns a thread to 
concurrently handle each direct connection. However, a computer 
has a limited thread resource, which makes parallel connections to 
all relevant peers impossible if they are many. The two shortcom-
ings can be circumvented by the query propagation model which 
is commonly applied in pure P2P networks. We assume there is a 
structured P2P network topology which is managed by a zone 
manager. Instead of directly connecting to all relevant peers, the 
query initiating peer queries the zone manager for some optimal 
routing paths and propagates the query to all relevant peers 
through these paths. 

2. PROPOSED GAROUTE 
In this paper, we propose a novel query routing function called 
GAroute used in zone managers. By giving the current P2P net-
work topology represented by an adjacency matrix A, relevance 
level of each peer represented by a score vector S, query initiating 
peer x1, and the maximum number of paths to be returned n, 
GAroute returns a list of query routing paths P = (pi | 1 ≤ i ≤ n) 
that cover as many relevant peers as possible where 
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We also define the information gain Hp of a path p as the sum of 
the scores of those unvisited peers such that 
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ρx is the penalty of the peer x and V is a set of the current visited 
peers. The penalty of a peer equals to its score because those vis-
ited peers give us duplicated query results so that they have no 
information. Our problem is to find at most n query routing paths 
P from a query initiating peer to any destination peer which 
maximize the total information gain where 

 . (3) ∑
=≤≤

==
n

i
p

nip
i

i

HnxSAGArouteP
1)1|(

1 maxarg),,,(

We model this as the Longest Path Problem in a directed graph 
which is NP-complete and we obtain high quality approximate 
solutions in polynomial time by using GA. 
Proposed GA: Our proposed GA is similar to Ahn’s GA [1]. A 
gene represents the ID of a peer. A chromosome contains a se-
quence of genes which represents the locus of a query routing 
path. For the population initialization, we randomly create N 
unique chromosomes for the first generation where N is the popu-
lation size and n ≤ N. If there are not enough unique chromo-
somes, we randomly fill up some duplicated chromosomes to the 
remaining population. In each generation, we perform Nm muta-
tion and Nc crossover where Nm, Nc ≤ N. 

Mutation: The purpose of mutation is to reach the optimal solu-
tion by mutating some genes in a chromosome. Given a chromo-
some, say <A, B, C, D, F, G> as shown in Figure 1, we randomly 
choose a mutation point, say the forth gene. Then we mutate the 
genes starting from the mutation point by choosing an adjacent 
peer with the highest score. Hence, we get <A, B, C, E, F, H, I> as 
E is adjacent to C with the highest score and H is adjacent to F 
with the highest score. 

Crossover and fission: Since mutation adopts a greedy search 
which may be trapped by local optima, crossover is proposed to 
escape these traps by crossing two chromosomes. Given two chro-
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mosomes, say <A, C, B> and <A, B, C, D, F, G> as shown in 
Figure 1, we randomly choose a pair of crossing points which has 
a common gene, say (2, 3) and C is the common gene. Crossover 
is impossible if there is no common gene. We exchange the genes 
in the two chromosomes starting from the crossing point. Hence, 
we get <A, C, D, F, G> and <A, B, C, B>, but the second chromo-
some is invalid as it violates the loop constraint (see Equation 1). 
It is a waste to kill any invalid chromosome because it can be 
repaired by fission. Given an invalid chromosome, say <A, B, C, 
D, F, E, C, D, F, G>, we find out the fission point which has the 
first common gene, say (3, 7) and C is the first common gene. 
Then we break the chromosome down to two valid chromosomes 
at the fission point. Hence, we get <A, B, C, D, F, E> and <A, B, 
C, D, F, G>. 
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Figure 2. Scalability (Top) and Quality (Bottom) Measure

Selection: The selection process is to select the best chromo-
somes for the next generation to ensure the population size is 
fixed to N. In each generation, Ng good chromosomes with the 
highest information gain (see Equation 2) and maximum length 
(secondary condition) are first selected where n ≤ Ng ≤ N. The 
remaining population is randomly filled by N – Ng poor chromo-
somes to enhance the diversity. After selection, a generation cycle 
is completed. The solution converges if Ng good chromosomes in 
the previous and current generation are the same. Finally, we 
select n best chromosomes as the routing paths. 
Two-phase tail pruning: An optimization procedure called two-
phase tail pruning can be performed on the routing paths so that a 
better result is obtained. We sort the routing paths based on their 
information gain. In Phase I, we prune away all paths which in-
formation gain is zero. In Phase II, we start from the last peer in a 
path and prune away all peers which have zero score or are visited 
through the previous paths. Finally, a sorted list of optimal paths 
is returned. 

3. EXPERIMENTS AND DISCUSSIONS 
The motivation of the experiments is to compare the scalability 
and quality of Brute-force Search (BS), proposed GA and Greedy 
Search (GS) for finding longest paths. We randomly generate 10 
different graphs for each peer quantity. Then we run BS, GA and 
GS on each graph 10 times and measure their average searching 
time and quality. All experiments are run on a Pentium 4 3GHz 
512MB RAM computer with parameters n = 10, N = 100, Nm = 50, 
Nc = 50 and Ng = 20. 
Results: Figure 2 (top) shows the scalability in different peer 
quantities. The curve BS is exponential because BS takes O(Npath) 
time. When the peer quantity increases, the total number of edges 
increases. Thus, the number of edge combinations Npath dramati-
cally increases. On the other hand, the curve GA is approximately 
linear which is scalable. Finally, the searching speed of GS is 
ultrahigh because it only takes O(Npeer) time where Npeer is the 
total number of peers. Figure 2 (bottom) shows the quality QA = 
HA / HBS of Algorithm A in 100 peers where HA and HBS are the 
total information gain of n paths obtained by A and BS respec-
tively. We use BS as the reference because BS always gives 
global optimal solutions. Since BS takes a long time to run if the 
peer quantity is more than 100, we can only calculate QGA and 
QGS up to this quantity. Therefore, we calculate the relative qual-
ity QA' = HA / HGA of Algorithm A in 1,000 peers instead. We 
observe that QGA is high in 100 peers. QGS' is low intuitively 
represents that QGA is still high in 1,000 peers. Moreover, QGS is 
low because GS returns local optimal solutions. QGS decreases 
when the peer quantity increases because the chance for GS to 

give low quality solutions increases when the number of different 
paths in a graph increases. 
Conclusion: From our experimental results, BS is not scalable as 
it is highly dependent of the peer quantity though it always gives 
global optimal solutions. Moreover, GS usually gives low quality 
solutions though it is scalable. On the other hand, GA is scalable 
(approximately linear) and gives high quality (0.95 in 100 peers) 
solutions. In conclusion, our results show that GAroute works 
well in some large scaled P2P networks. 

4. CONCLUSION AND FUTURE WORK 
In this paper, we address two shortcomings of the direct connec-
tion model which can be circumvented by the query propagation 
model. Therefore, we propose GAroute based on this model 
which can find high quality routing paths in polynomial time. We 
also describe the problem modeling and proposed GA. Our ex-
perimental results show a good performance of GAroute. The 
future work includes study the effects of GAroute parameters like 
the population size in different network topologies and peer quan-
tities. We also plan to compare our proposed GA with other ap-
proximation algorithms for information retrieval rather than just 
BS and GS. 
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