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Classification of Heterogeneous Fuzzy Data by
Choquet Integral With Fuzzy-Valued Integrand
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Abstract—As a fuzzification of the Choquet integral, the defuzzi-
fied choquet integral with fuzzy-valued integrand (DCIFI) takes a
fuzzy-valued integrand and gives a crisp-valued integration result.
In this paper, the DCIFI acts as a projection to project high-dimen-
sional heterogeneous fuzzy data to one-dimensional crisp data to
handle the classification problems involving different data forms,
such as crisp data, interval values, fuzzy numbers, and linguistic
variables, simultaneously. The nonadditivity of the signed fuzzy
measure applied in the DCIFI can represent the interaction among
the measurements of features towards the discrimination of classes.
Values of the signed fuzzy measure in the DCIFI are considered
to be unknown parameters which should be learned before the
classifier is used to classify new data. We have implemented a ge-
netic algorithm (GA)-based adaptive classifier-learning algorithm
to optimally learn the signed fuzzy measure values and the classi-
fied boundaries simultaneously. The performance of our algorithm
has been tested both on synthetic and real data. The experimental
results are satisfactory and outperform those of existing methods,
such as the fuzzy decision trees and the fuzzy-neuro networks.

Index Terms—Choquet integral, classification, data mining,
fuzzification, heterogeneous fuzzy data, signed fuzzy measure.

I. INTRODUCTION

HETEROGENEOUS fuzzy data are ubiquitous in practical
databases. They are represented in diverse data forms,

such as crisp data, fuzzy numbers, interval values, linguistic
variables, or vectors with components in any combination of
the aforementioned forms. To handle these heterogeneous fuzzy
data efficiently and effectively is an essential task to data engi-
neers. Currently, there are mainly two approaches to deal with
them. One is to preprocess the heterogeneous fuzzy data so that
they can be expressed by a set of real numbers and managed
by traditional data mining methods for crisp data [8], [10], [18].
However, this indirect method is restricted to those applications
where the heterogeneous data can be expressed simply by sev-
eral real numbers. Another approach utilizes a linear parametric
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model to handle the heterogeneous data directly [20]. Obvi-
ously, it is insufficient for systems having intrinsic nonlinear
correlations. Due to the aforementioned reasons, a comprehen-
sive model, which can not only handle the heterogeneous fuzzy
data directly, but also elicit the nonlinear relationships among
features, is expected.

The Choquet integral [4], [5], [26], [24] with respect to fuzzy
measure or signed fuzzy measure [17], [19] has performed suc-
cessfully as a nonlinear aggregation tool in information fusing
and data mining for crisp data-bases. The nonadditivity of the
signed fuzzy measure provides an effective representation to de-
scribe the interaction among the contributions from the predic-
tive attributes to the objective attribute. Recently, the Choquet
integral has been applied to classification problem [6], [7], [16]
and has obtained quite encouraging results. In [29], a weighted
Choquet integral with respect to signed fuzzy measure has been
used as a projection tool to project high-dimensional crisp data
to a virtual variable on a real axis so that the classification in
high-dimensional space is simplified to that in one-dimensional
space.

In this paper, the original Choquet integral of a real-valued
function defined on a set of attributes with respect to a signed
fuzzy measure is generalized for allowing a fuzzy-valued func-
tion to be its integrand. This fuzzification of Choquet integral is
called the defuzzified Choquet integral with fuzzy-valued inte-
grand (DCIFI) as it has a fuzzy valued integrand but a non-fuzzy
valued integration result. A numerical method with the relevant
algorithm is developed to estimate the integration values of the
DCIFI. The nonadditivity property of the signed fuzzy measure
of the DCIFI describes the respective contributions from the fea-
ture attributes towards the discrimination. Thus, the DCIFI is
considered to be a more powerful and flexible tool to classify
data, especially the data involving heterogeneous fuzzy data. It
can project high-dimensional heterogeneous fuzzy data of dif-
ferent classes to their corresponding virtual variables on a real
axis. Similarly, the class boundaries, which separate different
classes in high-dimensional space, can also be projected on the
real axis as a virtual boundary. By these schemes, the classifi-
cation problem for high-dimensional heterogeneous fuzzy data
is simplified to that for one-dimensional crisp data. A DCIFI
projection classifier is identified by the values of the signed
fuzzy measure, which are regarded as the unknown parameters.
They are optimally determined according to a set of training
data through a GA-based adaptive classifier-learning algorithm
(GACA). The optimization is to project all heterogeneous fuzzy
data onto a real axis of virtual variables with the best clas-
sifying boundaries such that the total misclassification rate is
minimized.

1063-6706/$25.00 © 2007 IEEE
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Fig. 1. �-cut of a real-valued function.

The paper is organized as follows. In Section II, relevant
fundamental concepts on original Choquet integral are summa-
rized. The defuzzified Choquet integral with fuzzy-valued inte-
grand is derived in Section III, where a numerical method with
the relevant algorithm is developed to estimate the integration
value of the DCIFI. The DCIFI projection classifier is illustrated
in Section IV with the GACA adopted for optimally determining
unknown parameters from the training data sets. Both experi-
ments on synthetic and real data are conducted to evaluate the
performance of the DCIFI projection classifier. These experi-
mental results are shown in Section VI. Finally, conclusions are
given in Section VII.

II. CHOQUET INTEGRAL

Let be a nonempty finite set of fea-
ture attributes and be the power set of . A signed fuzzy
measure [25], , is a mapping from to satis-
fying . The set function is nonadditive in general,
so it is also called nonadditive set function. A fuzzy measure is
considered to be a specialization of signed fuzzy measure with
additional monotonic property, that is

on . In this paper, we always assume as a signed fuzzy
measure. To be convenient, is denoted
by , where and is a subset
of . More explicitly,

, and .
Definition 2.1: Let be a real-valued

function. The Choquet integral of is defined as

where , for any , is the -cut
of , represented as a crisp set of .

For example, let , and a real-valued func-
tion is defined on by

, then the -cuts of at 1.5, and 2.5 are crisp sets
of , described by , and

respectively, as shown in Fig. 1.

To calculate the value of the Choquet integral of a
given real-valued function , usually the values of , i.e.,

, should be sorted in a nondecreasing
order so that , where

is a certain permutation of .
Then, the value of the Choquet integral is obtained by

(1)

where .
To be convenient, Wang [24] has proposed a new algorithm

to calculate the value of a Choquet integral with real-valued in-
tegrand by the product of two vectors as

(2)

in which

if it is or
otherwise

for

with a convention that the maximum on the empty set is zero,
where is the fractional part of . In the pre-
vious formula, if we express in the binary form ,
then and

.

III. DEFUZZIFIED CHOQUET INTEGRAL WITH FUZZY-VALUED

INTEGRAND

The original Choquet integral only supports crisp-valued in-
tegrands so they only can deal with crisp-valued data, and are
helpless when facing with fuzzy information. To extend the ad-
vantadges of Choquet integral to fuzzy domain such that it can
manage fuzzy information, fuzzifications of orginal Choquet in-
tegral have been investigated [28], [30]. Such fuzzifications can
support fuzzy-valued integrand. They are regarded as general-
izations of the original Choquet integral since they are able to
handle diverse forms of information, includng crisp data, in-
terval values, fuzzy numbers and linguistic variables. The fuzzi-
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Fig. 2. �-cut of a fuzzy-valued function in Example 3.1.

fications of Choquet integral can have their integration results
fuzzified or defuzzified. In this paper, we only focus on the
model with fuzzy valued integrand and non-fuzzy valued inte-
gration result, which is called the DCIFI and defined as follows.

Definition 3.1: Let be a fuzzy-valued function
defined on a universal set and be a
signed fuzzy measure defined on , the power set of , the
DCIFI of is defined as

where is the -cut of the fuzzy-valued function , and
denotes the set of all fuzzy numbers.

Obviously, the way to compute the value of the Choquet in-
tegral given in Section II cannot be directly applied for com-
puting the DCIFI since the range of the fuzzy-valued function
is not full-ordered, and therefore, the values of function at
variant attributes cannot be rearranged in a nondecreasing order.
However, we still can derive a calculation scheme of the DCIFI
according to the fuzzy set theory and relevant properties of the
Choquet integral. Actually, from the definition of the DCIFI, we
can see that the calculation of the DCIFI can be rendered down
into two subproblems.

1) How to get for a fuzzy-valued function ?
2) How to get the value of ?

The following subsections aim to answer these questions, re-
spectively.

A. The -Cut of a Fuzzy-Valued Function

Let be the class of all fuzzy subsets of . It is also
called the fuzzy power set of . Any fuzzy subset of , can
be expressed as

where is the degree of the membership of at
. Let be a fuzzy-valued function defined on .

Function can be expressed as , where
is the membership function of at .

Definition 3.2: For any given , the -cut of a
fuzzy-valued function , denoted by ,

is a fuzzy subset of , whose membership function has a
degree of membership

(3)

at attribute if . When
is a crisp number, then . In this case,

the degree of membership at , denoted by , is equal
to 1 if , or 0 if .

Example 3.1: Let and let a fuzzy-valued
function assign each element of a trapezoidal fuzzy
number, denoted by four parameters , that is,

, and
. Then, we have

while

as shown in Fig. 2.

B. The Choquet Extension of

Let be a universal set, we can derive the signed fuzzy mea-
sure defined on based on the signed fuzzy measure
defined on .

Definition 3.3: Let be a signed fuzzy measure defined on
, the signed fuzzy measure is a set function mapping

from the fuzzy power set of , to . For any
fuzzy set with membership function

, we have

(4)

where the integral is a Choquet integral with real-valued func-
tion, i.e., the membership function of .
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Here, for any crisp subset , we have
, where

if
if

is the characteristic function of . Thus, coincides with on
, that is, is an extension of from onto

and called the Choquet extension of .
In this paper, we will simply use to replace on

without any confusion.
Example 3.2: Let and a signed fuzzy mea-

sure be given as

For fuzzy set and
in Example 3.1, we have

C. Calculation of DCIFI

Now, we can calculate the value of the DCIFI. Obviously, it
is rather difficult to express in an explicit form involving
only fundamental functions of , and by which, to compute the
precise value of the DCIFI. However, we can numerically cal-
culate it approximately. Before illustrating the algorithm, some
concepts and properties are introduced.

The support set of a fuzzy number , denoted by , is de-
fined by , which is a crisp subset of the
universe of discourse of the membership function of . We de-
note the left and the right terminals of the support set of by
and , respectively. For example, a trapezoidal fuzzy number

has and ; a normal fuzzy
number has and .

A fuzzy-valued function assigns each element in the uni-
versal set a fuzzy number , represented by its membership
function . Now, we denote the left

and the right terminals of the support set of as and
, respectively.

Theorem 3.1: For a universal set , let be a signed fuzzy
measure on and be a fuzzy-valued function on . Then,

for any real constant .

Here, is also a fuzzy-valued function with its values
represented by , The subtraction be-
tween the fuzzy number and the crisp number is refer
to [13]. The proof of this theorem is provided in the Appendix.

Using Theorem 3.1, we can write

where is the -cut of function
, and .

Now, we can numerically calculate the approximate value of
the DCIFI through the following algorithm.

1) Input attributes’ number in , subintervals’ number
(with default value ) required in the ap-

proximate computing, function’s values for
, and the values of the signed fuzzy

measure .
2) Find . If

or , then take and as the
left and right terminal of , re-
spectively. Here, the is a very small positive real value
defined by user with default value . Then reset

, and set
.

3) Replace by .
4) Initialize and .
5) .
6) Whether ? If yes,

, output as an approximate value of , and stop;
otherwise, continue.

7) Find by (3), .
8) Regarding as a function on , calcu-

late by scheme shown in (2).
9) and go to 5).
We can see now, given a signed fuzzy measure, the value of

the DCIFI is a crisp real number. Though the information on
the fuzziness is compressed, applying such an aggregation tool
in data mining is usually more convenient than giving a fuzzy
number. In next section, using the DCIFI as a projection tool,
a complex classification problem of heterogeneous fuzzy data
can be optimally simplified to a classification problem of crisp
data.

IV. DCIFI PROJECTION CLASSIFIER

In classification, an observation is denoted by an -di-
mensional vector , whose compo-
nents are measurements of the feature attributes

. We assume that there exist groups or classes
in the -dimensional space, denoted by , and
associated with each observation is a categorical variable
that denotes the class or group membership. For example, if

, then the observation belongs to .
To design the classifier, we are usually given a set of training
data with observations of known classes, represented as

. The
training data set is used to set up internal parameters of the
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Fig. 3. Typical 2-dimensional heterogeneous fuzzy data.

classifier. Here, the positive integer is the number of samples
in the training data set. Once a classifier has been devised, we
may estimate the class belongingness for any new observation.

When the measurements of feature attributes of an obser-
vation are heterogeneous fuzzy data, such as crisp data, fuzzy
data, interval values, or linguistic variables, they are denoted by
an -dimensional fuzzy data vector .
Such an -dimensional fuzzy data vector can be visualized as a
fuzzy point, which is not a single point but a special fuzzy subset
in the -dimensional space. Each coordinate value of a fuzzy
point is a fuzzy number. A typical 2-dimensional heterogeneous
fuzzy data is shown in Fig. 3. It is depicted as a
frustum of a prism with height as 1. It has two coordinates which
are represented by two different trapezoidal fuzzy numbers with
their membership functions shown on the - and the

- planes in Fig. 3, respectively.
Remember that the DCIFI takes a fuzzy-valued function as

its integrand and gives a crisp value as its integration result.
It can be regarded as a projection from the feature space
onto the real axis. Under such a scheme, any fuzzy point

, denoted simply by
in the feature space, is regarded as a fuzzy-valued function
defined on , and furthermore, projected
onto a virtual variable, denoted by , on the real axis through
a DCIFI defined by

(5)

Fig. 4 illustrates the DCIFI projection of some heterogeneous
fuzzy data in the two-dimensional space. Here, all heteroge-
neous fuzzy data are distributed into two classes. Each class has
three observations. Each observation is identified by its fuzzy-
valued coordinates and . By certain DCIFI projec-
tion, each observation has been projected onto a virtual point
(denoted by the black dots in Fig. 4) on the real axis . It is
natural to assume that there exists a boundary in the two-dimen-
sional space, on which each point can be projected onto an iden-
tical virtual point (denoted by the white dot in Fig. 4), called the
virtual boundary, on the real axis by the same DCIFI projection.
According to this assumption, a classification problem of -di-
mensional heterogeneous fuzzy data can be simplified to that of
one-dimensional real data.

Good performance of the DCIFI projection classifier is ex-
pected due to the use of the signed fuzzy measure and the rel-
evant nonlinear integral which can handle heterogeneous fuzzy
data, since the nonadditivity of the signed fuzzy measure reflects

Fig. 4. DCIFI projection for 2-dimensional heterogeneous fuzzy data.

the importance of feature attributes, as well as their inherent in-
teraction, toward the discrimination of the fuzzy points. In fact,
the global contribution of several feature attributes to the deci-
sion of classification is not just the simple sum of the contribu-
tion of each feature to the decision. A combination of the feature
attributes may have a mutually restraining or a complementary
synergy effect on their contributions toward the classification
decision. So, the signed fuzzy measure defined on the power
set of all feature attributes is a proper representation of the re-
spective importance of the feature attributes and the interaction
among them, and a relevant DCIFI is a good fusion tool to ag-
gregate information in different forms coming from the feature
attributes for the classification.

V. GA-BASED ADAPTIVE CLASSIFIER-LEARNING ALGORITHM

VIA DCIFI PROJECTION PURSUIT

Now, based on the DCIFI, we want to find an appropriate
aggregation formula that projects the -dimensional fea-
ture space onto the real axis, , such that each fuzzy point

becomes a value of the virtual variable
that is optimal with respect to classification. In such way, each
classification boundary is just a point on the real axis .

The classification task by the DCIFI projection classifier can
be divided into two parts.

1) The DCIFI projection classifier depends on the signed
fuzzy measure , so how to determine the values of is
the first problem we are facing with.

2) Once the values of are retrieved, the DCIFI projection
classifier is established. To classify new data, boundaries
on the real axis should be determined.

The following two subsections focus on the above two prob-
lems, respectively.

A. Boundaries Determination

A DCIFI projection classifier is identified by the signed fuzzy
measure . Once the values of are given, the -dimensional
classification problem of heterogeneous fuzzy data is reduced
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Fig. 5. Illustration of virtual projection axis L when determining the boundary of a pair of successive classes C and C . (a) When Ŷ (k ) � Ŷ (k ).
(b) When Ŷ (k ) > Ŷ (k ).

to a one-dimensional classification problem of crisp data on the
virtual variable. The classes of records in the original training
data set are now projected to be classes on the projection axis

. We can still use symbol , to denote these
classes. The center of each class on is the medium of
the values of the virtual variables corresponding to the points in
class . The center , expressed as a real number, is a numer-
icalization of class . After arranging
and, therefore, , in an increasing
order as and , where

is a permutation of , we carry
out a point-wise search for the best classification boundary
between each pair of successive classes one by one under
the criterion of minimizing the misclassification rate which is
defined as the number of misclassified records (points) in the
training set divided by data size . The following algorithm is
devoted to determining the boundaries of successive classes
which have been rearranged according to the ascending order
of their centers:

For

Find , the farthest right (largest) point of and

, the farthest left (smallest) point of .

If (as shown in Fig. 5(a))

, where is the
boundary

between class and .

Else if (as shown in Fig. 5(b))

is the average of the collection points which
satisfy

the following three conditions:

1) are members of class and ;

2) are between and ; and

3) have property “possessing the lowest
number

of misclassified points if being a

classification boundary.”
End If

End For

Thus, are the best classification boundaries
for the DCIFI projection classifier with respect to the given
signed fuzzy measure . The corresponding global classifica-
tion rate is the sum of the numbers of misclassified points in
these pairs of successive classes divided by .

B. GA-Based Adaptive Classifier-Learning Algorithm

Here we discuss the optimization of the signed fuzzy measure
under the criterion of minimizing the corresponding global

misclassification rate, and then obtain an optimal DCIFI pro-
jection classifier. The optimizing process is just a “pursuit” for
searching an appropriate projection direction. It is performed
by the GACA. The optimization is also a data-driven process,
where a set of training data set in the form of

...
...

are needed. Here, denotes the fuzzy value of the th feature
at the th observation and denotes the class tag of the th
observation, .

In the GACA, each individual of chromosome represents a
DCIFI projection which is identified by the values of a signed
fuzzy measure . Since real coding method is employed, each
individual of chromosome consists of genes. Each gene
is represented by a real value between 0 and 1. The popula-
tion in the GACA consists of individuals of chromosome.
The misclassification rate is adopted for estimating the fitness
value of each individual of chromosome (i.e., the DCIFI pro-
jection). The probability of an individual of chromosome in the
population being chosen as a parent to produce offspring de-
pends on its fitness value. The optimization in the GACA is per-
formed under the criterion of minimizing the misclassification
rate. Fig. 6 shows the flow chart of the GACA.

It starts off from an initialized population. Individuals of chro-
mosome in the population are decoded into their corresponding
signed fuzzy measures to further determine their corresponding
DCIFI projections. For a DCIFI projection, each observation in
the training data set can be projected onto its virtual point on
the real axis. According to the class tags provided by the training
data, we can pursue the best virtual boundaries of the DCIFI pro-
jection being considered using the boundaries determination ap-
proach presented in the Subsection V-A. Then, cooperated with
the training set, we can derive the misclassification rate of the
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Fig. 6. Flowchart of the GACA.

Fig. 7. Training data and the trained classification boundaries in two-dimensional synthetic data test.

current DCIFI projection, which also represents the fitness value
of the corresponding individual in the population. After that, a
tournament selection is performed. Better individuals have more
chance to produce offspring by some randomly chosen genetic
operators [9]. The newly created offspring update the popula-
tion. This process repeats until we get zero misclassification rate
or the generation number exceeds the preset maximum number
of generations.

To maintain the diversity of the searching space of our ge-
netic algorithm, a special set of operations is used when the best
fitness value remains unchanged for several consecutive gener-
ations (default value is 20). At that time, original population is
divided into three parts by ascending order on fitness values. The
individuals of chromosome in the first part are kept, while those
in the second part create new offspring by random mutation [9],
and those in the third part are replaced by new randomly created
individuals of chromosome. Then, the population is updated and
the iteration is continued.

After determining the signed fuzzy measure and the re-
spective classification boundaries from the
training data, any new observation of the feature attributes

TABLE I
PRESET AND RETRIEVED VALUES OF THE SIGNED FUZZY MEASURE AND

BOUNDARIES IN 2-D TEST

can be classified by calculating its corre-
sponding value of the virtual variable

and checking its location relative to the classification boundaries
in the order of one by one. If , then is
classified into class ; if , then is classified
into class ; otherwise, is classified
into class .
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Fig. 8. Artificial data and the classification boundaries in 3-dimensional test—from two view directions.

VI. EXPERIMENTAL RESULTS

To evaluate the performance of the DCIFI projection clas-
sifier, a series of experiments both on synthetic and real data
sets have been conducted. Comparisons are also implemented
between the DCIFI projection classifier and two existing data
mining methods, the fuzzy decision trees [31] and the fuzzy-
neuro network [22], respectively.

A. Experiments on Synthetic Data

Two synthetic data sets, one containing two-dimensional
heterogeneous fuzzy data distributed in three classes, and the
other containing three-dimensional heterogeneous fuzzy data
distributed in two classes, are generated and used to verify the
efficiency and the effectiveness of the DCIFI and the GACA.
To evaluate the performance of the GACA on recovering the
classifier parameters, the classifier parameters, including the
values of the signed fuzzy measure and the virtual boundaries,
are preset. The preset DCIFI projection constructs normally
distributed heterogeneous fuzzy data for each class which is
separated by the preset virtual boundaries. Then, using the
created training data sets, our GACA should recover the preset
values of the parameters and obtain a low misclassification rate.
The procedure to construct the synthetic training data sets is
detailed as follows.

Assume that the data set has feature attributes
classes , and

records with records for class . Here,
. Each sample in the created data sets has the form

of

class tag

The following algorithm creates the heterogeneous fuzzy data
(with trapezoidal fuzzy number in each dimension) which are
distributed in a unit hypercube in the -dimensional space and
classified into classes.

1) Preset the values of the signed fuzzy measure by as-
signing and the virtual boundaries

.
2) Create the center of a fuzzy point in the -dimensional

space, represented as a vector . Each
coordinate , of the center is a real

TABLE II
PRESET AND RETRIEVED VALUES OF THE SIGNED FUZZY MEASURE AND

BOUNDARY IN 3-D TEST

number generated by a random number generator with
the uniform distribution in . Create a fuzzy point

, where is a randomly
generated trapezoidal fuzzy number with its support set
as . Here, is a random
value between 0.0 and 0.05.

3) For each observation , calculate
the corresponding value of the DCIFI, denoted by , with
respect to the preset .

4) Create a random number, , with the uniform
distribution. In case , if ,
then assign class to the right part of record, other-
wise, abandon this record; in case , if

, then assign class to the right part of
record, , otherwise, abandon this record;
in case , if , then assign
class to the right part of record, otherwise, abandon
this record. Here, the normal distribution are
used to control the distribution of data in class

.
5) Repeat steps 2)–4) until records of class

, have been created.
The first test is conducted on a classification problem of

two feature attributes and three classes, that is,
. Totally 100 records are provided in the

training data set, where 20 records for 50 records for ,
and 30 records for . The preset parameters to generate the
training data are as follows:

and . Each record in the
training data set presents a fuzzy point in the two-dimensional
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TABLE III
PERFORMANCE COMPARISON BETWEEN DCIFI AND FUZZY ID3

space. Here, the fuzzy point is described by a 2-tuple vector
whose elements are trapezoidal fuzzy number represented by
their membership functions. Fig. 7 shows the sample data,
where each frustum of a prism denotes a two-dimensional
fuzzy point (with dashed contours for data of , solid contours
for data of , and dashdotted contours for data of ). Setting

as the population size and running the GACA with the
whole sample data, after three generations, zero misclassifica-
tion rate is achieved, and we obtain a trained DCIFI projection
classifier with the classification boundaries (solid lines in
Fig. 7). Here, the dashed line starting from the origin shows the
virtual real axis to which the two-dimensional heterogeneous
fuzzy data are projected by the DCIFI. The values of the signed
fuzzy measure and boundaries in the retrieved DCIFI projection
classifier are rather close to the preset ones. That is to say, the
GACA can retrieve the values of parameters well and perform
the classification task successfully. The comparison of the
preset and the retrieved values of parameters is listed in Table I.

The second test considers a 3-dimensional case. The classi-
fication samples have 3 feature attributes, ,
and are classified into two classes . 200 records
are generated by the preset DCIFI parameters as:

, and , where 80 records are for and 120 records
are for .

Setting as the population size and running the GACA
with the whole sample data, after 50 generations, we obtain the
trained DCIFI projection classifier with misclassification rate 0.
The values of the signed fuzzy measure in the retrieved DCIFI
projection are rather close to their corresponding preset values.
This experiment also confirms that our GACA can retrieve the
values of the classifier parameters accurately. The comparison
of the preset and the retrieved values of parameters is listed in
Table II.

Fig. 8 illustrates the distribution of the training data and the
classification boundary in three-dimensional feature space from
two different viewing directions. The three-dimensional fuzzy
data are represented by cubes in the graph. The lengths on three
dimensions of a cube denote the ranges of support sets of the
membership functions which represent the feature attributes
of an observation. The blue cubes are of class , while the
yellow cubes are of class . The classification boundary is
a broken plane with six pieces that divide the feature space
into two parts. These pieces of broken planes have a common
vertex on the virtual axis
(denoted by the black line in graph) that passes through the
origin and points to point . Fig. 8 also reveals the ability
of the DCIFI projection classifier on classifying data which are
separated by boundaries with irregular shape.

Fig. 9. Five linguistic terms.

TABLE IV
THE ESTIMATED VALUES OF THE SIGNED FUZZY MEASURE AND THE VIRTUAL

BOUNDARY IN TWO-EMITTER IDENTIFICATION PROBLEM

B. Experiment and Comparison With Fuzzy Decision Tree
on Real Data

We select four famous bench-mark data sets available in UCI
[3] and compare our results with those by fuzzy decision tree
induction based on ID3 [23]. Fuzzy ID3 is a fuzzy version of
the crisp ID3 [21]. which is a popular and powerful heuristic
method for generating crisp decision trees. As an extension of
its counterpart, fuzzy ID3 is an important way of learning from
fuzzy examples [10], [11].

The four data sets are summarized as follows.
1) Iris data set: 150 samples, three classes, four feature at-

tributes.
2) Pima diabetes data set: 768 samples, two classes, eight fea-

ture attributes.
3) Breast cancer data set: 683 samples, two classes, nine fea-

ture attributes.
4) Sleep state data set [15]: 1236 samples, six classes, eleven

feature attributes.
Since all these benchmark data sets are crisp values, fuzzifi-

cation on the training/testing data sets are preprocessed. First,
we need to find the minimum and maximum values of each at-
tribute in the considered data set. The domain of each attribute
is discretized into some linguistic terms. In our experiment, we
use five linguistic terms shown in Fig. 9 [that is, “Very small
(VSM),” “Small (SM),” “Medial (MED),” “Large (LRG),” and
“Very large (VLRG)”]. Then, in the data set, each feature at-
tribute of an observation is replaced by one linguistic term with
the highest membership values respect to its original crisp value.
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TABLE V
TESTING RESULTS ON TWO-EMITTER IDENTIFICATION PROBLEM WITH/WITHOUT NOISE

The accuracies of both methods on each data set are deter-
mined by running ten-fold cross validation. For comparison, we
present the average classification accurcies both on the training
and testing data sets for each methods in Table III.

From the comparison, we can draw the following conclusion.
Our DCIFI projection classifier outperforms the fuzzy ID3 al-
gorithm in terms of testing and training accuracy. It is due to
the fact that the DCIFI projection classifier utilizes the nonaddi-
tive set function, that is, the signed fuzzy measure, so that it can
present the nonlinear relationships among the feature attributes
for the determination of the classification more sufficiently.

C. Application on Emitters Identification

It is a high-priority problem in military operation to identify
and track unique mobile transmitters for targeting. A powerful
emitter identification function is necessary to warn of imme-
diate threat with enough information to take evasive action. In
military operation, such identification is accessed by Radio Fre-
quency (RF), Pulse Width (PW), and Pulse Repetition Interval
(PRI) of the collected pulse descriptor words. They form the fea-
ture attributes of an observation recognition problem, denoted
by , and , respectively. The values of these features vary
in interval ranges in accordance with a specific radar emitter.
Shieh et al. proposed a fuzzy-neuro network to identify the
emitters in [22], where an interval activation function is applied
so that the network can process interval data. Two back prop-
agation learning algorithms, NVTBP and CVTBP algorithms,
were derived to tune the weights of neural network, and fur-
thermore, to classify the observations. In our experiments, the
DCIFI projection classifier is also implemented to identify dif-
ferent types of emitters, and its performance is compared to that
of the fuzzy-neuro network. We use both the two-emitters and
the three-emitters identification problems to test and compare
the performance of the DCIFI projection classifier and those
of the neural network approaches [22]. The training and testing
data sets are the same as those in [22], where the data in training
set are interval values while the data in testing set are crisp
values. To evaluate the robustness of the proposed methods, a
measurement distortion is also used as in [22] to simulate the
adding of noise to the testing data. To perform the testing at dif-
ferent levels of adding noise, an Error Deviation Level (EDL) is
defined in [22] by

% %

TABLE VI
THE ESTIMATED VALUES OF THE SIGNED FUZZY MEASURE AND THE VIRTUAL

BOUNDARIES IN THREE-EMITTER IDENTIFICATION PROBLEM

for , and , where is the number of
observations. Here, denotes the values of attribute of -th
observation in the testing data set, and is a small alteration
added to the values of . The noisy testing data are obtained
by adding random noise to each original testing observation,
denoted by with different EDL’s
(from 0% to 15%).

First, we consider the two-emitters identification problem
with the input data corrupted by adding noise. For the DCIFI
projection classifier, it is a three attributes and two classes
problem. We set the population size as 30, and the maximum
number of generations as 1000. 10 training samples are used
to train the DCIFI projection classifier and the neural network
approaches respectively. The estimated values of the signed
fuzzy measure and the virtual boundary are listed in Table IV.

Nine sets of 80 testing samples with different EDLs (from 0%
to 15%) are generated and used to test the performance of the
considered identification approaches. The experimental results
on average accuracy are compared in Table V.

In the second experiment, we consider the three-emitters
identification problem with the input data corrupted by adding
noise. For the DCIFI projection classifier, it is a three attribute
and three classes problem. We set the population size as 30,
and the maximum number of generations as 1000. 15 training
samples are used to train the DCIFI projection classifier and
the neural network approaches respectively. The estimated
values of the signed fuzzy measure and the virtual boundary
are listed in Table VI. 120 testing samples with different EDLs
(from 0% to 15%) are used to train and test the performance of
DCIFI projection classifier and the neural network approaches,
respectively. The comparison results on average accuracy are
shown in Table VII.
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TABLE VII
TESTING RESULTS ON THREE-EMITTER IDENTIFICATION PROBLEM WITH/WITHOUT NOISE

The comparison results shown in Tables V and VII indicate
that the proposed DCIFI projection not only has higher identi-
fication capability, but also relatively more robust to noise than
the neural network approaches.

VII. CONCLUSION

We have presented a new model, called the DCIFI, which uses
a fuzzification of the Choquet integral for solving the classifi-
cation problem involving heterogeneous fuzzy data, including
crisp data, fuzzy numbers, interval values, and linguistic vari-
ables. The DCIFI acts as a projection tool which can map a
high-dimensional heterogeneous fuzzy data to a crisp virtual
value on a real axis, so that the classification problem in high
dimensional heterogeneous fuzzy datum space is simplified to
that in one dimensional crisp data space. A GACA has been used
for searching the relevant optimal parameters in a DCIFI projec-
tion classifier, as well as the virtual boundaries of the projection
images on the one-dimensional real axis. It has been shown that
the DCIFI projection classifier achieves good performance on
the classification problem though it requires long training time
on estimating the internal parameters when the number of fea-
ture attributes or the number of classes is large. Moreover, this
classifier is very informative and powerful for dealing with het-
erogeneous fuzzy data sets with strong interaction among their
feature attributes towards the classification. The performance of
the DCIFI projection classifier has been confirmed by a series
of experiments both on synthetic and real data. It has also com-
pared favorably with two existing approaches.

APPENDIX

The proof of Theorem 3.1 is summarized as follows.
Proof: Let . Then is also a fuzzy-valued func-

tion and its -cut, , satisfies or, equivalently,
, for any real number . Thus, denoting by

, we have

REFERENCES

[1] S. Auephanwiriyakul, J. M. Keller, and P. D. Gader, “Generalized Cho-
quet fuzzy integral fusion,” Inform. Fusion, vol. 3, pp. 69–85, 2002.

[2] H. Bandemer and W. Nather, Fuzzy Data Analysis. London, U.K.:
Kluwer, 1992.

[3] C. L. Blake and C. J. Merz, UCI Repository of Machine Learning
Databases. Irvine, CA: Dept. Inform. Comput. Sci., Univ. California
, 1998 [Online]. Available: http://www.ics.uci.edu/~mlearn/MLRepos-
itory.html

[4] G. Choquet, “Theory of capacities,” Annales de l’Institut Fourier, vol.
5, pp. 131–295, 1954.

[5] D. Denneberg, Non-Additive Measure and Integral. Boston, MA:
Kluwer, 1994.

[6] M. Grabisch and J. M. Nicolas, “Classification by fuzzy integral: Per-
formance and Tests,” Fuzzy Sets Syst., vol. 65, pp. 255–271, 1994.

[7] M. Grabisch, “A new algorithm for identifying fuzzy measures and its
application to pattern recognition,” in Proc. Joint Conf. 4th IEEE Int.
Conf. Fuzzy Syst. 2nd Int. Fuzzy Eng. Symp., 1995, pp. 145–150.

[8] R. J. Hathaway, J. C. Bezdek, and W. Pedrycz, “A parametric model
for fusing heterogeneous fuzzy data,” IEEE Trans. Fuzzy Syst., vol. 4,
no. 3, pp. 270–281, Jun. 1996.



942 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 15, NO. 5, OCTOBER 2007

[9] F. Herrera, M. Lozano, and J. L. Verdegay, “Tackling real-coded ge-
netic algorithms: Operators and tools for the behaviour analysis,” Artif.
Intell. Rev., vol. 12, pp. 265–319, 1998.

[10] H. Ishibuchi, R. Fujioka, and H. Tanaka, “Neural network that learn
from fuzzy if-then rules,” IEEE Trans. Fuzzy Syst., vol. 1, no. 2, pp.
85–97, Feb. 1993.

[11] H. Ishibuchi, T. Shirai, K. Nagasaka, and T. Miyoshi, “Neuro-fuzzy
ID3: A method of inducing fuzzy decision trees with linear program-
ming for maximizing entropy and an algebraic method for incremental
learning,” Fuzzy Sets Syst., vol. 81, pp. 157–167, 1996.

[12] H. Ishibuchi, T. Yamamoto, and T. Nakashima, “Fuzzy data mining:
Effect of fuzzy discretization,” in Proc. IEEE Int. Conf. Data Mining,
2001, pp. 241–248.

[13] G. J. Klir and B. Yuan, Fuzzy Sets and Fuzzy Logic—Theory and Ap-
plications. Upper Saddle River, NJ: Prentice-Hall, 1995.

[14] M. Mares, Computation over Fuzzy Quantties. Boca Raton, FL:
CRC, 1994.

[15] R. S. Michalski, I. Mozetic, and J. R. Hong, “The multipurpose incre-
mental learning system,” in Proc. 5th National Conf. Artif. Intell., 1986,
pp. 1041–1045.

[16] L. Mikenina and H.-J. Zimmermann, “Improved feature selection and
classification by the 2-additive fuzzy measure,” Fuzzy Sets Syst., vol.
107, pp. 197–218, 1999.

[17] T. Murofushi, M. Sugeno, and M. Machida, “Non monotonic fuzzy
measures and the choquet integral,” Fuzzy Sets Syst., vol. 64, pp. 73–86,
1994.

[18] P. A. Nava, “Implementation of neuro-fuzzy systems through interval
mathematics,” in Proc. IEEE ISIC/CIRA/ISAS Joint Conf., 1998, pp.
365–369.

[19] E. Pap, Null-Additive Set Functions. Boston, MA: Kluwer, 1995.
[20] V. Petridis and V. G. Kaburlasos, “Modeling of systems using hetero-

geneous data,” in Proc. IEEE Int. Conf. Syst., Man, Cybern., 1999, pp.
V308–V313.

[21] J. R. Quinlan, “Induction of decision,” Mach. Learn., vol. 1, pp.
81–106, 1986.

[22] C.-S. Shieh and C.-T. Lin, “A vector neural network for emitter identi-
fication,” IEEE Trans. Antennas Propag., vol. 50, no. 8, pp. 1120–1127,
Aug. 2002.

[23] E. C. C. Tsang, D. S. Yeung, and X. Z. Wang, “OFFSS: Optimal fuzzy-
valued feature subset selection,” IEEE Trans. Fuzzy Syst., vol. 11, no.
2, pp. 202–213, Apr. 2003.

[24] Z. Wang, “A new genetic algorithm for nonlinear multiregressions
based on generalized Choquet integrals,” in Proc. 12th IEEE Int. Conf.
Fuzzy Syst., 2003, vol. 2, pp. 819–821.

[25] Z. Wang and G. J. Klir, Fuzzy Measure Theory. New York: Plenum,
1992.

[26] Z. Wang, G. J. Klir, and W. Wang, “Monotone set functions defined by
choquet integral,” Fuzzy Sets Syst., vol. 81, pp. 241–250, 1996.

[27] Z. Wang, R. Yang, and K. S. Leung, “On the Choquet Integral with
Fuzzy-Valued Integrand,” in Proc. 11th World Congr. Int. Fuzzy Syst.
Assoc., 2005, pp. 433–437.

[28] Z. Wang, R. Yang, P. A. Heng, and K. S. Leung, “Real-valued choquet
integrals with fuzzy-valued integrand,” Fuzzy Sets Syst., vol. 157, no.
1, pp. 256–269.

[29] K. Xu, Z. Wang, P.-A. Heng, and K.-S. Leung, “Classification by Non-
linear Integral Projections,” IEEE Trans. Fuzzy Syst., vol. 11, no. 2, pp.
187–201, Apr. 2003.

[30] R. Yang, Z. Wang, P. A. Heng, and K. S. Leung, “Fuzzy numbers and
fuzzification of choquet integrals,” Fuzzy Sets Syst., vol. 153, no. 1, pp.
96–113.

[31] Y. Yuan and M. J. Shaw, “Induction of fuzzy decision tree,” Fuzzy Sets
Syst., vol. 69, no. 2, pp. 125–139, 1995.

Rong Yang received the B.Sc. (Eng.) degree in elec-
trical engineering, the M.Phil. degree in electronic
and electrical engineering, and the Ph.D. degree in
computer science, from the Southeast University
(P.R. China) in 1998, Hong Kong University of
Science and Technology in 2000, and The Chinese
University of Hong Kong in 2005, respectively.

Currently, she is a Assistant Professor in the De-
partment of Automatic Science, the College of Engi-
neering and Technology, Shen Zhen University, Nan
Shan, Shen Zhen, P.R. China. Her research interests

include fuzzy theory, nonlinear integrals, nonlinear optimization, pattern recog-
nization, soft computing techniques, and data mining.

Zhenyuan Wang graduated from Fudan University,
China, and received the Ph.D. from the State Univer-
sity of New York at Binghamton.

He was a Visiting Professor at the State University
of New York at Binghamton, New Mexico State Uni-
versity, and the University of Texas at El Paso, and a
Research Fellow at the Chinese University of Hong
Kong. Now, he is a Professor in the Department of
Mathematics, University of Nebraska at Omaha. He
is the author or coauthor of one book and more than
100 research papers. His research interests include

fuzzy measure theory, nonlinear integrals, nonlinear optimization, soft com-
puting techniques, and data mining.

Dr. Wang serves as an Associate Editor of the Journal of Intelligent and Fuzzy
Systems and a member of the Editorial Board of Fuzzy Sets and Systems and
Fuzzy Mathematics.

Pheng-Ann Heng (S’90–M’92) received the B.Sc.
degree from the National University of Singapore in
1985, and the M.Sc. degree in computer science, the
M.A. degree in applied mathematics, and the Ph.D.
degree in computer science, all from Indiana Univer-
sity, Bloomington, in 1987, 1988, and 1992, respec-
tively.

Currently, he is a Professor in the Department of
Computer Science and Engineering, The Chinese
University of Hong Kong (CUHK), Shatin, China. In
1999, he set up the Virtual Reality, Visualization and

Imaging Research Centre at CUHK and serves as the Director of the Centre.
He is also the Director of the CUHK Strategic Research Area in Computer
Assisted Medicine, established jointly by the Faculty of Engineering and the
Faculty of Medicine in 2000. His research interests include virtual reality
applications in medicine, visualization, 3-D medical imaging, user interface,
rendering and modelling, interactive graphics, and animation.

Kwong-Sak Leung (M’77–SM’89) received the
B.Sc. (Eng.) and Ph.D. degrees from the University
of London, Queen Mary College, London, U.K., in
1977 and 1980, respectively.

He worked as a Senior Engineer on contract R&D
at ERA Technology and later joined the Central
Electricity Generating Board to work on nuclear
power station simulators in England. He joined the
Computer Science and Engineering Department at
the Chinese University of Hong Kong in 1985, where
he is currently Professor of Computer Science and

Engineering. His research interests are in soft computing including evolutionary
computation, parallel computation, probabilistic search, information fusion
and data mining, fuzzy data and knowledge engineering. He has authored
and co-authored over 200 papers and 2 books in fuzzy logic and evolutionary
computation.

Dr. Leung has been a Chair and a member of many program and organizing
committees of international conferences. He is on the Editorial Board of Fuzzy
Sets and Systems and is an Associate Editor of the International Journal of Intel-
ligent Automation and Soft Computing. He is a s Chartered Engineer, a member
of IEE and ACM, a Fellow of HKIE, and a Distinguished Fellow of HKCS in
Hong Kong.


