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Abstract. The firefighter problem is defined as follows. Initially, a fire
breaks out at a vertex r of a graph G. In each subsequent time unit, a
firefighter chooses a vertex not yet on fire and protects it, and the fire
spreads to all unprotected neighbors of the vertices on fire. The objective
is to choose a sequence of vertices for the firefighter to protect so as to
save the maximum number of vertices. The firefighter problem can be
used to model the spread of fire, diseases, computer viruses and suchlike
in a macro-control level.

In this paper, we study algorithmic aspects of the firefighter problem
on trees, which is NP-hard even for trees of maximum degree 3. We
present a (1−1/e)-approximation algorithm based on LP relaxation and
randomized rounding, and give several FPT algorithms using a random
separation technique of Cai, Chan and Chan. Furthermore, we obtain an
2O(

√
n log n)-time subexponential algorithm.

1 Introduction

The Firefighter problem is a one-person’s game on a graph G defined as follows.
At time t = 0, a fire breaks out at a vertex r of G. For each time step t ≥ 1,
a firefighter protects one vertex not yet on fire (the vertex remains protected
thereafter), and then the fire spreads from burning vertices (i.e., vertices on fire)
to all unprotected neighbors of these vertices. The process ends when the fire can
no longer spread, and then all vertices that are not burning are considered saved.
The objective is to choose a sequence of vertices for the firefighter to protect so
as to save the maximum number of vertices in the graph. The Firefighter problem
was introduced by Hartnell [Har95] in 1995 and can be used to model the spread
of fire, diseases, computer viruses and suchlike in a macro-control level.

The Firefighter problem is NP-hard even for trees of maximum degree 3 as
shown by Finbow et al. [FKMR07]. On the other hand, Hartnell and Li [HL00]
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have proved that a simple greedy method for trees is a 0.5-approximation
algorithm, and MacGillivray and Wang [MW03] have solved the problem in
polynomial time for some special trees. Various aspects of the problem have
been considered by Develin and Hartke [DH07], Fogarty [Fog03], Wang and
Moeller [WM02], and Cai and Wang [CW07], among others. We refer the reader
to a recent survey of Finbow and MacGillivray [FM07] for more information on
the Firefighter problem.

In this paper, we study algorithmic aspects of the Firefighter problem on trees.
Our main results are:

1. A (1 − 1/e)-approximation algorithm (Section 3) based on a LP-relaxation
and randomized rounding. We also prove that 1 − 1/e is the best approxi-
mation factor one can get using any LP-respecting rounding technique with
the same LP (Section 3.1).

2. Several FPT algorithms and polynomial-size kernels (Section 4 and also a
summary in Table 1) when we use several different choices for the parame-
ter k: the number of saved vertices, the number of saved leaves, and the
number of protected vertices. Our FPT algorithms are based on the random
separation method of Cai, Chan and Chan [CCC06].

3. A subexponential algorithm (Section 5) that runs in time 2O(
√

n log n). We
note that an 2O(n0.33)-time algorithm would falsify a conjecture that there is
no subexponential algorithm for SAT (see discussions in Section 5).

Table 1. Summary of FPT algorithms. The “randomized complexity” column indi-
cates expected running time of algorithms with one-sided error, and the “deterministic
complexity” column gives the worst-case running time of deterministic algorithms.

problems randomized deterministic kernel size

Saving k Vertices O(4k + n) O(n) + 2O(k) O(k2)
Saving All But k Vertices O(4kn) 2O(k)n log n open
Saving k Leaves O(n) + 2O(k) O(n) + 2O(k) O(k2)
Saving All But k Leaves none unless NP ⊆ RP NP-complete for k = 0 no kernel
Maximum k-Vertex Protection kO(k)n kO(k)n log n open

2 Definitions and Notation

We first define some terms. Let T be a rooted tree with root r which is the origin of
the fire. A vertex is protected once it is protected by the firefighter, and saved if it is
not burnt at the end of the game. A strategy for the Firefighter problem is a sequence
v1, v2, . . . , vt of protected vertices of T such that vertex vi, 1 ≤ i ≤ t, is protected
at time i and the fire can no longer spread to unprotected vertices at time t.

The following is the decision version of the problem we consider in the paper.

Firefighter on Trees
Instance A rooted tree T with root r and a positive integer k.
Question Is there a strategy for the firefighter to save at least k vertices

when a fire breaks out at the root r?



260 L. Cai, E. Verbin, and L. Yang

Without ambiguity, we abbreviate “the Firefighter problem on trees” as “the
Firefighter problem” in the rest of the paper.

We denote the subtree of T rooted at vertex v by T (v), and assign the number
of vertices in T (v) as the weight wv of v. For a strategy S, the value of S, denoted
by ‖S‖, equals the number of vertices saved by S.

Denote by Li the set of vertices of depth i (L0 contains only the root), and we
refer to eachLi as a level of T . Let dv denote the depth of v, and h denote the height
of T , i.e., the depth of the deepest leaf. We write u � v if u is an ancestor of v.

An instance of a parameterized problem consists of a pair (I, k) with I being
the input and k the parameter, and a parameterized problem is fixed-parameter
tractable (FPT in short) if it admits an FPT algorithm, i.e., an algorithm that
runs in f(k) |I|O(1) time for some computable function f independent of the
input size |I|. A kernelization for a parameterized problem is a polynomial-time
reduction that maps an instance (I, k) onto (I ′, k′) such that (1) |I ′| ≤ g(k)
for some computable function g, (2) k′ ≤ k, and (3) (I, k) is a “Yes”-instance
iff (I ′, k′) is a “Yes”-instance. The pair (I ′, k′) is called a kernel of (I, k). The
kernel is polynomial-size if g(k) = kO(1). The existence of a kernel implies the
existence of an FPT. The existence of an FPT implies the existence of a kernel,
but not necessarily of a polynomial-size kernel.

3 A (1 − 1/e)–Approximation Algorithm

In this section we present a (1−1/e)-approximation algorithm for the Firefighter
problem on trees, which improves the 1/2-approximation of Hartnell and Li
[HL00] (note (1 − 1/e) ≈ 0.6321). Our algorithm, proposed by B. Alspach (see
[FM07]), uses randomized rounding of an LP relaxation of a 0-1 integer program
formulated by MacGillivray and Wang [MW03]. It is asked in [FM07] to inves-
tigate the performance of this algorithm, and in this section we determine the
approximation ratio of the algorithm.

It is easy to see that an optimal strategy for a tree protects a vertex at level
i at time i and has no need to protect descendants of a protected vertex. This
observation translates into the following 0-1 integer program of MacGillivray
and Wang [MW03] for a tree T = (V, E), where for vertex v, xv is a boolean
decision variable such that xv = 1 iff v is protected, and wv is the number of
descendants of v.

maximize
∑

v∈V

wvxv

subject to xr = 0
∑

v∈Li

xv ≤ 1 for every level Li with i ≥ 1

∑

v�u

xv ≤ 1 for every leaf u of T

xv ∈ {0, 1} for every vertex v of T

(1)
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By relaxing the constraint xv ∈ {0, 1} in the above integer program to
0 ≤ xv ≤ 1, we get a linear program, whose optimal solution will be denoted
by OPTLP . The optimal solution to the LP can be interpreted as an optimal
“fractional” firefighting strategy1.

Alspach’s rounding method uses the fact that in OPTLP , the values of xv in
each level of the tree sum up to at most 1, and thus they can be treated as a
probability distribution. The rounding scheme is to pick the vertex to protect at
each level according to this distribution. It might be the case that the fractional
values in a level sum up to less than 1. In this case, with the remaining probability
we choose to protect no vertex at the level (this makes no difference in the
analysis). Also, it might be the case that the rounding procedure chooses to
protect both a vertex v and its ancestor u. In this case, we choose to protect u
rather than v, and do not protect any vertex in v’s level. We call this situation
an annihilation.

We note that the loss in rounding stems exactly from annihilations. If an-
nihilations never occur, the expected value of the rounded strategy is at least
‖OPTLP ‖ and thus the approximation ratio would be 1. On the other hand, if
annihilations occur, consider a vertex v which is fully saved by the fractional
strategy and consider the path of length dv from the root r to v. In the worst
case, the fractional strategy assigns a 1/dv-fraction of a firefighter to each vertex
in this path. In this case, the probability that v is saved by the rounded strategy
is equal to

1 − (1 − 1/dv)dv ≥ 1 − 1/e .

To turn this intuition into a full analysis, we just need to show that the above
case is indeed the worst case, and that a similar behavior occurs when v is not
fully saved by the fractional strategy. We do this in the following lemma.

Lemma 1. Given any fractional strategy SF , let SI be the integer strategy pro-
duced by applying the randomized rounding method to SF . Then,

E [‖SI‖] ≥
(

1 − 1
e

)
· ‖SF ‖ .

Proof. Denote the value of the fractional strategy at v by x̃v and the value of
the rounded strategy at v by xv. Thus, xv is an indicator random variable for
whether v is protected by SI . Similarly, for each v, define ỹv =

∑
u�v x̃v to be

the fraction of v that is saved by SF , and yv =
∑

u�v xv to indicate whether v
is saved by SI .

1 A fractional firefighting strategy is a placement of fractional firefighters on the ver-
tices so that the sum of firefighter fractions assigned to each level is at most 1, and
the sum of firefighter fractions assigned to each root-to-leaf path is at most 1. For
example, if a vertex v is protected by half of a firefighter, all its descendants are
half-saved. If, furthermore, another vertex u � v is protected by 0.3 of a firefighter,
then all descendants of u are 0.8-saved.
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Fix a vertex v, and denote by r = v0, v1, v2, . . . , vk = v the path from the root
to v. By the definition of the rounding procedure, we see that

Pr [yv = 1] = 1 −
k∏

i=1

(1 − x̃vi).

We have the following bound

Pr [yv = 1]=1 −
k∏

i=1

(1 − x̃vi) ≥ 1 −
(∑k

i=1(1 − x̃vi)
k

)k

=1 −
(

k −
∑k

i=1 x̃vi

k

)k

= 1 −
(

k − ỹv

k

)k

= 1 −
(

1 − ỹv

k

)k

≥ 1 − e−ỹv ≥
(

1 − 1
e

)
ỹv,

where the first inequality follows from the inequality of the means, and the
second and third inequalities follow from standard analysis, using the fact that
0 ≤ ỹv ≤ 1. Note that the sum of all ỹv is just the value of SF . Therefore,

E [‖SI‖] =
∑

v∈V

Pr [yv = 1] ≥
∑

v∈V

(
1 − 1

e

)
ỹv =

(
1 − 1

e

)
· ‖SF ‖ ,

where the first equality follows from linearity of expectation. This finishes the
proof of the lemma. �	
The above lemma implies that the expected approximation ratio of our algorithm
is (1 − 1/e). We can easily derandomize our algorithm by using the method of
conditional expectations [AS92], which will be discussed in the full paper.

Theorem 1. There is a deterministic polynomial-time (1− 1/e)-approximation
algorithm for the firefighter problem on trees.

3.1 LP-Respecting Rounding Does Not Achieve Approximation
Better Than 1 − 1/e

We note that the best known integrality gap for MacGillivray and Wang’s LP,
proved by Hartke [Har06], is 16

17 . Thus, it is tempting to believe that the rounding
method might be improvable. However, we can show that no rounding technique
from a relatively rich class of rounding techniques gives an approximation ratio
better than 1 − 1/e. This means that one would have to try something very
different than standard rounding methods.

A common feature of many rounding techniques in the literature is that they
are LP-respecting. A rounding technique for the firefighter problem is called
LP-respecting if it only chooses to protect vertices v with x̃v > 0, and never
protects any vertex v with x̃v = 0. (Recall that x̃v is the value of the optimal
LP solution on vertex v.) The following theorem states that any LP-respecting
rounding technique, when used together with [MW03]’s LP, does not achieve an
approximation ratio better than 1 − 1/e. Consequently, any rounding technique
that aims at getting better than (1 − 1/e)–approximation would have to be
LP-disrespecting.
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Theorem 2. For any ε > 0, there exists a tree T , and an optimal fractional
solution S̃ for the LP on T , such that any integral strategy S ⊆ {v : x̃v > 0} can
save no more than (1 − 1/e + ε) · ‖OPTIP (T )‖ vertices.

The proof of this theorem is somewhat technical, and we defer it to the full
version of the paper.

4 FPT Algorithms

In this section, we consider FPT algorithms and polynomial-size kernels for three
parameterized versions of the Firefighter problem.

1. Saving k Vertices: The parameter k is the number of saved vertices, and we
ask if there is a strategy saving at least k vertices.

2. Saving k Leaves: The parameter k is the number of saved leaves, and we wish
to determine if the firefighter can save at least k leaves of the tree.

3. Maximum k-Vertex Protection: The parameter k is the number of protected
vertices and we wish to find a strategy for the firefighter to protect k vertices
to maximize the total number of saved vertices.

The results in this section are summarized in Table 1.
The main tool we use is the random separation method of Cai, Chan, and

Chan [CCC06]. This technique produces randomized algorithms, which can be
derandomized by using universal sets (see [NSS95]). A set of binary vectors
of length n is (n, t)-universal if for every subset of size t of the indices, all 2t

configurations appear in the set. Naor et al. [NSS95] give a construction of a
(n, t)-universal set of cardinality 2ttO(log t) log n in time 2ttO(log t)n logn.

4.1 Saving k Vertices

First we use random separation to give an 2O(k)n-time algorithm for Saving k
Vertices. Then we construct a kernel of size O(k2) for the problem. Finally we
use the random separation method to solve the parametric dual problem Saving
All But k Vertices in time 2O(k)n.

We start with our FPT algorithm for Saving k Vertices. Call a strategy S
satisfying if it saves at least k vertices. The goal is then to find a satisfying
strategy if one exists. First observe that if the root r has a child v with weight
wv ≥ k then we can protect v to solve the problem. Therefore we can assume
from now on that the weight of every vertex in V − r is at most k − 1. In
particular, this means that the height of T is at most k.

The algorithm first colors each vertex of T randomly and independently by
either green or red with equal probability. We call a coloring of T good if T has a
satisfying strategy S0 such that all vertices in S0 are green, and all descendants
of vertices in S0 are red.
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Given a good coloring of T , we can find a satisfying strategy S to T as follows:

Step 1. Find the set Vg of green vertices whose descendants are all red.
Step 2. For each level Li (i ≥ 1), choose from Vg ∩ Li a vertex of maximum

weight, and put it in S. (If Vg ∩ Li = ∅ then do nothing).

It’s not hard to see that S is a satisfying strategy, as for each vertex v of S0,
v is in Vg ∩ Ldv and can be placed in S, thus ‖S‖ ≥ ‖S0‖. Therefore S is indeed
a satisfying strategy, and we can find it in O(n) time, given a good coloring.

However, the probability of obtaining a good coloring depends on the sum of
the number of vertices in S0 and the number of the descendants of S0, which
might be as large as Θ(k2). We can reduce this sum to 2k by using the following
simple existence lemma:

Lemma 2. Suppose that every non-trivial subtree of T is of size less than k,
and that there is a satisfying strategy. Then there is a satisfying strategy S0 that
saves at most 2k vertices.

Proof. Let S1 be some satisfying strategy. If S1 saves at most 2k vertices, then
we are done. Otherwise, we construct S0 as follows. Since wv < k for each vertex
v of S1, we can add vertices from S1 to S0 in turn until S0 saves at least k
vertices. This S0 saves at most 2k vertices. �	
Thus, if we choose S0 not as an arbitrary satisfying strategy, but as the satisfying
strategy guaranteed in Lemma 2, then the probability that a randomly-chosen
coloring is good is at least 1/22k. By choosing 4k colorings and running steps 1
and 2 for each of the colorings, we succeed in finding a satisfying strategy, if one
exists, with at least constant probability.

To derandomize the algorithm, we can use a (n, 2k)-universal set, and use the
vectors of the set as the colorings. If a satisfying strategy exists, then at least one
of the colorings will be good. Therefore we have a deterministic FPT algorithm
that runs in time 4kkO(log k)n log n.

We now present an O(k2)-size kernel for Saving k Vertices on trees. First, note
that if r has a child v with wv ≥ k, we can protect v to save at least k vertices.
In such a case, the problem is solvable in time O(n), and we can use a trivial
kernel for it. From now on we assume that the weight of each child of r is at
most k − 1 and in particular the height h of T is at most k − 1.

The idea behind the kernel is to ignore all but a limited number of vertices in
each level of the tree. Its construction is as follows:

Step 1. If level 1 has at least k vertices then we put the k largest-weight vertices
of level 1 into K1 else we put all vertices of level 1 into K1.

Step 2. For i := 2 to h, if level i has at least 2k − i vertices then we put the
2k− i largest-weight vertices of level i into Ki else we put all vertices of level
i into Ki.

Step 3. The kernel is K =
⋃h

i=1 Ki.

Note that the above construction of K can be performed in time O(n). Also
note that K has at most k +

∑h
i=2(2k − i) ≤ 3k2/2 vertices. We prove that K

is a kernel in the following lemma:
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Lemma 3. If T has a satisfying strategy S, then there exists a satisfying strategy
S′ ⊆ K.

Proof. Let S = {v1, v2, . . . , vt} be a satisfying strategy, where vi is in level i.
Define I(S) to be the largest i such that vi /∈ Ki (define I(S) = ∞ if S ⊆ K).
We say that S is minimal iff the removal of any vertex from S would make S non-
satisfying. We let S be a satisfying strategy that maximizes I(S). Furthermore,
among all of those we choose S to be a strategy which is minimal. Let i = I(S). If
i = ∞, we are finished. We assume i < ∞, and eventually reach a contradiction.

We will now show how to replace vertex vi of S by a vertex in Ki to get
another satisfying strategy. If i = 1 then |K1| = k as v1 �∈ K1. Note that at
most k − 1 vertices in K1 are ancestors of vertices in S as |S| ≤ k. Therefore
K1 has a vertex v that is not an ancestor of any vertex of S. Since wv ≥ wv1 ,
we can remove v1 from S and insert v, to get a satisfying strategy S′ of T with
i(S′) > i(S), contradicting the choice of S. Otherwise i > 1. Since vi �∈ Ki, we
have |Ki| = 2k−i. Note that at most k−i vertices in Ki are ancestors of vertices
in S as |S| ≤ k. Furthermore, by the minimality of S, at most k−1 vertices in Ki

are descendants of vertices in S (otherwise S does not need vertex vi). Therefore
Ki has at least one vertex v that is neither an ancestor nor a descendent of any
vertex in S. By the definition of Ki, wv ≥ wvi and we can replace vi in S by v
to get a satisfying strategy S′ of T with i(S′) > i(S), contradicting the choice
of S. �	

The O(k2) kernel can be easily combined with the FPT algorithm to establish
the following result.

Theorem 3. Saving k Vertices can be solved in O(n) + 4kkO(log k) time.

For the parametric dual Saving All But k Vertices of Saving k Vertices, we can
also use random separation to obtain an FPT algorithm that runs in 2O(k)n log n
time. The main difference is that we use a random coloring to “guess” the burnt
part instead of the saved part for Saving k Vertices. The details will be given in
the full paper.

4.2 Saving k Leaves and Protecting k Vertices

In this section, we consider FPT algorithms for Saving k Leaves and Maximum
k-Vertex Protection. The former uses the number of saved leaves as the parameter
k, and the latter tries to save the maximum number of vertices by protecting k
vertices.

We start with Saving k Leaves, which deals with the situation that leaves
are much more valuable than internal vertices. Due to space limit, we will only
sketch the main ideas of our FPT algorithm and leave the details to the full
paper. Note that the parametric dual Saving All But k Leaves of Saving k Leaves
is NP-complete even for k = 0, which was shown by Finbow et. al. [FKMR07].
Thus Saving All But k Leaves has no FPT algorithm unless P �= NP .

To solve Saving k Leaves, it is possible to use the algorithm in the latter part of
this section for Maximum k-Vertex Protection, which takes kO(k)n time. Here we
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describe an algorithm that takes time 2O(k)poly(n). To get such an algorithm, it
is tempting to try the same approach we used for the Saving k Vertices problem,
but such an approach does not work: for Saving k Vertices we used the fact that
if there is a strategy that saves at least k vertices, then there is a strategy whose
subtrees are of total size O(k). This does not hold for Saving k Leaves.

The main difficulty comes from the snakes in the tree. A snake is a path
(v1, v2, . . . , v�) with � ≥ 2, such that for each i = 1, . . . , � − 1, vi has only a
single child, vi+1. (In other words, a snake is an induced path). If snakes do
not exist, then a random separation algorithm similar to the one we gave for
Saving k Vertices solves Saving k Leaves in time 2O(k)n. Clearly, the difficulty
lies in dealing with snakes. To this end, we use a random separation approach
together with an algorithm for finding a maximum matching, which is used to
decide which vertex to protect inside each snake.

The first step of the algorithm is to contract each snake, and to get a snake-free
tree T ′. We then apply the random separation method on T ′ to find a satisfying
(saving at least k leaves) strategy S′. Then we somehow transform S′ into a
satisfying strategy S of T . Note that every vertex v′ in T ′ corresponds to either
a snake or a single vertex in the original tree T , and to save the leaves that v′

saves, we can protect any vertex in the snake that corresponds to v′. With this
observation we can understand the transformation from S′ to S as a scheduling
problem, with the vertices in S′ being the set of tasks, their corresponding snakes
indicating the starting time and the deadline of the tasks, and each level in T
being a free slot in the processing queue. We formulate this problem into a
bipartite graph and find the satisfying strategy using the maximal matching
algorithm for bipartite graphs. We will discuss details in the full paper.

We can use an approach similar to the one used for Saving k Vertices to obtain
an O(k2)-size kernel of Saving k Leaves, which can be combined with the above
FPT algorithm to obtain the following result:

Theorem 4. Saving k Leaves can be solved in O(n) + 2O(k) time.

We now turn to Maximum k-Vertex Protection, the problem of protecting k ver-
tices to save the maximum number of vertices. Note that for any tree of height k,
an optimal strategy needs only protect at most k vertices. Therefore Maximum k-
Vertex Protection can be also regarded as a parameterized version of the firefighter
problem on trees when we take the height of a tree as the parameter k.

Theorem 5. Maximum k-Vertex Protection can be solved in kO(k)n time by a
randomized algorithm.

Proof. We color the vertices randomly and independently, with probability 1
k

to be green and probability 1 − 1
k to be red. Let S0 be an assumed optimal

strategy. We call a coloring c good if all vertices in S0 are green and all of their
ancestors are red. If the coloring is good, then we can find an optimal strategy
by the same procedure that we used in the algorithm for Saving k Vertices, in
time O(n). Now, since there are k vertices in S0, and each of them has at most
k ancestors, the probability for the coloring to be good is at least
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≥
(

1
k

)k

·
(

k − 1
k

)k2

≥
(

1
k

)k (
1
4

)k

= k−O(k)

Thus, picking kO(k) colorings allows us to find the optimal strategy with proba-
bility at least a constant. �	

This algorithm cannot be derandomized by using normal universal sets while
maintaining the running time, because we color each vertex green or red with
unequal probabilities. We can use equal probability for green and red and then
use a (n, k2)-universal set to derandomize the algorithm, but the resulting al-
gorithm runs in time of 2O(k2)n logn. To derandomize the above algorithm ef-
ficiently, Verbin [Ver] has recently introduced asymmetric universal sets which
can be used to yield a deterministic algorithm that runs in time kO(k)n log n.

Question 1. Is there an algorithm for Maximum k-Vertex Protection that runs
in time 2o(k log k)poly(n)?

5 A Subexponential Algorithm

In this section we present an algorithm for exactly solving the firefighter problem
on trees. The algorithm takes time nO(

√
n) = 2O(

√
n log n) on any tree with n

vertices.
The main idea is to use pruning, coupled with a careful analysis of the size of

the space of feasible solutions. We note that the size of the space of feasible solu-
tions can be 2Ω(n), and an exhaustive approach is clearly not sufficient. On the
other hand, an exhaustive approach is good enough when the tree is somewhat
balanced, and in particular if the tree is of height O(

√
n). Our algorithm deals

with non-balanced trees by detecting parts of the tree that are small and “costly
to save”, and pruning such parts. By “costly to save”, we mean that there are
vertices on the same levels such that if we protect them, we will save many more
vertices.

We now present the algorithm ff-subexp, which operates recursively, and
solves the firefighter problem in time nO(

√
n). Recall that r denotes the root of

T , wv denotes the number of vertices in the subtree rooted at v, dv denotes the
depth of v, and level i refers to the set of all vertices of depth i. We set the
parameter k0 =

√
n, which is fixed throughout the execution of the algorithm,

even when we call the algorithm recursively.
ff-subexp works as follows. Its input is T , a tree with n vertices. Its output

is an optimal firefighter strategy for T .

1. If n ≤ k0, run a brute-force search (taking time O(nk0 )) and return the result
it gives. Otherwise, continue to step 2.

2. If r has some child v with wv ≤ k0, then:
(a) Construct a tree T ′ which is identical to T except that the subtree rooted

at v is completely deleted. Run ff-subexp recursively on T ′ to get an
optimal strategy S′ for T ′.
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(b) Calculate the best strategy S′′ out of the strategies that protect one
vertex in each of the levels 1 through wv, and no vertices below level wv.
Do this using the naive brute-force algorithm that takes time O(nwv+1).

(c) Pick the strategy among S′ and S′′ which, when run on T , gives the best
result. Return it. /* we will prove that this strategy is optimal in the
full paper */

3. else: /* all children of the root are subtrees of size at least k0. Here we’ll do
a sort of brute-force search */
(a) Go over all children v1, . . . , v� of r. For each vi do:

– Find the best strategy, Si, among all strategies that protect vi. Do
this by recursively running ff-subexp on a tree with n − wvi − �
vertices, produced by deleting vi’s subtree, deleting all level-1 nodes,
and making all level-2 nodes into direct descendants of r.

(b) Pick the strategy among S1, . . . , S� that gives the best result when ap-
plied to T , and return it.

Due to the space constraint, we will defer the correctness proof and complexity
analysis of the algorithm to the full paper.

It is interesting to note that the NP-hardness reduction of Finbow, King,
MacGillivray and Rizzi in [FKMR07] in fact implies that an 2O(n0.33)-time algo-
rithm for the firefighter problem on trees would imply an 2o(n)-time algorithm
for solving 3-SAT on instances with n variables and O(n) clauses. This would
falsify a conjecture of Impagliazzo et al. [IP01, IPZ01]. Furthermore, the reduc-
tion of [FKMR07] also implies that an nO(k0.99)-time algorithm for the firefighter
problem on trees of height k would falsify the same conjecture of Impagliazzo
et al. . Recall that the trivial implementation of step 2b in the algorithm takes
time O(nk), which means that the implementation of that step, although naive,
is likely to be close to optimal.

Question 2. Is there an exact 2n1/3polylog(n)-time algorithm for the firefighter
problem on trees? Alternatively, would an 2n1/2/polylog(n)-time algorithm for the
problem imply an 2o(n)-time algorithm for 3-SAT with n variables and O(n)
clauses?
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