
Algorithmica (2015) 71:731–757
DOI 10.1007/s00453-014-9937-x

Incompressibility of H-Free Edge Modification Problems

Leizhen Cai · Yufei Cai

Received: 10 December 2013 / Accepted: 31 August 2014 / Published online: 16 September 2014
© Springer Science+Business Media New York 2014

Abstract Given a fixed graph H , the H -Free Edge Deletion (resp., Completion,
Editing) problem asks whether it is possible to delete from (resp., add to, delete from
or add to) the input graph at most k edges so that the resulting graph is H -free, i.e.,
contains no induced subgraph isomorphic to H . These H -free edge modification prob-
lems are well known to be fixed-parameter tractable for every fixed H . In this paper
we study the incompressibility, i.e., nonexistence of polynomial kernels, for these
H -free edge modification problems in terms of the structure of H , and completely
characterize their nonexistence for H being paths, cycles or 3-connected graphs. We
also give a sufficient condition for the nonexistence of polynomial kernels for F-Free
Edge Deletion problems, where F is a finite set of forbidden induced subgraphs. As
an effective tool, we have introduced an incompressible constraint satisfiability prob-
lem Propagational- f Satisfiability to express common propagational behaviors
of events, and we expect the problem to be useful in studying the nonexistence of
polynomial kernels in general.

Keywords Parameterized complexity · Polynomial kernel · Polynomial
compression · Incompressibility · Edge modification

Leizhen Cai: Partially supported by GRF grants CUHK410409 and CUHK410212 of the Research Grants
Council of Hong Kong.

L. Cai (B) · Y. Cai
Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin,
Hong Kong SAR, China
e-mail: lcai@cse.cuhk.edu.hk

Present Address:
Y. Cai
Philipps-Universitaet, Marburg Mehrzweckgebaeude 05D06, Hans-Meerwein Straße,
35032 Marburg, Germany
e-mail: cai@mathematik.uni-marburg.de

123

732 Algorithmica (2015) 71:731–757

1 Introduction

Edge modification problems are concerned with adding edges to or deleting edges from
input graphs to obtain graphs with desired properties, and have been studied extensively
under frameworks of both traditional and parameterized complexities. In this paper,
we focus on edge modification problems concerning the property of being H -free for
a fixed graph H , i.e., our target graph contains no induced subgraph isomorphic to H .
Such problems are fundamental as every hereditary property is H -free for every graph
H in a set of forbidden induced subgraphs.

In connection with edge modification, the H -Free Edge Deletion problem asks
whether it is possible to delete from the input graph G at most k edges to obtain an H -
free graph. Similarly we can form H -Free Edge Completion and H -Free Edge
Editing problems by replacing “delete from” with “add to” and “delete from or add
to” respectively.

For every fixed H , the above H -free edge modification problems with respect
to parameter k are fixed-parameter tractable following a general result of Cai [5].
On the other hand, not much is known about the existence of polynomial ker-
nels for such H -free edge modification problems, and Cai [1] raised the issue of
determining the existence of polynomial kernels for H -Free Edge Deletion in
IWPEC’06. Roughly speaking, a polynomial kernel of a problem instance is an equiv-
alent instance that has size bounded by a polynomial of k and can be constructed in
polynomial time. Polynomial kernels provide an effective way to compress problem
instances. In this paper, we wish to establish the nonexistence of polynomial ker-
nels, i.e., the incompressibility, for H -free edge modification problems in terms of the
structure of H , and we hope that the work in the paper will lay the foundation for
possible dichotomy theorems on the incompressibility of H -free edge modification
problems.

Under the assumption that NP �⊆ coNP/poly, Kratsch and Wahlström [14] con-
structed the first H for which neither H -Free Edge Deletion nor H -Free Edge
Editing admits polynomial kernels, and Guillemot et al. [11] established the nonex-
istence of polynomial kernels for H -Free Edge Deletion when H is any path Pl

with l ≥ 13 or cycle Ct with t ≥ 12, which has been improved recently to l ≥ 7
and t ≥ 4 by Guillemot et al. [12]. On the other hand, Gramm et al. [9] obtained
polynomial kernels for P3-Free Edge Deletion, Completion and Editing, and
Guillemot et al. [11,12] presented polynomial kernels for P4-Free Edge Deletion,
Completion and Editing. This summarizes known results about polynomial kernels
of H -free edge modification problems.

In this paper, we significantly improve our knowledge on the incompressibility of
H -free edge modification problems—we fully characterize 3-connected H for which
H -free edge modification problems admit no polynomial kernel, and determine exact
conditions for Pl -free (resp., Ct -free) edge modification problems to not admit poly-
nomial kernel, assuming NP �⊆ coNP/poly.

• For 3-connected H, H -Free Edge Deletion and Editing admit no polynomial
kernel iff H is not a complete graph, and H -Free Edge Completion admits no
polynomial kernel iff H misses at least two edges.

123

Algorithmica (2015) 71:731–757 733

• For H being a fixed path or cycle, H -Free Edge Deletion, Completion and
Editing, respectively, admit no polynomial kernel iff H has at least 4 edges.

• For a finite set F of forbidden induced subgraphs, F-Free Edge Deletion
admits no polynomial kernel if all graphs in F are 3-connected and there is a
graph H ∈ F with fewest edges such that one can add an edge to H to obtain a
graph not in F .

In order to obtain our results, we introduce a constraint satisfiability problem
Propagational- f Satisfiability and prove its incompressibility, which is inspired
by the Not-1-in-3 SAT problem of Kratsch and Wahlström [14] for proving the first
incompressible H -free edge modification problem. Secondly, we try to ease the com-
plication in dealing with edge modification problems by adding a restriction to edges
that can be added/deleted to form “quarantined” H -free edge modification problems.
Then we use Propagational- f Satisfiability as our seed problem and reduce it to
quarantined H -free edge modification problems to establish their incompressibility,
and finally we lift the quarantine by using “enforcers” to prevent edges from being
added/deleted, which in turn yields our main results in the paper.

The work in the paper considerably enhances our knowledge on the incompressibil-
ity of H -free edge modification problems, and our Propagational- f Satisfiability
problem is very effective in establishing their incompressibility. We hope that our ideas
will be useful in the discovery of possible dichotomy theorems on the incompress-
ibility of H -free edge modification problems, and we also expect Propagational- f
Satisfiability to be useful in studying the nonexistence of polynomial kernels in
general.

The rest of the paper is organized as follows. We fix notation and definitions, and also
give some background for incompressibility in Sect. 2. We introduce Propagational-
f Satisfiability and show its incompressibility in Sect. 3. In Sect. 4, we discuss basic
components for reductions from Propagational- f Satisfiability to our quaran-
tined H -free modification problems, and we use them in Sect. 5 to establish the
incompressibility of quarantined H -free edge modification problems. In Sect. 6, we
will lift the quarantine by using enforcers to establish our main results. We con-
clude the paper in Sect. 7 with some open problems and conjectures for further
research.

2 Preliminaries

All graphs in this paper are simple undirected graphs. For a graph G = (V, E), G =
(V, E) denotes the complement of G. Edges of G are antiedges of G. Unless specified
otherwise, we use E− and E+ to denote edges being deleted and antiedges being
added. Any set of edges whose deletion from G results in an H -free graph is an
H -free deletion set, and any set of antiedges whose addition to G results in an H -
free graph is an H -free completion set. Note that technically speaking, edge addition
should be called antiedge addition: when we say “add edges to G”, it is understood
that we add to G edges of G, i.e., antiedges of G. We use N for the set of natural
numbers.

123

734 Algorithmica (2015) 71:731–757

2.1 Edge Modification Problems

Our H -free edge modification problems are concerned with adding/deleting edges to
obtain H -free graphs, and we give their technical definitions as follows, where H is a
fixed graph.

H -Free Edge Deletion
Instance: Graph G = (V, E), and parameter k ∈ N.
Question: Is there E− ⊆ E with |E−| ≤ k such that G − E− is H -free?

H -Free Edge Completion
Instance: Graph G = (V, E), and parameter k ∈ N.
Question: Is there E+ ⊆ E with |E+| ≤ k such that G + E+ is H -free?

H -Free Edge Editing
Instance: Graph G = (V, E), and parameter k ∈ N.
Question: Are there E− ⊆ E and E+ ⊆ E with |E−| + |E+| ≤ k such that
G − E− + E+ is H -free?

As a useful auxiliary tool, we often add a restriction to edges/antiedges that can be
deleted/added. For this purpose, we call a graph G an edge-quarantined graph if its
edges are partitioned into forbidden edges and allowed edges, and we can delete from
G allowed edges only. Similarly, we call a graph G an antiedge-quarantined graph if
its antiedges are partitioned into forbidden antiedges and allowed antiedges, and we
can add to G allowed antiedges only.

In all figures, forbidden edges are indicated by thick edges, allowed antiedges are
indicated by dashed edges and forbidden antiedges are invisible.

2.2 Kernelization Lower Bounds

We assume that the reader is familiar with the general framework for kernelization
lower bounds [2–4,8] and only give necessary definitions and results, including a
relaxation of composition algorithms. A mini survey in a recent paper of Bodlaender et
al. [3] contains useful background materials. For an instance (I, k) of a parameterized
problem P , the main input I is encoded with some finite alphabet � and parameter
k ∈ N is encoded in unary. Kernels in this paper refer to generalized kernels defined
below.

Definition 2.1 (see [2]) A generalized kernelization from a parameterized problem P
to another parameterized problem P ′ is an algorithm that, for input (I, k) ∈ P , takes
time polynomial in |I | + k and outputs an instance (I ′, k′) ∈ P ′ such that

(a) (I, k) is a yes-instance of P iff (I ′, k′) is a yes-instance of P ′, and
(b) both |I ′| and k′ are bounded by a computable function g(k).

The output (I ′, k′) is a kernel, and polynomial kernel if g(k) is a polynomial.

The notion of polynomial kernels is naturally generalized to polynomial compres-
sions by relaxing the target problem P ′ to any problem (instead of parameterized
problem), i.e., language L ⊆ �∗.

123

Algorithmica (2015) 71:731–757 735

Definition 2.2 (see [3]) Let P be a parameterized problem and L ⊆ �∗ a language.
A polynomial compression from P to L is an algorithm that, for input (I, k) ∈ P ,
takes time polynomial in |I | + k and outputs a string y ∈ �∗ such that

(a) (I, k) is a yes-instance of P iff y ∈ L , and
(b) the length of y is bounded by a polynomial of k.

The following reduction, polynomial parameter transformation (ppt-reduction in
short), plays a prominent role in demonstrating incompressibility and will be used
extensively in our investigation of H -free modification problems.

Definition 2.3 (see [3,4]) A ppt-reduction from a parameterized problem P to another
parameterized problem P ′ is an algorithm that, for input (I, k) ∈ P , takes time poly-
nomial in |I | + k and outputs an instance (I ′, k′) ∈ P ′ such that

(a) (I, k) is a yes-instance of P iff (I ′, k′) is a yes-instance of P ′, and
(b) parameter k′ is bounded by a polynomial of k.

The definition of ppt-reductions immediately yields the following theorem that
makes them a key tool for establishing incompressibility of parameterized problems.

Theorem 2.4 (see [3]) If there is a ppt-reduction from a parameterized problem P to
another parameterized problem P ′, then P ′ admits no polynomial compression (hence
no polynomial kernel) whenever P admits no polynomial compression.

We also need a relaxation of composition algorithms introduced by Bodlaender
et al. [2] in their pioneer work on incompressibility—we relax their requirement for
parameter k′ from polynomial in k to polynomial in maxt

i |Ii | + log t .

Definition 2.5 A relaxed-composition algorithm for a parameterized problem P takes
t instances (I1, k), . . . , (It , k) ∈ P as input and, in time polynomial in

∑t
i=1 |Ii | + k,

outputs an instance (I ′, k′) ∈ P such that

(a) (I ′, k′) is a yes-instance of P iff some (Ii , k) is a yes-instance of P , and
(b) k′ is polynomial in maxt

i |Ii | + log t .

Let n = maxt
i |Ii | and note that the work of Bodlaender et al. [2] remains valid

when k′ = nO(1) (the last paragraph in the proof of their Lemma 1). As � is a finite
alphabet, we may assume that t ≤ (|�| + 1)n and hence log t = O(n), implying
k′ = (n + log t)O(1) = nO(1) for relaxed compositions. Therefore Bodlaender et
al. [2], together with a result of Fortnow and Santhanam [8], implicitly established the
following theorem, which can also be regarded as a special case of Corollary 3.6 in
the paper of Bodlaender et al. [3] on cross-compositions.

Theorem 2.6 (see [2,3,8]) If an NP-complete parameterized problem admits a
relaxed-composition algorithm, then it has no polynomial compression, hence no poly-
nomial kernel, unless NP ⊆ coNP/poly.

Remark 2.7 Relaxed-compositions possess several advantages in establishing the
incompressibility of a parameterized problem P . To prove that P has no polyno-
mial kernel by a composition algorithm, one often produces an output (I ′, k′) with

123

736 Algorithmica (2015) 71:731–757

k′ = O(k + log t), and one needs an FPT algorithm of P to handle the case that
t > 2k . This is rather awkward—the method fails to work if P has no FPT algorithm,
but in this case P actually has no kernel at all! Relaxed-compositions enable us to rid
this awkward argument without any assumption about an FPT algorithm for P or the
magnitude of t with respect to k. Secondly, relaxed-compositions do not need a poly-
nomial equivalence relation required by the general technique of cross-compositions.
Thirdly, k′ is usually (k + log t)O(1) but may indeed go up to (n + log t)O(1), and
finally the same relaxation also works for AND-compositions.

For simplicity in discussions, we call a parameterized problem incompressible
when it admits no polynomial compression (hence no polynomial kernel) under the
assumption that NP �⊆ coNP/poly.

3 Satisfiability of Propagational Formulas

One main complication of H -free edge modification problems lies in the possibility
of introducing new induced copies of H when we add/delete edges, which causes a
propagation of edge additions/deletions. This propagational phenomenon is similar
to the propagation of truth values of Boolean variables in certain Boolean formulas,
and we introduce in this section a constraint satisfaction problem Propagational- f
Satisfiability for propagational functions f . We will establish the incompressibility
of the problem, and use it extensively in later sections to show the incompressibility of
our edge modification problems. Note that we disallow negated variables as arguments
of f (x, y, z) in the following definition.

Definition 3.1 A ternary Boolean function f (x, y, z), where x, y and z are either
Boolean variables or constants 0 or 1, is propagational if it satisfies f (1, 0, 0) = 0
and f (0, 0, 0) = f (1, 0, 1) = f (1, 1, 0) = f (1, 1, 1) = 1.

In other words, f (x, y, z) is propagational if it is true when either x = y = z = 0
or “x = 1 implies y = 1 or z = 1”. There are eight different propagational functions
f in total due to the freedom of defining values of f for the other three assignments
of variables.

Example 3.2 The following three functions are propagational:

f1(x, y, z) = x ∨ y ∨ z,

f2(x, y, z) = x XOR (y NOR z),

Not-1-in-3(x, y, z) = (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z).

Propagational functions f (x, y, z) generalize function Not-1-in-3(x, y, z) of
Kratsch and Wahlström [14], and capture the relation describing “whatever happens
to x must happen to either y or z”, which is of great use when we deal with edge
modification problems because of propagations of edge additions/deletions. The fol-
lowing example of C4-Free Edge Deletion illustrates such a connection. Suppose
that we want to delete some light edges from the graph in Fig. 1 to obtain a C4-free

123

Algorithmica (2015) 71:731–757 737

Fig. 1 Realization of a
propagational function
f (x, y, z) by C4-free edge
deletion x

y

z

graph. When we delete edge x , we create a new induced C4 in the graph, and we
must delete either edge y or edge z or both in order to destroy the new C4. Therefore
the propagation of edge deletions from x to y or z simulates a propagational function
f (x, y, z).

For a Boolean function f (x, y, z), a conjunctive formula ϕ is of the form

f (x1, y1, z1) ∧ f (x2, y2, z2) ∧ · · · ∧ f (xm, ym, zm).

Each f (xi , yi , zi) is a clause of ϕ, and the weight of a truth assignment of 0’s and 1’s
to variables is the number of 1’s in the assignment. For ϕ, the degree of a variable
is its number of occurrences in ϕ, and the degree of ϕ is the maximum degree of its
variables. A formula ϕ is d-regular if all its variables have degree d.

Propagational- f Satisfiability
Instance: Conjunctive formula ϕ of a propagational ternary function f with distinct
variables inside each clause of ϕ, and parameter k ∈ N.
Question: Does ϕ have a satisfying truth assignment of weight ≤ k?

We remark that constants 0 and 1 are allowed to appear multiple times inside
any clause of ϕ. Also, the above problem definition actually yields eight different
satisfiability problems, one for each of the eight different propagational functions f .
When we consider the incompressibility of an H -free edge modification problem, we
will use the structure of H to choose a proper f for a reduction from Propagational-
f Satisfiability.

As the first step towards the incompressibility of Propagational- f Satisfiabil-
ity we show the NP-completeness of the problem with a technical requirement on input
formulas which appears to be crucial for establishing the incompressibility. The proof
in the following lemma uses a single reduction from the classical Vertex Cover
problem on 3-regular graphs, and is valid for all eight different propagational f . The
NP-completeness of this restricted Vertex Cover was proved by Garey et al. [10].

Lemma 3.3 For any propagational ternary Boolean function f , Propagational- f
Satisfiability is NP-complete for degree-3 conjunctive formulas with exactly one
occurrence of constant 1.

Proof The problem is obviously in NP, and we first give a straightforward polynomial
reduction from the classical Vertex Cover problem on 3-regular graphs to our
problem on 3-regular conjunctive formulas. For an arbitrary instance (G, k) of Vertex
Cover on 3-regular graph G with m edges, we construct a conjunctive formula ϕ′
as follows: for each edge xy of G, form a clause f (1, x, y) of ϕ′ by regarding x and

123

738 Algorithmica (2015) 71:731–757

y as Boolean variables. Since f is propagational, we must set either x or y to 1 to
satisfy f (1, x, y), which is equivalent to choosing either vertex x or vertex y to cover
edge xy. It follows that G has a vertex cover of size ≤ k iff ϕ′ has a satisfying truth
assignment of weight ≤ k.

Now we convert ϕ′ into a degree-3 conjunctive formula ϕ with exactly one occur-
rence of 1. For this purpose, we introduce m new variables ui , 1 ≤ i ≤ m, to replace
all 1’s in ϕ′, and put m new clauses

(1, u1, 0), (u1, u2, 0), . . . , (um−1, um, 0)

into ϕ. Since f is propagational, clause f (1, u1, 0) will force u1 = 1, which sub-
sequently forces every ui = 1, 1 ≤ i ≤ m. We put into ϕ every clause of ϕ′ after
replacing the occurrence of 1 in the clause by a distinct ui .

Our conversion from ϕ′ to ϕ clearly takes polynomial time, and we can easily
check that ϕ is a degree-3 formula with exactly one occurrence of 1, namely, in clause
f (1, u1, 0), and each clause contains distinct variables. Furthermore, it is clear that
ϕ′ is satisfiable with weight ≤ k iff ϕ is satisfiable with weight ≤ m + k. Therefore
this special case of Propagational- f Satisfiability is NP-complete. ��

We now establish the incompressibility of Propagational- f Satisfiability,
and in fact we will do so for 3-regular conjunctive formulas, which improves our
result on 6-regular formulas in the preliminary version of this paper [6]. It is this 3-
regularity condition accompanied by the variety of f that makes the problem suitable
and effective for ppt-reductions to H -free edge modification problems for various H .

Theorem 3.4 For any propagational ternary Boolean function f , Propagational- f
Satisfiability on 3-regular conjunctive formulas admits no polynomial compression,
hence no polynomial kernel, unless NP ⊆ coNP/poly.

Proof We begin by showing the incompressibility of the problem for degree-3 for-
mulas with exactly one occurrence of 1. By Theorem 2.6 and Lemma 3.3, we need
only present a relaxed-composition algorithm for this restricted case. Our proof is
similar to that of Kratsch and Wahlström [14] for showing the incompressibility of
their Not-1-in-3 SAT problem.

Let f be an arbitrary propagational function, and (ϕ0, k), . . . , (ϕt−1, k) be t
instances of Propagational- f Satisfiability where each ϕi has degree 3 and
exactly one occurrence of 1. Without loss of generality, we may assume that t = 2h

for some integer h since we can always duplicate some instances in the sequence to
make up 2h instances.

First we note that, since f is propagational, clause f (1, x, y) forces either x or y
to take value 1. This fact naturally leads us to the construction of a composition tree
by introducing some new variables ui and new clauses. For convenience, we regard
subscript i of each ui as a binary string, and describe our construction by a complete
binary tree T of height h = log t as composition tree, where a vertex a and its two
children b, c represent clause f (a, b, c).

We start with root node 1 with two children u0 and u1, which yields a new clause
f (1, u0, u1) and thus forces either u0 or u1 to take value 1. For each internal node ui ,

123

Algorithmica (2015) 71:731–757 739

Fig. 2 Composition tree T ,
where a vertex a and its two
children b, c represent clause
f (a, b, c), and the variable of
each leaf is used to replace the
unique occurrence of 1 in a
distinct ϕi .

0

100100

1

1

11

u u

u u u u

we add two new variables ui0 and ui1 and make them children of ui , which results in
a new clause f (ui , ui0, ui1) and hence forces either ui0 or ui1 to take value 1 when
ui = 1. See Fig. 2 for the construction of T . Note that our construction forces all
variables in some root-to-leaf path in T to take value 1, and hence at least one leaf of
T has value 1.

Having the composition tree T in hand, we now construct a required instance (ϕ′, k′)
from (ϕ0, k), . . . , (ϕt−1, k) as follows.

1. Rename variables in all ϕi so that each formula ϕi has distinct variables.
2. For each 0 ≤ i ≤ t − 1, replace the unique occurrence of 1 in the i-th formula ϕi

by leaf-variable ui to form ϕ′
i (from now on we interpret subscript of each leaf ui

as a decimal number).
3. Put all ϕ′

i , 0 ≤ i ≤ t − 1, and all clauses in T together to form ϕ′ and set
k′ = k + h = k + log t .

Note that ϕ′ is a degree-3 conjunctive formula, and is constructed in time polynomial
in

∑t−1
i=0 |ϕi | + k.

If some ϕi is satisfiable by a weight-k truth assignment ξi , then we construct a truth
assignment ξ of weight k′ = k + h for ϕ′ as follows: assign 1 to all variables on the
path in T from root node 1 to leaf ui , satisfy ϕ′

i in ϕ′ by ξi together with ui = 1, and
assign 0 to all other variables in ϕ′. Note that for each j �= i , the only occurrence of 1
in ϕ j was replaced by variable u j to form ϕ′

j and ξ(u j) = 0. Therefore all variables
in ϕ′

j have value 0 under ξ and thus every clause in ϕ′
j is satisfied as f (0, 0, 0) = 1

for propagational f . Furthermore, under truth assignment ξ , clauses in T have forms
f (0, 0, 0), f (1, 1, 0), or f (1, 0, 1), and therefore are satisfied as f is propagational.

Conversely, if ϕ′ is satisfied with a truth assignment of weight k′ = k+log t , then all
variables on the path in T from root node 1 to some leaf ui are forced to be true, which
sets log t variables to 1. Since T contains exactly t leaves, ui appears in ϕ′

i and hence ϕ′
i

is satisfied with ≤ k true variables, implying that ϕi is satisfied with ≤ k true variables.
Therefore we have obtained a relaxed-composition algorithm for Propagational- f
Satisfiability on degree-3 conjunctive formulas with exactly one occurrence
of 1, and the incompressibility of the problem follows from Theorem 2.6 and
Lemma 3.3.

Finally, we modify a degree-3 conjunctive formula into an equivalent 3-regular
conjunctive formula as follows: for each variable x of degree d < 3, add 3−d clauses
of the form f (1, 1, x). This is clearly a ppt-reduction and therefore we have the result
in the theorem. ��

123

740 Algorithmica (2015) 71:731–757

4 Components for Representing Formulas

We will establish the incompressibility of our H -free edge modification problems
mainly by ppt-reductions from propagational satisfiability problems. This requires
us to represent Boolean formulas by graphs, and we will discuss components for
constructing such graphs in this section.

To ease the complication in dealing with edge modification problems, we first add
a restriction to edges/antiedges that can be deleted/added to form edge-quarantined
graphs or antiedge-quarantined graphs, and consider edge deletion/completion prob-
lems on such quarantined graphs. We will construct edge-quarantined (resp., antiedge-
quarantined) graphs for edge deletion (resp., completion) to represent conjunctive
formulas ϕ. The basic idea is to use a satisfaction-testing component S(x, y, z) to
represent a clause f (x, y, z) in ϕ, form a truth-setting component T (u) for a Boolean
variable u to ensure the consistency for the value of u in different clauses, and con-
nect satisfaction-testing components and truth-setting components together in a proper
way.

4.1 Satisfaction-Testing Components

We start with the definition of a satisfaction-testing component S(x, y, z) for H -free
edge deletion, which will be used to realize a propagational function f (x, y, z).

Definition 4.1 For H -free edge deletion, a satisfaction-testing component S(x, y, z)
is a constant-size edge-quarantined H -free graph with exactly three allowed edges
{x, y, z}, called variable-edges, such that the following Boolean function is propa-
gational: fS(x, y, z) = 1 iff the graph obtained from S(x, y, z) is H -free when we
delete from S(x, y, z) edges in {x, y, z} with value 1.

For H being C4 or C5, we have satisfaction-testing components for H -free dele-
tion in Fig. 3a, b respectively. Both components represent the propagational function

x

y z

x

y z

(c)(b)(a)

y z

x

Fig. 3 Satisfaction-testing components S(x, y, z) for (a) C4-free edge deletion, (b) C5-free edge deletion,
and (c) C4-free edge completion. In (a) and (b), forbidden edges are indicated by thick edges. In (c), allowed
antiedges are indicated by dashed edges and forbidden antiedges are invisible. Components in (a) and (b)
represent Not-1-in-3(x, y, z) and the component in (c) realizes fS(x, y, z) = x XOR (y NOR z).

123

Algorithmica (2015) 71:731–757 741

y

x zH

(a) (b) (c)

xy

z

Fig. 4 Construction of satisfaction-testing components S(x, y, z) for general H : (a) graph H , (b) H -free
edge deletion, and (c) H -free edge completion

Not-1-in-3(x, y, z) as S(x, y, z) in (a) [resp., (b)] itself is C4-free (resp., C5-free)
and we need to delete at least two edges from {x, y, z} to ensure that S(x, y, z) remains
C4-free (resp., C5-free).

We define satisfaction-testing components S(x, y, z) for H -free edge completion
in a similar way, which reflects the complementarity between edge deletion and edge
completion.

Definition 4.2 For H -free edge completion, a satisfaction-testing component
S(x, y, z) is a constant-size antiedge-quarantined graph with exactly three allowed
antiedges {x, y, z}, called variable-antiedges, such that the following Boolean func-
tion is propagational: fS(x, y, z) = 1 iff the graph obtained from S(x, y, z) is H -free
when we add to S(x, y, z) antiedges in {x, y, z} with value 1.

Figure 3c gives a satisfaction-testing component for C4-free edge completion, which
realizes the propagational function fS(x, y, z) = x XOR (y NOR z): when we add
some antiedges in {x, y, z} to S(x, y, z), the resulting graph is C4-free iff the string
xyz is 000, 101, 110 or 111.

For general H , it is also easy to construct satisfaction-testing components for H -free
edge deletion/completion.

Lemma 4.3 Let H be a connected fixed graph with at least 4 vertices. Satisfaction-
testing components S(x, y, z) exist for H-free edge deletion if H is not a complete
graph, and for H-free edge completion if H has at least two antiedges.

Proof If H is not a complete graph, then it contains an antiedge x and two edges y and
z as H is connected and has at least 4 vertices. Set S(x, y, z) to H + x with {x, y, z}
being only allowed edges in H + x and all other edges of H + x being forbidden
edges. See Fig. 4a, b for an example of the construction of S(x, y, z).

Since H + x is H -free and the deletion of edge x will cause deletion of either edge
y or edge z to maintain H -freeness, it is easily checked that

fS(0, 0, 0) = fS(1, 0, 1) = fS(1, 1, 0) = fS(1, 1, 1) = 1 but fS(1, 0, 0) = 0,

implying that fS is propagational and thus S(x, y, z) is a satisfaction-testing compo-
nent for H -free edge deletion.

123

742 Algorithmica (2015) 71:731–757

If H has at least two antiedges y and z, we arbitrarily take an edge x of H and
set S(x, y, z) to H − x with {x, y, z} being the only allowed antiedges and all other
antiedges of H−x being forbidden antiedges. Figure 4c gives an example of S(x, y, z).
Since H − x is H -free and the addition of antiedge x to S(x, y, z) will cause the addi-
tion of either antiedge y or antiedge z in order to maintain H -freeness, it is easily
checked that

fS(0, 0, 0) = fS(1, 0, 1) = fS(1, 1, 0) = fS(1, 1, 1) = 1 but fS(1, 0, 0) = 0.

Therefore fS is propagational and S(x, y, z) is a satisfaction-testing component for
H -free edge completion. ��

4.2 Truth-Setting Components

The purpose of a truth-setting component T (u) for a Boolean variable u is to ensure
the consistency for the value of u in different clauses by linking satisfaction-testing
components together, and we define truth-setting components as follows.

Definition 4.4 For H -free edge deletion (resp., edge completion), a truth-setting com-
ponent T (u) is a constant-size edge-quarantined (resp., antiedge-quarantined) H -free
graph that contains, amongst other allowed edges (resp., antiedges), three allowed
edges (resp., antiedges) without common vertex, which are also called variable-edges
(resp., variable-antiedges), and admits exactly two deletion sets (resp., completion
sets): the empty set and the set containing all allowed edges (resp., antiedges).

Figure 5 gives truth-setting components T (u) for C4-free edge deletion, C5-free
edge deletion, and C4-free edge completion. They are formed by taking three copies of
their corresponding basic chain in the bottom of the figure and merging their leftmost
triangles (resp., 4-cycles) together. For these basic chains, it is easy to see that, as far
as H -freeness is concerned, the deletion of any allowed edge (resp., addition of any
allowed antiedge) will cause the deletion of all allowed edges (resp., addition of all
allowed antiedges) in the basic chain, which implies that T (u) satisfies the required
properties.

We now give a construction of truth-setting components T (u) for fixed graphs H
in general. We will construct a basic unit, use it to form a basic chain, and then link
basic chains in a cyclic fashion, instead of ray-shaped, to form T (u).

Lemma 4.5 Let H be a 3-connected fixed graph that is not a complete graph. Then
truth-setting components T (u) exist for both H-free edge deletion and completion.

Proof First we show that H contains an antiedge e and an edge e′ sharing no common
vertex. By the assumption that H is not a complete graph, H has an antiedge e = ab.
If there is an edge e′ not incident with a or b, then e′ is a required edge. Otherwise, all
edges are incident with a or b and thus H is a bipartite graph. Since H is 3-connected,
vertex a has at least three neighbors {a1, a2, a3} and we can set antiedge e = a2a3 and
edge e′ = aa1, which are vertex-disjoint.

123

Algorithmica (2015) 71:731–757 743

u

u

u

u

u

u

u

u

u

u

u

u

(c)(b)(a)
Fig. 5 Truth-setting components T (u) for (a) C4-free edge deletion, (b) C5-free edge deletion, and (c)
C4-free edge completion. Graphs in the bottom of the figure are basic chains for constructing T (u). Note
that T (u) has 13 allowed edges (resp., antiedges) in these three cases

For H -free edge deletion, we construct a basic unit U = H + e, set e and e′ as the
only allowed edges in U and make all other edges in U forbidden edges.

Since e and e′ are the only allowed edges of U , deletion of e from U will force
deletion of e′ to maintain H -freeness. This property enables us to construct the fol-
lowing basic chain B(u) for a truth setting component T (u): Take h vertex-disjoint
copies U1, . . . , Uh of U , where h is the number of vertices in H , and identify edge e′
of Ui with edge e of Ui+1 to form a chain of U ’s. See Fig. 6a for an example of the
construction. Edge e of U1 and edge e′ of Uh are variable-edges of B(u) for Boolean
variable u. For convenience, we also refer to e and e′, respectively, as the leftmost and
rightmost edges of B(u). Since U is H -free and H is 3-connected, B(u) is H -free. It
is easy to see that B(u) has the following important propagation property: To maintain
H -freeness, deletion of an allowed edge e in B(u) will force the deletion of all allowed
edges in B(u) to the right of e (see Fig. 6a).

We now construct a truth-setting component T (u) by taking three vertex-disjoint
copies B0, B1, B2 of B(u) and link them into a cycle by identifying the rightmost
edge of Bi with the leftmost edge of Bi+1 for 0 ≤ i ≤ 2, with index i modulo 3. In
other words, T (u) consists of 3h copies of the basic unit U linked in a cyclic fashion.
Note that T (u) contains exactly three variable-edges resulted from the identification
of variable-edges of B0, B1, B2. The propagation property of B(u) ensures that T (u)

has exactly two deletion sets—the empty set and the set of all allowed edges, and
therefore T (u) is a valid truth-setting component.

For H -free edge completion, we also use edge e′ and antiedge e in H . Recall that
e′ and e share no common vertex. We construct a basic unit U = H − e′, set e and

123

744 Algorithmica (2015) 71:731–757

(b)

e

(a)

uu

B(u)

u u

B(u)

H
e

U = H + e

e

e

U = H − e

Fig. 6 Construction of basic chains B(u) of truth-setting components T (u) for (a) H -free edge deletion,
and (b) H -free edge completion. Note that e and e′, respectively, are antiedge and edge of H sharing no
common vertex

e′ as the only allowed antiedges in U and make all other antiedges in U ′ forbidden
antiedges.

Since e and e′ are the only allowed antiedges of U , the addition of e′ to U will force
the addition of e to maintain H -freeness. As with H -free edge deletion, we can link h
copies of the basic unit U to form a basic chain B(u) and then link three vertex-disjoint
copies of B(u) into a cycle to form a truth setting component T (u). Figure 6b gives
an example for the construction of B(u). For this B(u), the addition of an allowed
antiedge e′ in B(u) will force the addition of all allowed antiedges in B(u) to the
left of e′ (see Fig. 6b). This property of B(u) ensures that T (u) has two completion
sets—the empty set and the set of all allowed antiedges, and therefore T (u) is a valid
truth-setting component. ��

5 Quarantined H-Free Edge Modification

Having satisfaction-testing components and truth-setting components in hand, we
will establish in this section the incompressibility of the following “quarantined”
versions of H -free edge deletion/completion problems, where we have a restriction
on edges/antiedges that can be deleted/added. Results in this section form the base
of our main results in the next section where we will lift the quarantine by using
“enforcers”.

Quarantined H -Free Edge Deletion
Instance: Graph G with a partition of its edges into forbidden edges and allowed
edges, and parameter k ∈ N.
Question: Can we delete at most k allowed edges from G to obtain an H -free
graph?

123

Algorithmica (2015) 71:731–757 745

(a)

T(x)

x

y

z

0

1

S(,x,z)1

S(x,y,)0

x

x

(b)

T(x)

x

y

z

0

1

x

S(,x,z)1

S(x,y,)0

x

Fig. 7 Part of the ϕ-graph G for Quarantined C4-Free Edge Deletion that corresponds to a formula
ϕ containing clauses f (1, x, z) and f (x, y, 0), using components in Fig. 3a and Fig. 5a. In the figure, (a)
original construction, and (b) modification from (a) by deleting black vertices in (a)

Quarantined H -Free Edge Completion.
Instance: Graph G with a partition of its antiedges into forbidden antiedges
and allowed antiedges, and parameter k ∈ N.
Question: Can we add at most k allowed antiedges to G to obtain an H -free
graph?

We will use ppt-reductions from propagational satisfiability problems to the above
quarantined problems to show their incompressibility for H being a 4-cycle, 5-cycle, or
3-connected graph with one or two antiedges. For this purpose, we first give a general
scheme for such reductions. As mentioned in the previous section, the main idea is to
use satisfaction-testing components S(x, y, z) to represent clauses, and truth-setting
components T (u) to connect satisfaction-testing components together to realize a
conjunctive formula ϕ of some propagational function.

Let H be a fixed graph such that H -free edge deletion (resp., edge completion) has
a satisfaction-testing component S(x, y, z) for some propagational function f (x, y, z)
(i.e., fS(x, y, z) = f (x, y, z)) and a truth-setting component T (u) for Boolean vari-
ables u. For an arbitrary instance (ϕ, k) of Propagational- f Satisfiability on
3-regular conjunctive formulas, we construct an instance (G, k′) of Quarantined
H -Free Edge Deletion (resp., Edge Completion) as follows (see Fig. 7a for
an example). We remark that the 3-regularity requirement is essential for our ppt-
reductions.
Reduction Scheme PS-QED/QEC

1. For each clause f (x, y, z) of ϕ, construct its satisfaction-testing component
S(x, y, z). For each constant c ∈ {x, y, z}, its corresponding variable-edge (resp.,

123

746 Algorithmica (2015) 71:731–757

variable-antiedge) in S(x, y, z) is deleted (resp., added) if c = 1 and set as forbid-
den if c = 0. Note that all satisfaction-testing components are vertex disjoint.

2. For each variable u of ϕ, construct its truth-setting component T (u) and identify
each of the three variable-edges (resp., variable-antiedges) of T (u) with its corre-
sponding variable-edge (resp., variable-antiedge) in a distinct satisfaction-testing
component. Note that ϕ has exactly three clauses containing u.

3. Let G be the graph obtained from the above construction and call it a ϕ-graph.
Let t be the number of allowed edges (resp., allowed antiedges) in T (u), which is
a constant, and set k′ = tk.

It is clear that our construction of (G, k′) takes polynomial time as both satisfaction-
testing and truth-setting components are of constant size. We now show that the ϕ-
graph G is very close to what we require for representing formula ϕ, which sets up the
framework for our ppt-reductions to Quarantined H -Free Edge Deletion and
Completion.

Lemma 5.1 Formula ϕ is satisfiable with at most k true variables iff the ϕ-graph G
contains at most k′ allowed edges E− (resp., allowed antiedges E+) such that all
satisfaction-testing components and truth-setting components in G are H-free after
deleting E− from G (resp., adding E+ to G).

Proof We will prove the lemma for edge deletion only, and a proof for edge completion
is readily obtained by changing “allowed edges” to “allowed antiedges” and “deletion
of edges” to “addition of antiedges” in the following arguments.

(⇒) Consider a satisfying truth assignment of ϕ with ≤ k true variables, and let
E− be the allowed edges in all truth-setting components T (u) in G with u = 1. Then
|E−| ≤ tk = k′ as each T (u) contains t allowed edges. By definitions of satisfaction-
testing and truth-setting components, we see that each of them is H -free after deleting
E− from G.

(⇐) Let E− be ≤ k′ = tk edges in G satisfying the assumption in the lemma. By
the definition of a truth-setting component, either all or none of its allowed edges are in
E−. Therefore, as each component contains t allowed edges, E− contains edges from
at most k truth-setting components. For each variable u, set u = 1 if E− contains the
variable-edge in T (u) and set u = 0 otherwise, which gives us a truth assignment with
≤ k true variables. For each clause fS(x, y, z), its corresponding satisfaction-testing
component S(x, y, z) is H -free after the deletion of E−. It follows from the definition
of S(x, y, z) that each fS(x, y, z) is satisfied, and hence ϕ is satisfied. ��

With Lemma 5.1 and components of the previous section in hand, we are now
ready to establish our incompressibility results for Quarantined H -Free Edge
Deletion and Completion. Because of Lemma 5.1, we only need to show that
there is no induced copy of H bestriding satisfaction-testing and truth-setting
components.

Theorem 5.2 Quarantined H-Free Edge Deletion is incompressible for H
being C4, C5, or any fixed 3-connected graph that is not a complete graph.

123

Algorithmica (2015) 71:731–757 747

Fig. 8 Impossibility of an
induced 5-cycle bestriding T
and S

T Sx

y

Proof Our construction of (G, k′) from (ϕ, k) in reduction scheme PS-QED/QEC will
serve as ppt-reductions from Propagational- f Satisfiability on 3-regular con-
junctive formulas to Quarantined H -Free Edge Deletion. In light of Lemma 5.1,
we only need to show that every induced H of G − E−, if any, resides inside a
satisfaction-testing or truth-setting component. Recall that E− is the set of all allowed
edges in all truth-setting components T (u) in G with u = 1. We consider H being
3-connected, C5, and C4 in this order.
Case 1. H is 3-connected but not complete.

Because of the 3-connectivity, this general case is actually the easiest one. We
use the satisfaction-testing component in Lemma 4.3 and truth-setting component in
Lemma 4.5 of the previous section to construct the ϕ-graph G. Note that k′ = 3hk,
where h is the number of vertices of H . In G, the distance between any two variable-
edges of a Boolean variable u is at least h (note that all variables inside each clause are
distinct), and any satisfaction-testing component shares at most two vertices with any
truth-setting component. Therefore the 3-connectivity of H ensures that any induced H
of G − E−, if any, must reside inside a satisfaction-testing or truth-setting component.
It follows from Lemma 5.1 that G − E− is H -free, and we have a required ppt-
reduction for the incompressibility of Quarantined H -Free Edge Deletion in this
case.
Case 2. H = C5. We use the satisfaction-testing component in Fig. 3b and truth-
setting component in Fig. 5b for the ϕ-graph G. Note that the truth-setting component
contains t = 13 allowed edges and thus k′ = 13k. Since the distance in G between any
two variable-edges of a Boolean variable u is at least 4, the only possible induced 5-
cycle C in G− E− must bestride a satisfaction-testing component S and a truth-setting
component T .

Clearly the common edge of S and T vanishes in G − E− as otherwise it would
be a chord of C . Therefore we have the situation in Fig. 8 as all allowed edges of
T also vanish in G − E− by the property of T . Since S is C5-free in G − E−, at
least one of edges x and y vanishes in G − E−, which rules out the existence of
induced 5-cycle C . Therefore G − E− is C5-free and our construction of (G, k′) gives
a required ppt-reduction to Quarantined C5-Free Edge Deletion, implying the
incompressibility of the problem.
Case 3. H = C4. We use the satisfaction-testing component in Fig. 3a and truth-setting
component in Fig. 5a for the ϕ-graph G. Note again that k′ = 13k. Similar to C5, the
only possible induced 4-cycle C in G − E− bestrides a satisfaction-testing component
S and a truth-setting component T . Unfortunately, it is possible in this case: In Fig. 7a,
when variable-edge x ∈ E−, G − E− clearly contains an induced 4-cycle formed by
the four forbidden edges surrounding x .

123

748 Algorithmica (2015) 71:731–757

Fig. 9 Impossibility of an
induced 4-cycle bestriding T
and S

T
y

z

S

To avoid such induced 4-cycles, we make the following modification in constructing
G: when we identify the variable-edge x of T (x) with its corresponding variable-edge
in a satisfaction-testing component S, we delete the degree-2 vertex v of T (x) that is
adjacent to the two ends of x . Another way of viewing this is that when we identify
edge x with its corresponding variable-edge in S, we also identify the degree-2 vertices
adjacent to the ends of these two edges. See the graph in Fig. 7b, which is obtained
from the graph in (a) by deleting such degree-2 vertices (indicated by black vertices).
The function of v in T (x) is to cause a propagation of edge deletions for C4-freeness
when x is deleted from T (x), which is also accomplished by the degree-2 vertex in S
adjacent to the two ends of x . Therefore Lemma 5.1 is still valid.

In G − E−, the induced 4-cycle C would bestride S and T . Therefore, the common
edge x of S and T vanishes in G − E−, implying that all allowed edges of T also
vanish in G − E− and we have the situation in Fig. 9. It is easy to see that no such
C is possible, and therefore G − E− is C4-free and we have a required ppt-reduction
for incompressibility. ��

Remark 5.3 The ϕ-graph G for quarantined C4-free edge deletion has an additional
property that the graph formed by allowed edges contains no 4-cycle as a partial
subgraph, which is crucial for the incompressibility of P5-Free Edge Deletion and
Editing in the proof of Theorem 6.8.

For Quarantined H -Free Edge Completion, we have the following similar
result. Note that we will obtain the incompressibility of C5-Free Edge Completion
in a much easier way in the next section.

Theorem 5.4 Quarantined H-Free Edge Completion is incompressible for H
being C4 or any fixed 3-connected graph with at least two antiedges.

Proof Like quarantined H -free edge deletion, we also use reduction scheme PS-
QED/QEC to construct (G, k′) from (ϕ, k), which serves as ppt-reductions from
Propagational- f Satisfiability on 3-regular conjunctive formulas to Quaran-
tined H -Free Edge Completion. In light of Lemma 5.1, we only need to show
that every induced H of G + E+, if any, resides inside a satisfaction-testing or truth-
setting component. Recall that E+ is the set of all allowed antiedges in all truth-setting
components T (u) in G with u = 1.

Same as H -free edge deletion, the case for 3-connected H is easy because of the
3-connectivity. We use the satisfaction-testing component in Lemma 4.3 and truth-
setting component in Lemma 4.5 of the previous section to construct the ϕ-graph
G. Again k′ = 3hk with h being the number of vertices of H . In G + E+, the

123

Algorithmica (2015) 71:731–757 749

(a)

x

y z

S(x,y,z)

(b)

1

x

y
x

0

z

T(x)

S(x, ,z)0

S(,x,y)1

x

Fig. 10 (a) Vicinity of a satisfaction-testing component S(x, y, z) in G. The three black vertices takes the
role of the three deleted degree-2 vertices of the three truth-setting components attached to S(x, y, z). (b)
Part of the ϕ-graph G for Quarantined C4-Free Edge Completion that corresponds to a formula ϕ

containing clauses f (1, x, y) and f (x, 0, z)

distance between any two variable-edges of a Boolean variable u is still at least h, and
any satisfaction-testing component shares at most two vertices with any truth-setting
component. Therefore the 3-connectivity of H ensures that any induced H of G +
E+ must reside inside a satisfaction-testing component or a truth-setting component.
It follows from Lemma 5.1 that G + E+ is H -free, and we have a required ppt-
reduction for the incompressibility of the problem for 3-connected H with at least two
antiedges.

Our proof for H = C4 is almost identical to that for Quarantined C4-Free Edge
Deletion. In constructing ϕ-graph G, we use the satisfaction-testing component in
Fig. 3c and truth-setting component in Fig. 5c with the following modification similar
to that for Quarantined C4-Free Edge Deletion: when we identify the variable-
antiedge x of T (x) with its corresponding variable-antiedge of a satisfaction-testing
component, we delete the degree-2 vertex of T (x) adjacent to the two ends of x .
Figure 10 illustrates this modification.

Now suppose that G + E+ contains an induced 4-cycle C . Then by Lemma 5.1,
C must bestride a satisfaction-testing component S and a truth-setting component T ,
as the distance in G + E+ between any two variable-edges of a Boolean variable u
is still at least 4. It is a routine matter to check that such C is impossible to exist as
shown in Fig. 11. Therefore G + E+ is C4-free and we have a required ppt-reduction
for the incompressibility of Quarantined C4-Free Edge Completion. ��

Remark 5.5 The ϕ-graph G for quarantined C4-free edge completion has an additional
property that the graph formed by allowed antiedges contains no 4-cycle as a partial
subgraph, which is crucial for the incompressibility of P5-Free Edge Completion
in the proof of Theorem 6.8.

123

750 Algorithmica (2015) 71:731–757

x

y z

S(x,y,z)

x

y z

S(x,y,z)

Fig. 11 Impossibility of the existence of an induced 4-cycle bestriding a satisfaction-testing component
S and a truth-setting component T . Note that if an allowed antiedge of a truth-setting component T is not
added to G then no allowed antiedge of T is added to G

6 Lifting the Quarantine

As the final step towards our main results, we will lift the quarantine for the results in
the previous section. For this purpose, we transform the incompressibility of quaran-
tined H -free edge deletion/completion problems into their unquarantined versions by
attaching “enforcers” to forbidden edges (resp., forbidden antiedges) to prevent them
from being deleted (resp., added). As a big bonus, enforcers also enable us to establish
incompressibility of H -free edge editing problems directly from that of H -free edge
deletion/completion problems.

Attaching enforcers to edges/antiedges may create new induced copies of H , which
can cause great complication and should be avoided. We take this into consideration
and define enforcers for edge deletion/completion as follows.

Definition 6.1 An H−free deletion enforcer (X, e) consists of an H -free graph X
and a distinguished edge e of X such that (a) X − e contains an induced H , and (b)
for any graph G vertex-disjoint from X and any edge e′ of G, all induced copies of H
in the graph obtained by attaching X to G through identifying e with e′ reside entirely
inside G.

Definition 6.2 An H -free completion enforcer (X, e) consists of an H -free graph X
and a distinguished antiedge e of X such that (a) X +e contains an induced H , and (b)
for any graph G vertex-disjoint from X and any antiedge e′ of G, all induced copies
of H in the graph obtained by attaching X to G through identifying e with e′ reside
entirely inside G.

Property (b) of enforcers makes it tricky to construct them, and some H (e.g. path
Pl with l ≥ 3) actually does not have enforcers. In this paper, we just need enforcers
for cycles and 3-connected H , which are easily constructed.

Lemma 6.3 The following statements hold for H being a cycle or a 3-connected
graph.

1. For any cycle Ct with t ≥ 4, adding any antiedge e to Ct yields a Ct -free deletion
enforcer (Ct + e, e), and deleting any edge e from Ct yields a Ct -free completion
enforcer (Ct − e, e).

123

Algorithmica (2015) 71:731–757 751

2. For any 3-connected H with an antiedge e, (H + e, e) is an H-free deletion
enforcer.

3. For any 3-connected H and any edge e, (H − e, e) is an H-free completion
enforcer.

Proof It is obvious that enforcers in the lemma satisfy property (a) of enforcers, and
it is straightforward to confirm that they also satisfy property (b) as an enforcer has
exactly two vertices connecting to the outside. ��

Once we have an enforcer (X, e), we can easily prevent an edge/antiedge e′ in
the input graph G from being deleted/added for H -free deletion/completion problems
with ≤ k deletions/additions.

Definition 6.4 To k-forbid an edge (resp., antiedge) e′, we attach k vertex-disjoint
copies of an H -free deletion enforcer (resp., completion enforcer) (X, e) to e′ by
identifying e with e′.

Let G ′ be a graph obtained from G by k-forbidding each edge (resp., antiedge) of a
set F of edges (resp., antiedges) using H -free deletion (resp., completion) enforcers.
Then the definitions of enforcers ensure that

1. all induced copies of H in G ′ reside inside G, and
2. for graph G ′, no edge/antiedge in F can be deleted/added as its deletion/addition

will create k induced copies of H that share no common edge/antiedge.

Therefore we can use enforcers to specify forbidden edges/antiedges F in quarantined
H -free edge deletion/completion problems, which gives us equivalent unquarantined
versions of H -free edge deletion/completion problems. Enforcers also enable us to
force edge editing problems to be edge deletion problems or edge completion prob-
lems, which yields incompressibility of edge editing problems directly from that of
edge deletion/completion problems.

Lemma 6.5 For any fixed graph H, the following statements hold:

1. H-Free Edge Deletion is incompressible if Quarantined H-Free Edge
Deletion is incompressible and there exists an H-free deletion enforcer.

2. H-Free Edge Completion is incompressible if Quarantined H-Free Edge
Completion is incompressible and there exists an H-free completion enforcer.

3. H-Free Edge Editing is incompressible if either
(a) H-Free Edge Deletion is incompressible and there exists an H-free com-

pletion enforcer or
(b) H-Free Edge Completion is incompressible and there exists an H-free

deletion enforcer.

Proof Let F be forbidden edges (resp., antiedges) in a quarantined graph G. By
k-forbidding every edge (resp., antiedge) in F by H -free deletion enforcers (resp.,
completion enforcers), we can obtain an equivalent instance (G ′, k) of H -Free Edge
Deletion (resp., Completion) of instance (G, k) for Quarantined H -Free Edge
Deletion (resp., Completion) in polynomial time. Therefore the incompressibility of

123

752 Algorithmica (2015) 71:731–757

H -Free Edge Deletion (resp., Completion) follows from that of Quarantined
H -Free Edge Deletion (resp., Completion) and Theorem 2.4.

For H -Free Edge Editing, we can construct graph G ′ from the input graph
G of H -Free Edge Deletion by k-forbidding every antiedge of G using H -free
completion enforcers. Then H -Free Edge Editing on G ′ is equivalent to H -Free
Edge Deletion on G as the only way to destroy induced copies in G ′ by ≤ k edge
deletions/additions is to destroy those inside G of G ′ by ≤ k edge deletions. Similarly,
we can construct graph G ′ from the input graph G of H -Free Edge Completion by
k-forbidding every edge of G using H -free deletion enforcers. Then H -Free Edge
Editing on G ′ is equivalent to H -Free Edge Completion on G as the only way
to destroy induced copies in G ′ by ≤ k edge deletions/additions is to destroy those
inside G of G ′ by ≤ k edge additions. Therefore the incompressibility of H -Free
Edge Editing follows from the assumptions of the lemma. ��

There are also fundamental connections between H -free edge modification prob-
lems, which are easy to see yet very useful in dealing with the incompressibility of
these problems.

Lemma 6.6 For any fixed H, H-Free Edge Deletion is incompressible iff H-Free
Edge Completion is incompressible, and H-Free Edge Editing is incompressible
iff H-Free Edge Editing is incompressible.

Proof For a graph G, H -Free Edge Deletion on G is equivalent to H -Free Edge
Completion on G, and H -Free Edge Editing on G is equivalent to H -Free Edge
Editing on G. ��

We are now ready to give a full characterization of the incompressibility of H -free
edge modification problems for 3-connected H .

Theorem 6.7 Let H be a fixed 3-connected graph and assume NP �⊆ coNP/poly.

1. H-Free Edge Completion admits no polynomial compression (hence no poly-
nomial kernel) iff H has ≥ 2 antiedges.

2. H-Free Edge Deletion (resp., H-Free Edge Editing) admits no polynomial
compression (hence no polynomial kernel) iff H is not a complete graph.

Proof The incompressibility follows from that of quarantined H -free edge modifica-
tion problems (Theorems 5.2 and 5.4), the existence of H -free deletion/completion
enforcers [Lemma 6.3(2) and (3)], and Lemma 6.5.

For the cases that admit polynomial kernels, H -Free Edge Completion is trivial
for H being a complete graph, and easily solved in O(knt) for H being Kt − e for
some constant t (for each H found in G just add the missing edge): both solvable in
polynomial time and thus have trivial kernels.

When H is a complete graph Kt for some constant t, Kt -Free Edge Editing is
equivalent to Kt -Free Edge Deletion. The latter admits a polynomial kernel by

reducing it to Hitting Set where each subset has size

(
t
2

)

, and we can make the

kernel an instance of Kt -Free Edge Deletion if one insists [7]. ��

123

Algorithmica (2015) 71:731–757 753

(a) (b) (c)
u v

k + 1 copies

Fig. 12 (a) The house graph P5, (b) a house-free completion enforcer, and (c) the gadget formed from
k + 1 copies of the diamond graph, where edge uv will be identified with a forbidden edge to prevent the
edge from being deleted

In general, it seems difficult to establish the incompressibility of H -free edge mod-
ification problems when H has connectivity at most 2. However, for the two basic
cases of 1-connected and 2-connected H , namely, paths and cycles, we have a com-
plete characterization for incompressibility. Note that Gramm et al. [9] and Guillemot
et al. [11,12], respectively, have constructed polynomial kernels for P3- and P4-free
edge modification problems. Also note that Guillemot et al. [11] have shown the
incompressibility of H -Free Edge Deletion for H being a path Pl with l ≥ 13
or a cycle Ct with t ≥ 12, which has been improved recently to l ≥ 7 and t ≥ 4 by
Guillemot et al. [12] with involved and complicated proofs.

Theorem 6.8 Let H be a fixed path or cycle and assume NP �⊆ coNP/poly. Then
H-Free Edge Deletion (resp., H-Free Edge Completion, and H-Free Edge
Editing) admits no polynomial compression (hence no polynomial kernel) iff H has
at least 4 edges.

Proof As noted earlier, polynomial kernels exist for Pl -free edge modification prob-
lems with l ≤ 4 [9,11]. Since C3 = K3, polynomial kernels exist for C3-free edge
modification problems as discussed in the proof of Theorem 6.7.

For the incompressibility part, if H = Pl or H = Cl with l ≥ 6 then H is
3-connected with at least two antiedges, and the incompressibility of these problems
follow from that of H -free edge modification problems (Theorem 6.7) and Lemma 6.6.

For H = C4, the incompressibility follows from that of quarantined C4-free edge
modification problems (Theorems 5.2 and 5.4) using Lemma 6.5 with the aid of C4-free
deletion/completion enforcers [(Lemma 6.3(1)].

For H = C5, the incompressibility of C5-Free Edge Deletion follows from that
of Quarantined C5-Free Edge Deletion (Theorem 5.2) and the existence of C5-
deletion enforcer [Lemmas 6.3(1) and 6.5(1)]. It follows that C5-Free Edge Editing
is incompressible with the aid of a C5-free completion enforcer [Lemma 6.3(1)], and
so is C5-Free Edge Completion because of Lemma 6.6 and the fact that C5 = C5.

For the remaining case H = P5, we consider its complement P5—the house graph
in Fig. 12a, and give ppt-reductions from quarantined C4-free edge modification prob-
lems with special properties.

For House-Free Edge Deletion, we construct a ppt-reduction from Quaran-
tined C4-Free Edge Deletion. For a quarantined graph G with forbidden edges F ,

123

754 Algorithmica (2015) 71:731–757

we construct a graph G ′ by attaching a copy of the gadget in Fig. 12c to each forbidden
edge e ∈ F by identifying e with edge uv of the gadget. Note that all induced 4-cycles
of G ′ are inside G. By Remark 5.3, we may assume that no four allowed edges in G
form a 4-cycle. We show that G has a C4-free k-deletion set iff G ′ has a house-free
k-deletion set.

(⇒) Observe that deleting from G ′ any allowed edges of G can only create chordless
4-cycles entirely inside G. Since all induced 4-cycles of G ′ are inside G, any C4-free
k-deletion set of G, which consists of allowed edges only, is actually also a C4-free
k-deletion set of G ′, and hence a house-free k-deletion set of G ′.

(⇐) Let E∗ be a house-free k-deletion set of G ′. Then E∗ contains no forbidden
edge, for otherwise it would create too many induced houses to be destroyed by the
remaining ≤ k − 1 edge deletions. Let E− be allowed edges of G in E∗. If G − E−
contains a chordless 4-cycle C , then it contains a forbidden edge e ∈ F as no four
allowed edges of G form a 4-cycle. Since some black vertex in Fig. 12c survives the
deletion of E∗, it forms an induced house in G ′−E∗ with C , a contradiction to G ′−E∗
being house-free. Therefore E− is a required C4-free k-deletion set of G.

For House-Free Edge Completion, it suffices to show the incompressibility of
Quarantined House-Free Edge Completion because of the house-free comple-
tion enforcer in Fig. 12b. For this purpose, we give a ppt-reduction from Quarantined
C4-Free Edge Completion. For a quarantined graph G with allowed antiedges A,
we construct from G a graph G ′ by adding, for each edge e of G, a new vertex ve

and two edges connecting ve with the ends of e. Make G ′ a quarantined graph by
also setting A as its allowed antiedges. By Remark 5.5, we may assume that no four
allowed antiedges in A form a 4-cycle. We show that G has a C4-free k-completion
set iff G ′ has a house-free k-completion set.

(⇒) Observe that adding to G ′ any allowed antiedges from A can only create
chordless 4-cycles entirely inside G. Since all induced 4-cycles of G ′ are inside G,
any C4-free k-completion set of G, which consists of allowed antiedges only, is actually
also a C4-free k-completion set of G ′, and hence a house-free k-completion set of G ′.

(⇐) Let E+ ⊆ A be a house-free completion set of G ′. If G + E+ contains a
chordless 4-cycle C , then C contains an edge e of G as no four allowed antiedges
form a 4-cycle. But then vertex ve and C together form an induce house in G + E+,
a contradiction. Therefore E+ is a required C4-free k-edge completion set of G.

Finally, the incompressibility of C4-Free Edge Editing follows from that of
C4-Free Edge Deletion and the house-free completion enforcer in Fig. 12b. By
Lemma 6.6, we conclude that P5-Free Edge Deletion, Completion, and Editing
are all incompressible. ��

7 Conclusion: Towards Dichotomy Theorems

Our ambition in studying H -free edge modification problems aims at complete charac-
terizations of their incompressibility in terms of the structure of H . We feel that, except
H = Kt or Kt − e, H -free edge modification problems may only admit polynomial
kernels for a handful of small H , perhaps with at most 5 vertices. This is attested by
our results for 3-connected H , simpliest 2-connected H (i.e., cycles), and simpliest
1-connected H (i.e., paths).

123

Algorithmica (2015) 71:731–757 755

In fact, our incompressibility for 3-connected H reveals much more than it looks in
Theorem 6.7. Because of Lemma 6.6, Theorem 6.7 implies the following result which
covers a very extensive range of H .

Corollary 7.1 For any fixed H, H-Free Edge Deletion (resp., Completion,
and Editing) is incompressible whenever H or H is 3-connected with at least two
antiedges.

Indeed, we can deduce from the above result that H -free edge modification prob-
lems are incompressible for most disconnected H and for most trees H , as H is
3-connected for most such H . In fact for trees H , we know that H -free edge modi-
fication problems are incompressible for all but a small number of trees [7]. In this
regards, H = K1,3 (the claw graph) is a very challenging case.

Problem 7.2 Determine whether claw-free edge modification problems admit poly-
nomial kernels.

The settlement of the above problem, especially if the answer is incompressible,
will be important for the study of H -free edge modification problems with H being
trees.

Problem 7.3 Give a complete characterization of trees T for which T -free edge mod-
ification problems admit polynomial kernels.

For general H , we pretty much know how blocks and connected components in
H affect the incompressibility of H -free modification problems [7]. This leaves 2-
connected H a very important case. Note that for H = K4 − e (the diamond graph),
H -Free Edge Deletion admits a polynomial kernel [7].

Conjecture 7.4 For any fixed 2-connected H with more than 5 vertices, H-Free
Edge Deletion and Editing are incompressible unless H is complete, and H-Free
Edge Completion is incompressible unless H has at most one antiedge.

It is not hard to prove the above conjecture for certain 2-connected H , however, it
seems quite difficult to control the occurrences of induced H in ppt-reductions, and
clever new ideas will be needed if we are after a complete settlement of the conjecture.
One possible way is to consider the following conjecture that enables us to examine
small H only.

Conjecture 7.5 For any fixed H, H-Free Edge Deletion (resp., Completion,
and Editing) is incompressible whenever H contains an induced subgraph H ′ such
that H ′-Free Edge Deletion (resp., Completion, and Editing) is incompressible.

Of course, H -free edge modification problems are only a starting point for edge
modification problems regarding general hereditary properties described by a family
F of forbidden induced subgraphs. We hope that our work will also shed light on the
incompressibility of F-free edge modification problems.

123

756 Algorithmica (2015) 71:731–757

Problem 7.6 Investigate connections between the incompressibility of F-free edge
modification problems and that of H -free edge modification problems for all H ∈ F .
In particular, does the incompressibility of H - and H ′-free edge modification problems
imply that of {H, H ′}-free edge modification problem? If not, characterize those H
and H ′ that do.

We remark that if |F | ≥ 3, then F-free edge modification problems may admit
polynomial kernel while H -free edge modification problems are incompressible for
every H ∈ F . For instance, F = {2K2, C4, C5} (note that F-graphs are exactly split
graphs and 2K2 = C4) for which F-Free Edge Deletion admits a kernel of size
O(k4) [13].

Finally, we finish the paper with a theorem in connection with the last problem,
which also unveils the hidden power of our general scheme for ppt-reductions from
Propagational- f Satisfiability.

Theorem 7.7 Let F be a finite set of forbidden induced subgraphs, and assume NP
�⊆ coNP/poly. If all graphs in F are 3-connected and there is an H ∈ F with fewest
edges such that H + e �∈ F for some antiedge e of H, then F-Free Edge Deletion
admits no polynomial compression and hence no polynomial kernel.

Proof First let us consider the antiedge e. If all edges of H are incident with an end of
e, then H is a bipartite graph and the two ends of e is a 2-cut of H , contradicting the
3-connectivity of H . Therefore H has an edge e′ that shares no vertex with antiedge
e. Let l be the maximum number of vertices for graphs in F .

We use our construction of ϕ-graph G for H -Free Edge Deletion in Theorem 5.2
with the following specification/modification:

1. For satisfaction-testing component S(x, y, z) = H + x , we set x = e and {y, z}
two arbitrary edges of H .

2. For truth-setting component T (u), we use l copies of basic unit U to construct the
basic chain B(u).

We show that these two components are valid. Let h be the number of vertices of
H , and we show first that the basic unit U is F-free. By the assumption for H, U =
H + e �∈ F . For any induced proper subgraph U ′ of U, U ′ contains at most h − 2
edges as U is also 3-connected. Therefore U ′ �∈ F as H has the fewest edges in F , and
it follows that U is F-free. Now we note that U − {e, e′} is also F-free as it has h − 1
edges. Therefore T (u) is a valid truth-setting component for F-free edge deletion.

The satisfaction-testing component S(x, y, z) is the same as the basic unit U except
different allowed edges, and thus is also F-free. Deletion of x will cause the deletion
of y or z, and the resulting graph has only ≤ h − 1 edges and thus is also F-free. It
follows that

fS(0, 0, 0) = fS(1, 0, 1) = fS(1, 1, 0) = fS(1, 1, 1) = 1 but fS(1, 0, 0) = 0.

Therefore fS is propagational and S(x, y, z) is a valid satisfaction-testing component
for F-free edge deletion.

123

Algorithmica (2015) 71:731–757 757

In G, the distance between any two variable-edges of a Boolean variable u is at
least l, and thus the 3-connectivity of H ensures that any induced copy of any H ′ ∈ F
must reside inside a satisfaction-testing component or a truth-setting component. The
same arguments of Theorem 5.2 establishes the incompressibility of Quarantined
F-Free Edge Deletion. Finally we use the H -free deletion enforcer, which is also
F-free, in Lemma 6.3(2) on G to lift the quarantine and obtain the incompressibility
of F-Free Edge Deletion. ��
Acknowledgments The paper is partially based on the M.Phil. Thesis of the 2nd author under the super-
vision of the 1st author. We thank the two anonymous reviewers for their constructive suggestions.

References

1. Bodlaender, H.L., Cai, L., Chen, J., Fellows, M.R., Telle, J.A., Marx, D.: Open Problems in Parameter-
ized and Exact Computation—IWPEC 2006. Utrecht University Technical Report UU-CS-2006-052
(2006)

2. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial
kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)

3. Bodlaender, H.L., Jansen, B., Kratsch, S.: Kernelization lower bounds by cross-compositions. SIAM
J. Discrete Math. 28(1), 277–305 (2014)

4. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and disjoint paths. Theor.
Comput. Sci. 412(35), 4570–4578 (2011)

5. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf.
Process. Lett. 58(4), 157–206 (1996)

6. Cai, L., Cai, Y.: Incompressibility of H -free edge modification. In: Gutin, G., Szeider, S. (eds.) 8th
International Symposium on Parameterized and Exact Computation (IPEC 2013), Lecture Notes in
Computer Science, vol. 8246, pp. 84–96 (2013)

7. Cai, Y.: Polynomial Kernelisation of H -free Edge Modification Problems, MPhil Thesis, Department
of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
(2012). http://www.uni-marburg.de/fb12/ps/team/cai-masterarbeit.pdf

8. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. J. Comput.
Syst. Sci. 77(1), 91–106 (2011)

9. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: fixed parameter
algorithms for clique generation. Theory Comput. Syst. 38(4), 373–392 (2005)

10. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete graph problems. Theor.
Comput. Sci. 1(3), 237–267 (1976)

11. Guillemot, S., Paul, C., Perez, A.: P On the (non-)existence of polynomial kernels for Pl -free edge
modification problems. In: Raman, V., Saurabh, S. (eds.), 5th International Symposium on Parameter-
ized and Exact Computation (IPEC 2010), Lecture Notes in Computer Science, vol. 6478, pp. 147–157
(2010)

12. Guillemot, S., Havet, F., Paul, C., Perez, A.: On the (non-)existence of polynomial kernels for Pl -free
edge modification problems. Algorithmica 65(4), 900–926 (2013)

13. Guo, J.: Problem kernels for NP-complete edge deletion problems: split and related graphs. In:
Tokuyama, T. (ed.), 18th International Symposium on Algorithms and Complexity (ISAAC 2007),
Lecture Notes in Computer Science, vol. 4835, pp. 915–926 (2007)

14. Kratsch, S., Wahlström, M.: Two edge modification problems without polynomial kernels. Discrete
Optim. 10, 193–199 (2013)

123

http://www.uni-marburg.de/fb12/ps/team/cai-masterarbeit.pdf

	Incompressibility of H-Free Edge Modification Problems
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Edge Modification Problems
	2.2 Kernelization Lower Bounds

	3 Satisfiability of Propagational Formulas
	4 Components for Representing Formulas
	4.1 Satisfaction-Testing Components
	4.2 Truth-Setting Components

	5 Quarantined H-Free Edge Modification
	6 Lifting the Quarantine
	7 Conclusion: Towards Dichotomy Theorems
	Acknowledgments
	References

