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Abstract—Understanding protein-DNA interactions, specifically transcription factor (TF) and transcription factor binding site (TFBS)

bindings, is crucial in deciphering gene regulation. The recent associated TF-TFBS pattern discovery combines one-sided motif

discovery on both the TF and the TFBS sides. Using sequences only, it identifies the short protein-DNA binding cores available only in

high-resolution 3D structures. The discovered patterns lead to promising subtype and disease analysis applications. While the related

studies use either association rule mining or existing TFBS annotations, none has proposed any formal unified (both-sided) model to

prioritize the top verifiable associated patterns. We propose the unified scores and develop an effective pipeline for associated TF-

TFBS pattern discovery. Our stringent instance-level evaluations show that the patterns with the top unified scores match with the

binding cores in 3D structures considerably better than the previous works, where up to 90 percent of the top 20 scored patterns are

verified. We also introduce extended verification from literature surveys, where the high unified scores correspond to even higher

verification percentage. The top scored patterns are confirmed to match the known WRKY binding cores with no available 3D

structures and agree well with the top binding affinities of in vivo experiments.

Index Terms—Bioinformatics, protein-DNA interactions, motif discovery, TF-TFBS associated pattern discovery, binding rules

Ç

1 INTRODUCTION

PROTEIN-DNA interactions play a fundamental and essen-
tial role in various genetic activities [1], [2]. The proteins

called transcription factors (TFs) recognize and bind to
short DNA regions called transcription factor binding sites
(TFBSs) in a sequence specific manner, and activate or
suppress the target gene expression. As the primary
protein-DNA interactions in gene regulation, TF-TFBS
bindings will be our focus throughout the paper. There
are numerous studies to decipher their patterns as a critical
component in understanding life and disease mechanisms
for bioengineering and therapeutic purposes [1], [3], [4], [5].

The protein-DNA interactions and their conserved
patterns can be categorized in different sequence resolu-
tions. There are substantial differences across full-length TF
sequences with lengths of hundreds of residues (amino
acids) and experimentally determined bound TFBS se-
quences with lengths within twenty residues (nucleotides
or base pairs bp). Despite the remarkable global sequence
differences, shorter consecutive regions of the TF sequences
are conserved and form binding domains, resulting in a

significantly smaller number of characteristic families [6],
[7]. These binding domains, with lengths of tens to around
one hundred residues, have similar 3D local structures and
sequence specific preferences for binding to TFBS patterns
of around several to 20 bp, which are called motifs. Even
shorter TF and TFBS subsequences critical for bindings can
be extracted from experimentally determined 3D protein-
DNA complex structures. In particular, atomic distances
can be measured between all pairs of TF and TFBS residues,
and the pairs with atoms �3:5 �A [8], [9] are considered
forming chemical (hydrogen) bonds of the bindings. We
denote the TF-TFBS subsequences with lengths (widths) of
several residues surrounding the bonding pairs as binding
cores [10], which can be considered as the sequence
representation of the interaction interfaces [11]. The binding
cores are the most critical parts of protein-DNA interactions and
are much shorter than the sequence lengths of the whole 3D
structures in the TF domain scale.

Identifying binding cores on both the TF and TFBS sides
is challenging experimentally. It requires resolving the
protein-DNA complex 3D structures that are deposited and
available in the protein data bank (PDB) [12]. Available
protein-DNA 3D structures are limited and far from
complete because of the experiment costs and difficulties.
For example, there is an over 10-time sequence-structure
gap regarding the number of known protein sequences and
that of known protein structures in PDB, and moreover,
many structures in PDB contain only single protein
domains but not the protein-DNA interaction complexes,
with no information of the binding cores (interfaces) [13].

On the other hand, experiments determining TF-TFBS
bindings at the sequence level are inexpensive with
abundant data. High-throughput experiments, such as in
vivo Chromatin immunoprecipitation followed by sequen-
cing (ChIP-seq) [14], [15], [16], and in vitro protein binding
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microarray (PBM) [4], provide TF-TFBS binding sequence
data for full-length TFs and TF domains. Note that ChIP-seq
and PBM only provide high resolution on one side for the
TFBSs, and there are no sequence-level experiments to
directly dig out TF-TFBS binding cores. Diverse TF-TFBS
binding sequences curated from peer-reviewed publications
and experiments are collected in databases [17], [18].
Among the most representative ones, TRANSFAC [17]
contains comprehensive published eukaryotic TF full
sequences, their bound TFBSs and regulated genes. TFBSs
experimentally bound by the same TFs are compiled into
motifs, in the form of position weight matrices (PWMs) and
consensus strings. Although sequence-level data do not
directly provide the detailed information of binding cores,
they provide the binding relationships, and serve as the
most widely available information for discovering binding
patterns (the so-called motifs) as well as the corresponding
motif occurrences (the so-called instances). Regarding the
data in recent work [19], there are 7,664 TF and 26,786 TFBS
sequences from TRANSFAC while there are only 1,290 3D
protein-DNA structures for verification. Nevertheless, PDB
data serve as the most accurate verification sources to verify
predicted (associated) TF-TFBS patterns as binding cores
[19]. The PBM data available at UniProbe [4] can also be
used to verify associated patterns on the TFBS side (but not
the TF side) for their in vitro binding affinities.

The recent associated TF-TFBS pattern discovery [10], [19],

[20], [21] performs two-sided motif discovery and is able to

identify binding cores without any 3D structure or binding

domain information. Different from structure-based methods
limited by available PDB data [13] and numerous one-sided
motif discovery methods designed for only TFs or TFBSs
[1], the recent associated TF-TFBS pattern discovery
methods work on binding sequences and employ associa-
tion rule mining [10], [21] or link both TF motifs and TFBS
annotations [19] to discover two-sided patterns. The
resultant patterns, discovered without requiring PDB
training data [8], [9], [22], familial specific information or
binding domain knowledge [7], [23], [24], turn out to be
verifiable binding cores [19] and positively reflect familial
bindings [5].

However, none of the existing related methods [5], [10],
[19], [20], [21] has proposed a formal unified model to
quantitatively evaluate an associated pattern as a whole.
While these methods either employ association rule mining
measures such as support and confidence [25] or take
advantage of existing annotated TFBS motifs in TRANSFAC
[5], [19], the associated patterns cannot be scored or ranked
against each other directly and quantitatively. Therefore,
unified scores are desirable to shortlist and prioritize the
top associated patterns for further analysis or experiment
verification. Unified scores are especially useful for dis-
covering novel associated TF-TFBS patterns in scenarios
where annotations are noisy or not available, as more and
more high-throughput data are being generated [4], [14]. In
the long run, unified scores can serve as the basis for
advanced associated pattern modeling to better understand
regulatory and disease mechanisms as compared to one-
sided modeling.

In this paper, we propose two unified scores (namely
“sum” and “normalized” scores to be introduced) to
evaluate associated TF-TFBS patterns and develop an
effective pipeline to link up the TF and TFBS motif instances
to form and score associated patterns. Following the
background of related methods in Section 2, the methodol-
ogy is detailed in Section 3. Evaluation results reported in
Section 4 show that the top high-unified scores have
excellent match with the top high-verification performance
on existing PDB 3D structures and in extended evaluation.
We discuss and conclude the paper in Section 5.

2 BACKGROUND

In this section, existing methods related to associated TF-
TFBS pattern discovery are briefly introduced, followed
by the motivations of unified scores to model associated
patterns.

2.1 Binding Residue Prediction Using 3D Structures

Available 3D structures enable training-based methods to
predict binding residues on the TF (protein) side [8], [9].
They are mainly supervised methods using existing PDB 3D
structures as direct training samples or employ properties
derived from 3D structures such as secondary structures
and solvent accessibility [22], [26]. Three-dimensional
structure-based methods also suffer from the limited
amount of available 3D structures to derive sophisticated
features [26] and potential overfitting problems. Novel
discoveries of binding cores can be prohibited for cases with
no 3D structures available, such as the WRKY binding
domains [27], [28]. Moreover, they are considered one sided
rather than both sided as they usually only predict whether
individual (or di-nucleotide-specific [26]) TF residues bind
or not rather than their associated binding patterns.

2.2 One-Sided Motif Discovery Methods

Motif discovery [29] aims at finding unknown patterns
(de novo motifs) and identify the corresponding motif
occurrences (instances) from a set of protein or DNA
sequences (one sided). Conservation and overrepresenta-
tion are the two main properties to exploit such that the
discovered patterns and instances match real TF binding
domains or bound TFBSs. While TF motif discovery is quite
mature to discover TF binding domains with lengths of tens
of residues [30], [31], TFBS motif discovery is still active and
challenging [32]. There are hundreds of TFBS motif
discovery methods, ranging from suffix-tree based, deter-
ministic ones [33], [34], to artificial intelligence based,
stochastic ones [30], [35]. A number of comprehensive
surveys can be found [1], [29], [36]. Motifs are represented
as consensus strings or PWMs of the residue distributions
[29], and great challenges exist in both modeling (scores)
and optimization (search strategies) to identify biologically
meaningful motifs and regulatory elements. A major
limitation for existing one-sided motif discovery is the lack
of linkage between TFs and TFBSs to reveal information of
the two-sided TF-TFBS binding cores. Nevertheless, the
abundant motif discovery methods provide a wide spec-
trum of one-sided scores to rank and shortlist potential
motifs, such as information content [37], maximal likelihood
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[30], KL-divergence [38], and log odds [34]. Bayesian scores
(see methods) not only are very close to most of the
representative scores [38], but also balance conservation
and overrepresentation well in real and noisy case studies
[39], [40]. There are also consistent advances on motif
representation and modeling [41], [42], [43], [44] potentially
applicable to both TF and TFBS motifs. Besides one-sided
motif discovery, it is intuitive to consider linking TFs and
TFBSs in a both-sided manner to get stronger motif signals
and better understand protein-DNA interaction patterns.

2.3 Associated TF-TFBS Pattern Discovery

Associated TF-TFBS pattern discovery distinguishes itself from
existing structure-based methods and one-sided motif discovery
via performing two-sided motif discovery on TF-TFBS binding
sequences without using structure or domain information. With
binding sequence data widely available in databases such
as TRANSFAC, short and highly conserved TF and TFBS
patterns on both sides can be better exploited than on only
one side to reveal intriguing binding mechanisms [45].
Recently, emerging associated TF-TFBS pattern discovery
methods [10], [19], [20], [21] discover very encouraging
patterns that are verifiable binding cores according to PDB
3D structures as well as testable candidates supported by
other evidence. Note the great challenge is that very short
associated patterns (and their instances) with widths of just
several residues are to be predicted using only binding
sequences of full-length TFs and TFBSs, without using even
domain or familial knowledge. The patterns (and their
instances) are then evaluated against short binding cores
extracted independently from high-resolution 3D structures
that require years of efforts to determine experimentally.

The current methods include association rule mining and
semi-two-sided pattern discovery with existing TFBS
annotations. Association rule mining techniques [25] were
first applied on TRANSFAC [10] to discover exact TF-TFBS
patterns, and later more efficient data structures were
developed for both exact [20] and approximate [21] cases.
Association rule mining measures such as support and
confidence were used to control the resultant pattern sets
but no rankings or individual quantitative scores could be
given. An approximate associated pattern discovery meth-
od [19] was also developed, which took advantage of
existing TFBS motif annotations in TRANSFAC on the TFBS
side, and linked the TF side for associated pattern with a
customized TF core motif discovery algorithm. The simple
core motif discovery algorithm has shown to be consider-
ably better in identifying binding cores in the whole
framework [19] than the other methods aiming at weakly
conserved and TF domain-size motifs [30], [31]. The
associated patterns, discovered at the sequence level with-
out training on any 3D structures, are shown to be highly
predictive and verifiable with binding cores. Therefore, they
provide better insights into core protein-DNA interactions
and reveal novel TF-TFBS binding rules to guide potential
experiments. Besides many other potential applications,
associated TF-TFBS pattern discovery has enabled generic
binding subtype analysis [5] to understand regulatory
mechanisms in greater detail, complementing existing
one-sided studies [46], [47] with potential applications of
mechanistic and disease studies related to specific bindings.

2.4 Motivations

Despite the novelty and success, none of the associated TF-
TFBS pattern discovery studies has proposed any unified
scores to model an associated pattern as a whole
quantitatively. They either employ multiple association
mining measures that collectively cannot be ranked, or
take advantage of existing TFBS motifs available from
TRANSFAC [19] without two-sided unified scores.

The general measures (e.g., support and confidence) in
association rule ming do not capture the biological proper-
ties of motifs directly. Different support and confidence
thresholds in combination can generate different numbers
of patterns that, however, cannot be ranked quantitatively
against each other. While the best achievable verification
performance against binding cores is shown to be promis-
ing [21], how to shortlist the best output patterns in practice
(before they are evaluated against the ground truth)
requires more advanced and domain-specific modeling,
which is still in progress for the association rule mining-
based methods as shown later in the comparisons.

On the other hand, while TRANSFAC TFBS motif
annotations are ready to be used [17], they do not possess
scores that can be intuitively combined with the TF core
motif scores to evaluate the final associated two-sided
patterns. In the previous work [19], as only the annotated
TFBS consensuses (or even PWMs) were used on the DNA
side, the evaluation of the predicted associated patterns
against the binding cores was loose. A predicted pattern
was considered correct as long as its TF side motif instances
were matched and a fixed width portion of the TFBS side
pattern was approximately matched the binding cores, but
there was no information to evaluate the actual associated
TF-TFBS instances (occurrences). In this work, more
detailed and stringent evaluation will be performed on all
the paired TF-TFBS motif instances that can be obtained
with the to-be-proposed unified scores. As a result, the
instance-level verification in this paper is a much more
accurate and stringent evaluation standard than the pre-
vious semipattern level verification. Moreover, as more and
more raw binding data are being generated from high-
throughput experiments, novel associated patterns may not
be discovered only relying on noisy annotations done one
sided in the past.

Unified scores for modeling associated patterns quanti-
tatively are essential from several aspects. Because short-
listing predicted patterns for further investigation and
experiments is necessary due to limited time and resources,
unified scores for both-sided associated pattern modeling
are desirable to evaluate and prioritize top candidates as the
most testable binding cores. The scores are the central part
for modeling and discovering novel associated patterns
effectively as there is increasing need to analyze data
beyond using existing one-sided annotations. Unified
scores will also provide the basis for more advanced direct
TF-TFBS modeling as simple cross linking a small number
of top TF and TFBS patterns may not generate the optimal
associated patterns. As a result, we are highly motivated to
propose effective unified scores for associated TF-TFBS
patterns in an effective pipeline to discover associated
patterns. To validate the proposed unified scores, stringent
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instance-level verification evaluation will be performed on
comprehensive ground truth to show the effectiveness of
the scores in ranking predicted patterns to match real
binding cores. The detailed methodology is presented in the
following section.

3 MATERIALS AND METHODS

In this section, we present the methodology of modeling
associated TF-TFBS pattern discovery with unified scores,
followed by the details of each component.

3.1 TF and TFBS Data Sets

Similar to our previous work [10], [19], we employ
TRANSFAC Professional 2009.4 [17] for our experiments.
There were 7,664 TFs and 26,786 corresponding bound
TFBSs in total after entries without sequences were
discarded. To retain high-quality data, only TFBS sequences
no shorter than 8 with TRANSFAC quality levels 1-3
(smaller the better) were adopted. TFs with fewer than five
TFBS sequences were discarded. After preprocessing, we
have one TF data set with 607 full-length TF sequences
(average length 488) for the whole TRANSFAC. Each TF
sequence can be uniquely identified by its accession ID, for
example, T00017, referred to as a TF entry. Each TF entry
corresponds to a TFBS data set containing all the TFBS
sequences it binds, which are labeled by their IDs, for
example, R00207, R03135, ..., and the data set is named after
the TF entry ID, as shown in the upper left of Fig. 1. Note
the TFBS data sets contain the raw TFBS regions extracted
from experiments, which are usually longer than the final
TFBS motifs and can be over one hundred bp long. The TF
data set and all the 607 TFBS data sets are the input to our
method, and except the binding sequence information, no
extra TF family, domain, or structure information is used.
The processed input data are available in our supplemen-
tary website, which is available at http://www.cse.cuhk.
edu.hk/~tmchan/patternscores/.

The overall method is shown in Fig. 1. First, extended
core motif discovery based on our previous work [19] is
applied on the TF data set and all the 607 TFBS Data sets,
respectively (Fig. 1, Part 1). Then, all the TF and TFBS motifs
are linked to form the associated patterns and calculate the
unified scores (Fig. 1, Part 2). Because of additivity of the
proposed unified scores, the associated pattern can be
efficiently scored from the TF and TFBS scores. All
associated patterns are then ranked and the top N patterns
are shortlisted as the output, where N is user specified
(Fig. 1, Part 3). The components are presented as follows:

3.2 TF and TFBS Core Motif Discovery

The effective customized core motif discovery algorithm of
our previous work [19] is employed and extended for both
TFs and TFBSs in the pipeline, as illustrated in Fig. 1, Part 1.
Different from the existing one-sided motif discovery
methods, the customized algorithm was developed to aim
at very short and highly conserved patterns likely to be
binding cores, to minimize the scattering of instance errors,
and to consider the hydrophobicity properties of the TF
motifs. As a result, it has showed significantly better
verification performance in associated TF-TFBS pattern

discovery on the TF side than the existing methods [30],
[31], which on the opposite aim at long and weakly

conserved domain-level motifs. Moreover, by extending
our previous effective algorithm, we can better focus on the

effectiveness of the proposed unified scores in modeling
associated TF-TFBS patterns.

The core motif discovery algorithm is extended to work
on the TFBS sequence data sets, as TRANSFAC TFBS motif

annotations are no longer used. In the TFBS data sets, the
raw TFBS region sequences are much shorter than those

input sequences expected by a traditional TFBS motif
discovery algorithm. Therefore, sophisticated methods

considering long input and weak motifs [30], [40], [42],
[48] may be overkills for the short and highly conserved

core motifs. It is also beneficial to consistently employ the
core motif discovery algorithm on the TFBS side to better

focus on the unified scores in modeling. On the other hand,
advanced TFBS motif discovery methods targeting for short

motifs [34], [49] can be further investigated to improve and

generalize the scores. For example, the Weeder released
version discovers short TFBS motifs voted from several

similar ones [34], and unifying the different log odds from
multiple motifs is worth investigating for associated TF-

TFBS patterns in future work.
The basic core motif discovery algorithm was detailed in

[19]. It accepts two major parameters: the motif width W

and the maximal error E allowed for any TFBS instance. For
input sequences of alphabet � (either amino acids for TFs or

nucleotides for TFBSs) and any W -width motif with a set of

motif instances (the so-called answers) A, each with
Hamming distance � E from the motif, the algorithm

iteratively chooses a subset A0 from A to maximize the
Bayesian motif score [39] Scr as follows:

Scr ¼ jA0j
XW
a¼1

X
b2�

�a;b log
�a;b

�0;b
þ log

p

1� p� 1

 !
: ð1Þ

� is the position weight matrix of A0, where �a;b represents

the frequency of residue b 2 � at column a 2 ½1;W �, and �0;b

is the background (i.e., input) frequency of residue b. jSj is

the total residue number of the data set, and p ¼ jA0j=jSj is

the abundance ratio. The score Scr reflects log posterior
probability of having � and A0 with a noninformative prior

and captures both conservation and overrepresentation.
The algorithm is extended as follows: Different from

previous work, ALL similar core motifs are merged into

nonredundant ones and output, each containing its in-
stances and sequence labels as illustrated in the top right of

Fig. 1. By doing so, we will not miss any potential TF or
TFBS side motif candidates for the association part. To

remove redundant core motifs, if any two motifs are with
Hamming distance �20 percent of W or they share

�80 percent instances, only the one with higher Scr will

be kept. It is a natural requirement that a nontrivial motif
has to have more than one instance (corresponding to

minimal support minSupport ¼ 2 in association rule
mining). Naturally, the hydrophobicity properties check

for amino acids is applicable to only TF cases, while DNA
reverse complements are considered only for TFBS cases.
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3.3 Unified Scores for Associated Patterns

The proposed unified (two-sides) scores are calculated when
the corresponding TF and TFBS motifs are associated
together, as illustrated in Fig. 1, Part 2. For each TF core

motif T output by the customized algorithm in Part 1, its

Bayesian motif score is ScrðT Þ, for example, Motif 16: CKGFF

Scr: 202 (rounded for simplicity). Each motif instance Ti of T

corresponds to a TF sequence (entry), which has the
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Fig. 1. Associated TF-TFBS pattern discovery illustration (motif width W ¼ 5, and maximal instance error E ¼ 1 for both the TF and the TFBS sides):
1. Core motif discovery on TFs and TFBSs, respectively; 2. Association of TF and TFBS core motifs based on the unified score (sum); 3. Top N
associated patterns ranked and output; 4. Evaluation of verification ratios with PDB structures. The figure reflects real TRANSFAC statistics and
scores (rounded), except the illustration in the evaluation. The number following X, for example, X435, means the number of actually paired TF-
TFBS instances (occurrences), which is used for stringent instance-level verification. The TF number below, for example, 28 TFs, indicates the
number of distinct TF entries involved.



corresponding TFBS data set, for example, T00117. For the
TFBS data set, TFBS core motifs fCig have been scored and
output, for example, fTGAAC; TGACC; TGTCC . . .g for
T00117. For every possible associated pattern T -C, for
example, CKGFF-TGACC, we calculate its unified score
and obtain their corresponding TF-TFBS instances (occur-
rences). We propose two unified scores based on combining
the TF and TFBS motif Bayesian scores in an additive
manner. First, the “sum” unified score is proposed and
defined as the sum of the TF motif score and all the
corresponding TFBS motif scores

sumðT -CÞ ¼ ScrðT Þ þ
X
Ti

ScrðC in TiÞ; ð2Þ

where Ti represents the TFBS data set named after the TF
entry that is instance i of TF motif T . For example, the sum
score for CKGFF-TGACC is ScrðCKGFF Þ ¼ 202 plus
ScrðTGACCÞ ¼ 108 ranked second in T00117, plus
ScrðTGACCÞ ¼ 45 ranked 31st in T00372, plus 0 as TGACC
is not found in T00373 . . . , resulting in ScrðCKGFF -
TGACCÞ ¼ 202þ 108þ 45þ 0þ � � � ¼ 2;003. Two motifs
may be reverse complements of each other, and only the
one with the higher Scr is added once—they may have
different scores because their log ratios against the back-
ground may be different. While ScrðC in TiÞ (¼ 0 if C is not
present in Ti) can be treated as independent and added,
adding ScrðT Þ may impose oversimplistic independence on
the TF-TFBS dependence. Nevertheless, the proposed sum
with additivity enables efficient computation and shows
very promising verification results. It serves as a baseline
model for more advanced scores in the future.

We also define another heuristic “normalized” unified
score to balance different TFBS data set sizes as follows:

normðT -CÞ ¼ ScrðT Þ=NðT Þ þ
X
Ti

ScrðC in TiÞ=NðTiÞ; ð3Þ

where NðT Þ means the number of sequences in the TF data
set of T, i.e., NðT Þ ¼ 607 in our experiments, and NðTiÞ the
number of sequences in the TFBS data set of the TF entry Ti.

With the additivity of the proposed unified scores, the TF
and TFBS core motif discovery parts can be done
independently, and effectively linked afterward to calculate
the unified scores. While nonadditive scores are also
possible choices, current additive scores ensure efficient
computation for the top-scored associated patterns from the
top one-sided patterns without exhaustive enumerations,
and show encouraging verification results as presented
later. We can easily make tradeoffs about how many TF or
TFBS motifs to consider in association. In our setting, we
consider up to the top 10,000 TF motifs and for each Ti data
set, the top 10 TFBS motifs for efficiency, because each TFBS
data set corresponds to one particular TF and there are not
likely many top TFBS motifs. Although the contribution of
ScrðTGACCÞ ¼ 45 ranked 31st in T00372 would be missed,
candidates ranked low generally have insignificant effects
on rankings, for example, the actual sum score 2,003,
calculated without T00372, is the second highest.

The associated patterns with their paired TF-TFBS
instances are then ranked and output, as illustrated in
Fig. 1 Part 3. Different from our previous work [19] that

only kept the TFBS consensuses, our current pipeline not
only keeps the associated patterns but also retrieves the
actually paired up (associated) TF-TFBS instances according
to their binding relationship in the experiment data. As a
result, more detailed and stringent verification is enabled to
evaluate the unified scores. In particular, all the TF-TFBS
binding dependency at the instance level is maintained,
and the number of actually paired TF-TFBS instances
(occurrences) as well as the number of distinct TF entries
involved are stored for each pattern. For example, in Fig. 1
Part 3, pair CKGFF-TGACC has X435 instances involving
28 (distinct) TF entries.

To remove noise and shortlist the top patterns, various
control settings are employed. To remove potential sample
noise, we introduce a min count threshold M. If an
associated pattern has none of its instance pairs with a TF
entry count �M, the pattern is discarded. We evaluated
M ¼ 5; 7 in our parameter analysis. The top N (¼ 200 in the
example) patterns to output can be set considering various
resource limits and priorities. For each unique and non-
redundant TF core motif, we can choose the only one K ¼ 1
or multiple (e.g., K ¼ 5) of the top scored TFBS core motif
(s) to be associated. By setting K ¼ 1, we have a very
stringent selection criterion keeping only one top TF-unique
associated pattern; while setting K ¼ 5, we have more
associated pattern candidates for the same unique TF core
motif. If different K settings show high verification
performance, then that means the unified scores reflect
the true binding cores accurately and consistently.

3.4 Evaluation with Binding Cores from PDB
Structures

The predicted associated TF-TFBS patterns are evaluated
with the binding cores extracted independently from PDB
structures in a stringent instance-level manner. Since in
our previous works, the associated patterns, discovered
from sequences only, have shown to match well with
familial and domain-level information [5], [10], [19], we
directly evaluate them using the most precise criteria of
matching the instances with binding cores, which are the
tiny critical interaction fractions (interfaces) extracted from
the high-resolution 3D structures. The PDB binding core
verification used here is independent and the most stringent
ever for evaluating associated TF-TFBS pattern discovery
[10], [19], [21].

To evaluate an associated patterns with respect to their
TF-TFBS instance pairs, binding cores (protein-DNA se-
quence pairs surrounding their bonding residues) from the
3D structures in PDB were extracted as the verification data
following our previous work [19]. Forty thousand two
hundred and twenty-two pairs were extracted from the
1,290 PDB protein-DNA complex structures. Each pair
consists of two associated protein and DNA substrings
(both with widths 9 in our experiments to tolerate shifted
cores discovered) where the closest atom pair of the center
residues is within 3.5 �A [8], [9]. There are two verification
measures: one on the TF side (one sided) and the other on
both TF-TFBS sides (two sided). For instance pair t-c with
instance count x, for example, CKGFF-TGACC with count
435, if t on the TF side is found to be contained in certain
interacting protein-DNA pairs, the pair is verified on the TF
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side. Given a verified t, its paired c on the TFBS side is

further check if it appears in the corresponding protein-

DNA pairs within maximal error E. If so, the whole pair t-c

is verified on both sides with x instances. The count of all

instance pairs verified on the TF side (both sides) over all

instance pair count represent the TF verification ratio

(percentage) RTF (TF-TFBS both-side verification ratio

Rboth, the most stringent measure). For example, pair CKGFF-

TGACC is verified on both sides (including the TF side),

illustrated by green circles on the left and right, respectively.

CKGFF-TGAGC with count 5 is also verified on both sides

approximately (E ¼ 1). CEGFF is not verified so the whole

pair with count 5 is not verified, illustrated by red crosses on

both sides. If there are only these three unique instance

pairs, RTF ¼ Rboth ¼ ð435þ 5Þ=ð435þ 5þ 5Þ ¼ 0:99. For N

output associated patterns, we can get the average RTF and

Rboth for evaluation. PDB structures are invaluable but not

complete verification sources to evaluate the discovered

patterns. We will introduce extended verification in the

experimental results.
Note that both percentages RTF and Rboth here are

instance-level measures, more stringent and more precise of

prediction performance than pattern-level or semipattern

level measures. In previous work [19], RTF was on the

instance level, but the relaxed semipattern level RTF�TFBS
did not have nor evaluate the TFBS instance information for

paired TF-TFBS instances. In particular, an associated

pattern was considered verified on both sides more easily,

as long as the TFBS side consensus (�W ) taken from

TRANSFAC could be partially verified (any substring in

width W ) after the TF side had been verified. Degenerate

IUPAC ambiguity residues frequently happened and the

old verification criteria were loose. In this work, all TFBS

instances belonging to an associated pattern need to be

examined exactly in width W , and any unmatched paired

instances would strictly decrease Rboth.

4 RESULTS AND ANALYSIS

In this section, we introduce the experiment settings, report
the experimental results and evaluate the performance with
extended and PBM data verifications introduced.

4.1 Experiment Settings

We experimented widths W ¼ 5; 6 and maximal errors E ¼
0; 1 for both TF and TFBS core motifs. The same settings
were employed for both TF and TFBS sides because they
were considered equally important and conserved as the
potential binding cores. While we employed the intuitive
settings consistent to our previous works to better focus on
the unified scores in this study, different W and E settings
for TFs and TFBSs can be explored in the future work. The
short form, W5E0, for example, represents settings with
W ¼ 5, E ¼ 0. The sum and normalized unified scores
were compared and analyzed. For each nonredundant TF
core motif, it could be associated with multiple (K ¼ 5) or
the single (K ¼ 1) top TFBS core motifs in the experimental
results. Different top N scored associated patterns were
output and evaluated, ranging from 200 to 10. Min count
thresholds M ¼ 5; 7 were examined, which control that an
output associated pattern must contain instance pairs with
TF entry count �M. More results of N up to 500 are
available in the supplementary data, available online.

4.2 PDB Structure Verification Results

The verification performance comparisons of the “sum” and
“normalized” unified scores are shown in Figs. 2 and 3 for
the settings of width W ¼ 5 and the min count threshold
M ¼ 7. The results of K ¼ 5 are shown in Fig. 2. Discovered
at the sequence level based purely on binding relationship
without any structure, domain, or familial knowledge, the
top N � 200 scored associated patterns show high verifica-
tion ratios to match binding cores (interacting protein-DNA
pairs) extracted from 3D structures. Note that for the
stringent setting W5E0, TF-TFBS instance pairs of an
associated pattern have to match exactly with certain
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Fig. 2. Comparison of verification ratios between sum and normalized unified scores (W ¼ 5, K ¼ 5). Vertical axis indicates the verification ratio and
horizontal axis indicates N.

Fig. 3. Comparison of verification ratios between sum and normalized unified scores (W ¼ 5, K ¼ 1). Vertical axis indicates the verification ratio and
horizontal axis indicates N.



binding cores on both sides to be verified. For the top N

results of W5E0 except some small variations possibly due
to noises, higher unified score sums, in general, have higher
average verification ratios: In Fig. 2a, RTF ¼ 68% for the top
100 patterns, 80 percent for the top 50, and 100 percent for
the top 10; in Fig. 2c, Rboth ¼ 58% for the top 100, 76 percent
for the top 50, and 100 percent for the top 10. For W5E1
with relaxed approximate verification on the TFBS side (TF
instances still have to be exact matches), more variations are
shown in the trend. The top sum score still has generally
excellent correlation with the top verification ratios,
for example, in Fig. 2d Rboth ¼ 62% for the top 200 patterns,
83 percent for the top 50, and 100 percent for the top 10. For
results of K ¼ 1 shown in Fig. 3, the criterion is much more
stringent as only one single TFBS core motif (i.e., K ¼ 1) can
be selected and associated with a unique TF core motif for
the highest unified score. The verification ratios decrease
and more variations are shown for different N values.
Nevertheless, the trend of higher sum unified scores
corresponding to higher verification ratios still holds in
general, where the top 10 sum scored patterns again have
the best average RTF and Rboth in both W5E0 and W5E1

settings. While high normalized unified scores do not
correlate with the PDB verification ratios as well as the sum
scores, we will investigate into this in the extended
verification section.

While Rboth can be considered as the true-positive rate or
the precision, it is not trivial to obtain the accurate false-
positive rate (FPR) as the PDB 3D structures are not
complete. Nevertheless, even using a conservative standard
to consider 1-Rboth as the upper bound FPR before more
evidence is introduced (see Section 4.4), the verification
performance for the sum score is still good with FPR � 0:1
for the top 20 results (K ¼ 5 in Figs. 2c and 2d).

The sensitivity of the control parameter to remove
sample noise (min count M) is investigated here. The
verification ratios for thresholds M ¼ 5 (M5) and M ¼ 7
(M7) are illustrated with settings W5E0, K ¼ 1 in Fig. 4.
Despite the opposite trends for the different unified scores
to be analyzed next, M values only slightly affect the
verification performance when N � 50. For the top N � 50
results, the verification ratios are almost the same for M5
and M7. This is intuitive as patterns with more diverse TF
evidence from TRANSFAC, i.e., larger M, are more likely to
have available 3D structures for verification. On the other
hand, M ¼ 7 is more stringent and fewer patterns are
output if we need up to the N ¼ 500 top patterns. Other
results available in the supplementary data, available
online, show similar conclusions. As we focus on the top
N � 200, the experiment results are all with M ¼ 7.

4.3 PDB Verification Comparison with Previous
Works

To compare our current work with the existing methods in
Table 1, the previous loose results were reestimated
according to our most stringent criteria of verification
performance. As mentioned in Sections 2.4 and 3.4, the
current association rule ming [21] and annotation-based
pattern discovery [19] methods did not have unified scores
to rank the results, and they used loose criteria to measure
only the pattern- or semipattern-level verification perfor-
mance. As a result, their reported evaluation results were
not directly comparable to the results in this work. To
demonstrate the verification performance of the unified
scores, we recompiled the previous results and estimated
their verification ratios Rboth according to certain quantita-
tive rankings.

For the association rule mining methods [20], [21] where
pattern scores were not available, we employed the
extended working version of [20], [21]. The current
improved version has introduced p-values (in-progress
details not shown) to score and rank the patterns and
demonstrated the best instance-level verification perfor-
mance, not just the best achievable one. Because the
working version only applies to exact patterns (i.e.,
E ¼ 0), the results corresponding to W5E0 were compared.
P-value thresholds were selected such that the numbers of
the output top W ¼ 5 associated patterns were closest to

CHAN ET AL.: MODELING ASSOCIATED PROTEIN-DNA PATTERN DISCOVERY WITH UNIFIED SCORES 703

Fig. 4. Examination on M ¼ 5; 7. Vertical axis indicates the verification
ratio (RTF or Rboth) and horizontal axis indicates N.

TABLE 1
PDB Rboth Comparison of the Top N Scored Patterns

�Estimated instance-level performance; inside the parentheses is the
loose semipattern level performance before normalization by the
shortest TFBS consensus widths.



N ¼ 10; 20 in Table 1. The results were comparable to some
K > 1 settings, but we just compared them to the most
stringent setting of K ¼ 1 in order not to favor the results of
this work.

As no instance-level information was included for the
annotation-based results [19], we estimated the more
stringent instance-level performance. First, we removed
redundancy by merging similar (with Hamming distance
�20 percent of the width W ) TF-side motifs. Second, we
estimated their (loose) instance-level performance normal-
ized by the minimal TFBS consensus lengths. The normal-
ization was done because in the previous verification, the
annotated TFBS-side consensus was usually longer than W

and the associated pattern was considered matched as long
as any W -substring of the TFBS consensus was matched
with the binding cores. Finally, the top N patterns were
shortlisted using the highest TF-side motif score of all the
merged similar associated patterns. As a result, many
similar associated patterns in [19] were merged into a single
pattern under the nonredundant settings in this study, and
their verification ratios were averaged and then normalized.
The reported 774 patterns for W5E0 and the 2,559 patterns
for W5E1 were reduced to 200 and 312 nonredundant ones
respectively, comparable to K ¼ 1 settings in this work.

The comparisons of TF-TFBS verification ratios Rboth are
summarized in Table 1. Without the unified scores, there is
still much room for the (improved) association rule mining
methods to approach the best achievable performance. With
only the one-side TF scores for the TFBS annotation-based
method, the top output results do not necessarily corre-
spond to the high estimated verification performance. The
results demonstrate the importance and superiority of the unified
scores to quantitatively model and evaluate the associated patterns
in an overall manner. The proposed sum score is the most
effective in shortlisting the top associated patterns that are
verifiable with the binding cores extracted from PDB 3D
structures. Interestingly, the normalized score shows
comparable performance for N ¼ 200 results but much
lower performance for N ¼ 10. It will be investigated in the
following extended verification.

4.4 Extended Verification Results and Analysis

Extended verification was introduced to further analyze
the top patterns not to be verified with any PDB structures.
Annotations and literature surveys were employed to
better evaluate the results. By grouping all 1-residue
shifted patterns with the top N ¼ 100 normalized scores
without matching any PDB binding cores, we summarized
11 concatenated TF-TFBS patterns to be investigated with
TRANSFAC and Uniprot [50] binding domain annotations
as well as manual literature surveys. For a concatenated
pattern, we first obtained the hosting TF information by
scanning TRANSFAC, searched Uniprot, and checked if
the TF-side pattern is within an annotated domain of the
corresponding TF. We further checked if the specific
pattern including the TFBS side is supported by literature,
of not only direct interactions but also specificity critical for
bindings. Part of them are listed in Table 2, with detailed
information available in the supplementary data, available
online. Three out of the 11 patterns do not have known
support. By including the extended evidence in the
verification on TF side and both sides, we obtained the
average extended verification ratios RExtTF and RExtboth as
shown in Figs. 5 (K ¼ 5) and 6 (K ¼ 1), respectively. Both
sum and normalized unified scores show consistent and
increased verification ratios. The uptrend of higher scores
matching higher verification performance is better ob-
served for normalized scores compared with Figs. 2 and 3.
The upper bound FDRs are further reduced with the
extended verification.

As for the best ranked patterns within the top 10 normal-
ized scores without previous PDB verification, they are
generally shorter matches to the first pattern shown in
Table 2, which have been shown to match binding cores by
homology modeling [10]. Another notable pattern,
WRKYG-GTCAA, is ranked 50th with normalized scores
and 69th with sum, respectively, in the W5E0, K ¼ 1
settings, and ranked 96th (normalized) and 166th (sum),
respectively, in W5E1, K ¼ 1 settings. The pattern is
consistently found in WRKY proteins sharing the WRKY
DNA binding domains [27]. Without existing binding
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Fig. 5. Comparison of extended (Ext) verification ratios between sum and normalized unified scores (W ¼ 5, K ¼ 5). Vertical axis indicates the
verification ratio and horizontal axis indicates N.

TABLE 2
Selected Protein-DNA Patterns with Annotations and Literature Surveys

(Y)—supported by literature; (N)—no known support.



structures in PDB, the invariant WRKYGQK sequence
present in all WRKY domains is required for DNA binding,
and in direct contact it recognizes the known W-box
consensus sequence (T)TTGACY, where Y is C/T, (i.e.,
[A/G]GTCAA(A) in reverse complement) [28]. Therefore,
the normalized score ranks WRKYG-GTCAA better than
sum and both discover the real and novel binding cores
within their top 100 patterns.

4.5 PBM Data Verification

As a proof of concept for the setting W5E0 (K ¼ 1, the sum
score), we employed PBM data [4] to investigate the
93 patterns (out of the 206 outputs) that were not verified
even in the extended verification, i.e., RExtboth ¼ 0. PBM
data contain in vitro DNA binding specificities for
406 nonredundant protein domains. Although TF binding
core information is not readily available, TFBS 8-mers are
quantitatively measured for their binding affinities. Each
pattern was evaluated on the TFBS side (including reverse
complements), given the TF side was matched with a
particular PBM protein domain. As a result, 12 out of the
93 were verified to match the top one PBM 8-mers, and
41 verified to match within the top 10 8-mers with the
highest binding affinities. Therefore, the patterns with high
unified scores are likely to be real binding TFBS cores
supported by PBM.

4.6 Practical Suggestions

Some suggestions are provided for practitioners to use the
unified scores. In general, the sum score better correlates to
and matches verification ratios and shows considerably
better Rboth than the normalized score. Both proposed scores
show a high level of match with the verification perfor-
mance if extra evidence is considered and are both
promising as the basis models for general associated TF-
TFBS patterns. In a stringent setting (K ¼ 1), the normalized
score sometimes outperforms the sum score in its top
patterns with respect to RExtboth. The possible reason of the
discrepancy between sum and normalized scores is
described as follows: The normalized score suppresses the
effect of unbalanced sample sizes and favors the conserva-
tion of the patterns. While it is natural to expect that cases
with more experiments done are more likely to have been
investigated at the structure level, the sum score better
matches verification ratios purely on PDB structures. On the
other hand, the normalized score can be useful in exploring
novel associated patterns without related PDB structures. In
summary, the sum score is suggested to verify predicted
associated pattern that have abundant binding samples and
are considered to be closely related to existing evidence,

for example, PDB structures. The normalized score is
suggested to explore novel patterns with few related 3D
structures. Besides identifying intriguing TF-TFBS binding
cores demonstrated in this paper, the unified scores can be
used to enrich and improve the 3D structure-based binding
residue prediction [8], [26]. They can guide experiments to
determine 3D binding structures [12] and also serve as a
formal basis for binding (allele-specific) subtype analysis
[5], [47] to decipher regulatory and disease mechanisms.

5 DISCUSSION AND CONCLUSION

In this paper, we have developed sum and normalized
unified scores to model associated TF-TFBS patterns in
general. Due to the additivity of the scores, an effective
pipeline has been developed to retrieve the TF and TFBS
paired instances corresponding to the core motifs discov-
ered on each side. With the additive unified scores in
association, the top associated TF-TFBS patterns can be
efficiently discovered by considering the top one-sided core
motifs, with no need to search low score combinations
exhaustively. The scores provide accurate rankings and the
method serves as a general tool for identifying binding
cores and rules.

The unified sum score has shown excellent correlation
and matching with high verification ratios on PDB
structures. The importance of unified scores has been
demonstrated in comparison with the previous methods
without two-sided scores. With extended verification from
annotations and thorough literature surveys, both the sum
and normalized unified scores have shown consistently
high verification ratios, for example, 87 and 86 percent,
respectively, for the top 50 patterns under approximate
settings. The top patterns discovered are confirmed to
match the known WRKY binding cores that now have no
available PDB complex structures. Further investigation
using in vivo PBM data further confirms the effectiveness of
the patterns with high unified scores.

To our knowledge, it is the first time anyone has
developed unified scores to directly model associated
patterns since our exploitation of binding sequences from
TRANSFAC. There are some great opportunities to explore
high-throughput (ChIP-seq and PBM) data beyond
TRANSFAC. The associated pattern discovery methodol-
ogy with the unified scores is open (processed data sets,
results, and program sources are available) for improve-
ment with more advanced modeling and efficient data
structures in future work on high-throughput data such as
PBM. Advanced motif models [43], [44] and discovery
methods aiming at short and highly conserved motifs [34]
will be explored and incorporated into the associated
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Fig. 6. Comparison of extended (Ext) verification ratios between sum and normalized unified scores (W ¼ 5, K ¼ 1). Vertical axis indicates the
verification ratio and horizontal axis indicates N.



pattern discovery framework in the future work. The
general principle of associated pattern discovery may also
be applicable to other problems such as allele-specific [51]
and splicing-binding [52] associations and to enhance
protein-DNA binding energy modeling.

ACKNOWLEDGMENTS

This research was supported by the Direct Grant (Project
No. 2050500) from the Chinese University of Hong Kong
and the GRF Grant (Project No. 310111) from the Research
Grants Council of Hong Kong SAR, China.

REFERENCES

[1] M. Das and H.K. Dai, “A Survey of DNA Motif Finding
Algorithms,” BMC Bioinformatics, vol. 8, no. Suppl 7, article S21,
2007.

[2] N.M. Luscombe, S.E. Austin, H.M. Berman, and J.M. Thornton,
“An Overview of the Structures of Protein-DNA Complexes,”
Genome Biology, vol. 1, no. 1, 2000.

[3] X. Chen, H. Xu, P. Yuan, F. Fang, M. Huss, V.B. Vega, E. Wong,
Y.L. Orlov, W. Zhang, J. Jiang, Y.-H. Loh, H.C. Yeo, Z.X. Yeo, V.
Narang, K.R. Govindarajan, B. Leong, A. Shahab, Y. Ruan, G.
Bourque, W.-K. Sung, N.D. Clarke, C.-L. Wei, and H.-H. Ng,
“Integration of External Signaling Pathways with the Core
Transcriptional Network in Embryonic Stem Cells,” Cell,
vol. 133, no. 6, pp. 1106-1117, 2008.

[4] C. Zhu, K.J.R.P. Byers, R.P. McCord, Z. Shi, M.F. Berger, D.E.
Newburger, K. Saulrieta, Z. Smith, M.V. Shah, M. Radhakrishnan,
A.A. Philippakis, Y. Hu, F. De Masi, M. Pacek, A. Rolfs, T. Murthy,
J. LaBaer, and M.L. Bulyk, “High-Resolution DNA-Binding
Specificity Analysis of Yeast Transcription Factors,” Genome
Research, vol. 19, no. 4, pp. 556-566, Apr. 2009.

[5] T.-M. Chan, K.-S. Leung, K.-H. Lee, M.-H. Wong, T.C.-K. Lau, and
S.K.W. Tsui, “Subtypes of Associated Protein-DNA (Transcription
Factor-Transcription Factor Binding Site) Patterns,” Nucleic Acids
Research, vol. 40, no. 19, pp. 9392-9403, 2012.

[6] S. Mahony, P.E. Auron, and P.V. Benos, “DNA Familial Binding
Profiles Made Easy: Comparison of Various Motif Alignment and
Clustering Strategies,” PLoS Computational Biology, vol. 3, no. 3,
article e61, 2007.

[7] E. Wingender, T. Schoeps, and J. Dnitz, “Tfclass: An Expandable
Hierarchical Classification of Human Transcription Factors,”
Nucleic Acids Research, vol. 41, no. D1, pp. D165-D170, 2013.

[8] S. Ahmad, M.M. Gromiha, and A. Sarai, “Analysis and Prediction
of DNA-Binding Proteins and Their Binding Residues Based on
Composition, Sequence and Structural Information,” Bioinfor-
matics, vol. 20, no. 4, pp. 477-486, 2004.

[9] S. Ahmad, O. Keskin, A. Sarai, and R. Nussinov, “Protein-DNA
Interactions: Structural, Thermodynamic and Clustering Patterns
of Conserved Residues in DNA-Binding Proteins,” Nucleic Acids
Research, vol. 36, pp. 5922-5932, Oct. 2008.

[10] K.-S. Leung, K.-C. Wong, T.-M. Chan, M.-H. Wong, K.-H. Lee, C.-
K. Lau, and S.K.W. Tsui, “Discovering Protein-DNA Binding
Sequence Patterns Using Association Rule Mining,” Nucleic Acids
Research, vol. 38, pp. 6324-6337, 2010.

[11] S. Jones, P. van Heyningen, H.M. Berman, and J.M. Thornton,
“Protein-DNA Interactions: A Structural Analysis,” J. Molecular
Biology, vol. 287, no. 5, pp. 877-896, 1999.

[12] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H.
Weissig, I.N. Shindyalov, and P.E. Bourne, “The Protein Data
Bank,” Nucleic Acids Research, vol. 28, no. 1, pp. 235-242, 2000.

[13] C. Winter, A. Henschel, A. Tuukkanen, and M. Schroeder,
“Protein Interactions in 3D: From Interface Evolution to Drug
Discovery,” J. Structural Biology, vol. 179, no. 3, pp. 347-358, 2012.

[14] A. Valouev, D.S. Johnson, A. Sundquist, C. Medina, E. Anton, S.
Batzoglou, R.M. Myers, and A. Sidow, “Genome-Wide Analysis of
Transcription Factor Binding Sites Based on Chip-Seq Data,”
Nature Methods, vol. 5, no. 9, pp. 829-834, Sept. 2008.

[15] M. Hu, J. Yu, J.M. Taylor, A.M. Chinnaiyan, and Z.S. Qin, “On the
Detection and Refinement of Transcription Factor Binding Sites
Using Chip-Seq Data,” Nucleic Acids Research, vol. 38, no. 7,
pp. 2154-2167, 2010.

[16] H.S. Rhee and B.F. Pugh, “Comprehensive Genome-Wide Protein-
DNA Interactions Detected at Single-Nucleotide Resolution,” Cell,
vol. 147, no. 6, pp. 1408-1419, Dec. 2011.

[17] V. Matys, O.V. Kel-Margoulis, E. Fricke, I. Liebich, S. Land, A.
Barre-Dirrie, I. Reuter, D. Chekmenev, M. Krull, K. Hornischer, N.
Voss, P. Stegmaier, B. Lewicki-Potapov, H. Saxel, A.E. Kel, and E.
Wingender, “Transfac and Its Module Transcompel: Transcrip-
tional Gene Regulation in Eukaryotes,” Nucleic Acids Research,
vol. 34, pp. 108-110, 2006.

[18] J. Bryne, E. Valen, M. Tang, T. Marstrand, O. Winther, I.
da Piedade, A. Krogh, B. Lenhard, and A. Sandelin, “JASPAR,
the Open Access Database of Transcription Factor-Binding
Profiles: New Content and Tools in the 2008 Update,” Nucleic
Acids Research, vol. 36, pp. D102-106, Jan. 2008.

[19] T.-M. Chan, K.-C. Wong, K.-H. Lee, M.-H. Wong, C.-K. Lau, S.K.
Tsui, and K.-S. Leung, “Discovering Approximate Associated
Sequence Patterns for Protein-DNA Interactions,” Bioinformatics,
vol. 27, no. 4, pp. 471-478, 2011.

[20] P.-Y. Wong, T.-M. Chan, M.H. Wong, and K.-S. Leung, “Efficient
Algorithm for Mining Correlated Protein-Dna Binding Cores,”
Proc. Int’l Conf. Database Systems for Advanced Applications
(DASFAA ’12), pp. 470-481, 2012.

[21] P.-Y. Wong, T.-M. Chan, M.-H. Wong, and K.-S. Leung, “Predict-
ing Approximate Protein-DNA Binding Cores Using Association
Rule Mining,” Proc. IEEE 28th Int’l Conf. Data Eng. (ICDE ’12),
pp. 965-976, Apr. 2012.

[22] Y. Ofran, V. Mysore, and B. Rost, “Prediction of DNA-Binding
Residues from Sequence,” Bioinformatics, vol. 23, no. 13, pp. i347-
i353, 2007.

[23] S. Mahony, P.E. Auron, and P.V. Benos, “Inferring Protein-DNA
Dependencies Using Motif Alignments and Mutual Information,”
Bioinformatics, vol. 23, no. 13, pp. i297-i304, 2007.

[24] S. Yang, H.K. Yalamanchili, X. Li, K.-M. Yao, P.C. Sham, M.Q.
Zhang, and J. Wang, “Correlated Evolution of Transcription
Factors and Their Binding Sites,” Bioinformatics, vol. 27, no. 21,
pp. 2972-2978, 2011.

[25] R. Agrawal, T. Imieli�nski, and A. Swami, “Mining Association
Rules between Sets of Items in Large Databases,” Proc. ACM
Sigmod Int’l Conf. Management of Data (Sigmod ’93), pp. 207-216,
1993.

[26] M. Andrabi, K. Mizuguchi, A. Sarai, and S. Ahmad, “Prediction
of Mono- and Di-Nucleotide-Specific Dna-Binding Sites in
Proteins Using Neural Networks,” BMC Structural Biology,
vol. 9, no. 1, article 30, 2009.

[27] K. Yamasaki, T. Kigawa, M. Inoue, M. Tateno, T. Yamasaki, T.
Yabuki, M. Aoki, E. Seki, T. Matsuda, Y. Tomo, N. Hayami, T.
Terada, M. Shirouzu, A. Tanaka, M. Seki, K. Shinozaki, and S.
Yokoyama, “Solution Structure of an Arabidopsis WRKY DNA
Binding Domain,” Plant Cell, vol. 17, no. 3, pp. 944-56, 2005.

[28] K. Yamasaki, T. Kigawa, S. Watanabe, M. Inoue, T. Yamasaki, M.
Seki, K. Shinozaki, and S. Yokoyama, “Structural Basis for
Sequence-Specific DNA Recognition by an Arabidopsis WRKY
Transcription Factor,” J. Biological Chemistry, vol. 287, no. 10,
pp. 7683-7691, 2012.

[29] M. Li, B. Ma, and L. Wang, “Finding Similar Regions in Many
Sequences,” J. Computer and System Sciences, vol. 65, pp. 73-96,
2002.

[30] T.L. Bailey, “Fitting a Mixture Model by Expectation Maximiza-
tion to Discover Motifs in Biopolymers,” Proc. Second Int’l Conf.
Intelligent Systems for Molecular Biology, pp. 28-36, 1994.

[31] M. Do�gruel, T.A. Down, and T.J.J. Hubbard, “NestedMICA as an
Ab Initio Protein Motif Discovery Tool,” BMC Bioinformatics,
vol. 9, article 19, 2008.

[32] G.K. Sandve, O. Abul, V. Walseng, and F. Drablos, “Improved
Benchmarks for Computational Motif Discovery,” BMC Bioinfor-
matics, vol. 8, no. 1, article 193, 2007.

[33] M.F. Sagot, “Spelling Approximate Repeated or Common Motifs
Using a Suffix Tree,” Proc. Third Latin Am. Symp. Theoretical
Informatics (LATIN ’98), pp. 374-390, 1998.

[34] G. Pavesi, P. Mereghetti, G. Mauri, and G. Pesole, “Weeder Web:
Discovery of Transcription Factor Binding Sites in a Set of
Sequences from Co-Regulated Genes,” Nucleic Acids Research,
vol. 32, pp. W199-W203, 2004.

[35] C.E. Lawrence, S.F. Altschul, M.S. Boguski, J.S. Liu, A.F. Neuwald,
and J.C. Wooton, “Detecting Subtle Sequence Signals: A Gibbs
Sampling Strategy for Multiple Alignment,” Science, vol. 262,
no. 8, pp. 208-214, Oct. 1993.

706 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 10, NO. 3, MAY/JUNE 2013



[36] K.D. MacIsaac and E. Fraenkel, “Practical Strategies for Discover-
ing Regulatory DNA Sequence Motifs,” PLoS Computational
Biology, vol. 2, no. 4, article e36, 2006.

[37] G.D. Stormo, “Computer Methods for Analyzing Sequence
Recognition of Nucleic Acids,” Ann. Rev. Biophysics and Biophysical
Chemistry, vol. 17, pp. 241-263, 1988.

[38] S.T. Jensen, X.S. Liu, Q. Zhou, and J.S. Liu, “Computational
Discovery of Gene Regulatory Binding Motifs: A Bayesian
Perspective,” Statistical Science, vol. 19, no. 1, pp. 188-204, 2004.

[39] S.T. Jensen and J.S. Liu, “BioOptimizer: A Bayesian Scoring
Function Approach to Motif Discovery,” Bioinformatics, vol. 20,
pp. 1557-1564, 2004.

[40] T.-M. Chan, K.-S. Leung, and K.-H. Lee, “Memetic Algorithms for
De Novo Motif Discovery,” IEEE Trans. Evolutionary Computation,
vol. 16, no. 5, pp. 730-748, Oct. 2012.

[41] E. Wijaya, K. Rajaraman, S.-M. Yiu, and W.-K. Sung, “Detection of
Generic Spaced Motifs Using Submotif Pattern Mining,” Bioinfor-
matics, vol. 23, no. 12, pp. 1476-1485, 2007.

[42] T.M. Chan, G. Li, K.S. Leung, and K.H. Lee, “Discovering Multiple
Realistic TFBS Motifs Based on a Generalized Model,” BMC
Bioinformatics, vol. 10, no. 1, article 321, Oct. 2009.

[43] G.D. Stormo, “Maximally Efficient Modeling of DNA Sequence
Motifs at All Levels of Complexity,” Genetics, vol. 187, no. 4,
pp. 1219-1224, 2011.

[44] Y. Zhao, S. Ruan, M. Pandey, and G.D. Stormo, “Improved
Models for Transcription Factor Binding Site Identification Using
Nonindependent Interactions,” Genetics, vol. 191, no. 3, pp. 781-
790, July 2012.

[45] A. Sarai and H. Kono, “Protein-DNA Recognition Patterns and
Predictions,” Ann. Rev. Biophysics Biomolecular Structure, vol. 34,
pp. 379-398, 2005.

[46] A.E. Kel, Y. Tikunov, N. Voss, J. Borlak, and E. Wingender,
“Application of Kernel Method to Reveal Subtypes of TF Binding
Motifs,” Proc. RECOMB Int’l Conf. Regulatory Genomics, pp. 42-51,
2004.

[47] A.S.S. Bais, N. Kaminski, and P.V. Benos, “Finding Subtypes of
Transcription Factor Motif Pairs with Distinct Regulatory Roles,”
Nucleic Acids Research, vol. 39, Apr. 2011.

[48] T.-M. Chan, K.-S. Leung, and K.-H. Lee, “TFBS Identification
Based on Genetic Algorithm with Combined Representations and
Adaptive Post-Processing,” Bioinformatics, vol. 24, no. 3, pp. 341-
349, 2008.

[49] V. Neduva and R.B. Russell, “DILIMOT: Discovery of Linear
Motifs in Proteins,” Nucleic Acids Research, vol. 34, no. Web Server
issue, pp. W350-W355, 2006.

[50] UniProt Consortium, “Reorganizing the Protein Space at the
Universal Protein Resource (Uniprot),” Nucleic Acids Research,
vol. 40, no. Database issue, pp. D71-D75, Jan. 2012.

[51] G. Li, J.H. Bahn, J.-H. Lee, G. Peng, Z. Chen, S.F. Nelson, and X.
Xiao, “Identification of Allele-Specific Alternative mRNA Proces-
sing via Transcriptome Sequencing,” Nucleic Acids Research,
vol. 40, no. 13, article e104, Mar. 2012.

[52] Y. Wang, M. Ma, X. Xiao, and Z. Wang, “Intronic Splicing
Enhancers, Cognate Splicing Factors and Context-Dependent
Regulation Rules,” Nature Structural and Molecular Biology,
vol. 19, pp. 1044-1052, Sept. 2012.

Tak-Ming Chan received the BSc degree in
computer science from Fudan University, China,
in 2006 and the PhD degree from the Computer
Science and Engineering Department, Chinese
University of Hong Kong in 2010. He is currently
a postdoctoral researcher in the Department of
Integrative Biology and Physiology, University of
California, Los Angeles. His research interests
include bioinformatics and data mining.

Leung-Yau Lo received the BSc degree in risk
management science from the Chinese Univer-
sity of Hong Kong in 2008, where he is currently
working toward the PhD degree in the Depart-
ment of Computer Science and Engineering
under the supervision of Prof. K.S. Leung and
Prof. K.H. Lee. His research interests include
bioinformatics and artificial intelligence.

Ho-Yin Sze-To received the BSc degree in
computer science with first class honors from
the Chinese University of Hong Kong in 2011.
He is currently working toward the postgradua-
tion degree in the Department of Computer
Science and Engineering, Chinese University of
Hong Kong. His research interests include
artificial intelligence, data mining, and machine
learning as well as their applications in bioinfor-
matics and biomedical engineering.

Kwong-Sak Leung received the BSc (Eng.) and
PhD degrees from the University of London,
Queen Mary College, in 1977 and 1980,
respectively. He joined the Computer Science
and Engineering Department, Chinese Univer-
sity of Hong Kong, in 1985, where he is currently
a professor of computer science and engineer-
ing. His research interests are in soft computing
and bioinformatics including evolutionary com-
putation, parallel computation, probabilistic

search, information fusion and data mining, fuzzy data, and knowledge
engineering. He is a senior member of the IEEE.

Xinshu Xiao received the PhD degree from
Harvard-MIT Division of Health Sciences and
Technology in 2004. She is an assistant
professor in the Department of Integrative
Biology and Physiology, University of Califor-
nia, Los Angeles. Her research interests
include genomics, bioinformatics, molecular
biology, and systems biology facilitated by
RNA-Seq.

Man-Hon Wong received the BSc and MPhil
degrees from the Chinese University of Hong
Kong in 1987 and 1989, respectively. He then
went to University of California at Santa Barbara
where he received the PhD degree in 1993. He
joined the Chinese University of Hong Kong in
August 1993 as an assistant professor. He was
promoted to an associate professor in 1998. His
research interests include transaction manage-
ment, mobile databases, data replication, dis-

tributed systems, data mining and bioinformatics.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CHAN ET AL.: MODELING ASSOCIATED PROTEIN-DNA PATTERN DISCOVERY WITH UNIFIED SCORES 707



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (IEEE Settings with Allen Press Trim size)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [567.000 774.000]
>> setpagedevice


