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Abstract - Recently, Independent Component
Analysis (ICA) has been proposed to construct factor
models in finance. According to the basic principle,
the factors extracted using ICA are expected to be in-
dependent to each other. This factor model is hence
named as independent factor model, in contrast to
the traditional factor models which assumes uncorre-
lated factors. In this paper, we analyze and compare
the performance of the independent factor model and
tradition factor model based on the prediction ability
of the factors. Two examples are given to show that
the independent factor model would reduce loss if we
have good predictability on one of the factors. On the
contrary, uncorrelated factor model may not benefit
from an accurate factor prediction.

I. Introduction

A number of well-known financial theories, such as the
CAPM and APM, have assumed that the return genera-
tion process is governed by the Factor Model [11]. This
model describes the return of a security as a weighted
linear combination on a number of factors. Equation 1
depicts the Factor Model

ri = αi +
k∑

m=1

βimFm + ui (1)

where ri is the return of security i. k is the number of
factors and is a positive integer. F1, F2, ..., Fk are the
factors affecting the returns of the ith security and βi1,
βi2, ..., βik are the corresponding sensitivities. αi is a
constant named as the ”zero” factor. ui is a zero mean
random variable. It is generally assumed that the covari-
ance between ui and factors Fi are zero. The factors,
Fi, are also uncorrelated to each other. ui and uj for
security i and j are independent if i 6= j. In general,
the multi-factor model with k factors is called k-factor
models.

Traditionally, there are a number of ways to obtain

the factor models [9], [4], [8]. We can link factors to
some macro-economic measurements, such as unexpected
changes in the rate of inflation, interest rate, rate of re-
turn on a treasury bill etc. The sensitivities, β′s, are
evaluated accordingly. However, the number of factors
and which factors should be included are hard to be de-
termined. The other approach is the statistical approach.
Principle component analysis (PCA) is the most success-
ful method [7], [10], [12]. It is used to find the factors and
their sensitivities[1], [5]. PCA is a suitable tool to con-
struct the factor model because the factors extracted are
uncorrelated to each other according to the basic princi-
ple of PCA.

However, it has recently been pointed out that uncorre-
lation is not an appropriate assumption for factor model
[6]. Alternatively, it has also been proposed that the fac-
tors should be independent [2]. From the viewpoint of
portfolio construction, we can construction portfolio to
reduce the risk due to certain factors. With uncorrelated
factors, it may not be possible to eliminate the factor
risk completely. However, with independent factors, it is
possible to construct a portfolio which is free from the
influence of some of the factors [3].

In addition, there is another advantage of independent
factor model over the traditional factor model. In this
paper, we show that, by improving the accuracy in the
prediction of the factors, the possibility of having a loss
would be reduced when the return is formed by the in-
dependent factor model. However, the loss may not be
reduced in the case of uncorrelated factor model. We will
give examples in the following sections to illustrate that
uncorrelated factor model may not be able to gain any
benefit in terms of return prediction when the accuracy
in factor prediction increases.

II. The Prediction Error in the Factor Model

For simplicity, we consider a stock governed by a 2-
factor model as shown below.

r = α + β1F1 + β2F2 + u (2)
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Let F̂1 and F̂2 be the predicted values of factors F1

and F2 respectively. We put ε1 and ε2 as the prediction
errors of these two factor terms, i.e. ε1 = β1F1 − β1F̂1,
and ε2 = β2F2−β2F̂2. In this case, the error of the return
due to the error in prediction of the factors is εr = ε1+ε2.

If p1(ε1) and p2(ε2) denote the probability density
function of ε1 and ε2, the cumulative distribution func-
tion of εr would be

Pr(εr) =

∫ εr

−∞

pr(z)dz

=

∫ εr−x

ε2=−∞

∫ x

ε1=−∞

pr(ε1 ∧ ε2)dε1dε2

=

∫ εr−x

ε2=−∞

∫ x

ε1=−∞

p1(ε1)p2(ε2|ε1)dε1dε2

(3)

Equation 3 denotes the probability of the downside
error in the return due to the predicted errors in the
factors, i.e., probability of the return which falls below
εr of the predicted return.

In financial trading, decisions would often be made ac-
cording to the predicted values of the stocks. One major
concern is on the analysis of the risk of our decision, espe-
cially the downside risk. Therefore, equation 3 provides
an expression for us to analyze the risk of a predicted
value of the stock, and it relates the error of the return
to the errors on the prediction of the factors.

If ε1 and ε2 are independent, equation 3 turns into

Pr(εr) =

∫ εr−x

ε2=−∞

∫ x

ε1=−∞

p1(ε1)p2(ε2)dε1dε2

(4)

We can see that the density function of pr(εr) is the
convolution of p1(ε1) and p2(ε2). When we have more
than two independent factors in our model, the same
technique can be applied to equation 4 to further gener-
alize the equation to include more factors. In addition, if
we want to incorporate the effect due to u, which is also
independent to the factors, we can convolute the error
density with the density of u.

III. The First Example

We use an example to illustrate the difference between
having independent factors and non-independent factors
on the prediction error of the return. In case A, ε1 and ε2
are independent to each other. It is reasonable to assume
that the factor errors following the Gaussian distribution.
We generate 10,000 random samples, following Gaussian
distribution with zero mean and unit variance, for both
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variables ε1 and ε2. Figure 1(a) shows the distribution of
their sum, which is also following Gaussian distribution.

In case B, the two factors are dependent. Suppose
β2F2 = 1

a
(β1F1)

2 + b where a and b are two constants.
In this case, although the factors are dependent, they are
uncorrelated to each other. With such a relationship, we
obtain ε2 = − 2

a
ε1β1F1 + 1

a
ε2
1
. F1 is involved in the first

term of this expression. With the fact that the factors are
zero-mean and the assumption that the predicted error,
ε1, is independent to the values of the factor, the expected
values of the first term over F1 would be vanished. This
leaves ε2 ∝ ε2

1
. It is interesting to note that a zero-mean

ε1 does not imply a zero-mean ε2. This leads to a bias in
the prediction error of F2 and hence the return.
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Fig. 2. Case A. The density and cumulative distribution
of εr when the variance of ε1 and ε2 has been changed.
The dark bars in the top figure and the solid lines in the
bottom figure indicate the case when variance = 1. The
light bars and dotted lines indicate the case when variance
= 0.75.

To make the expected error in the return comparable
to the case in the independent case, we remove the bias

by adding a constant term to ε2. Let ε2 =
ε2
1
−1

1.4
. The

constants in this expression are assigned such that ε2 has
the same mean and variance as in the independent case
(i.e. mean = 0 and variance = 1). Now in both case
A and case B, ε1 and ε2 are uncorrelated to each other.
Figure 1(b) shows the distribution of εr. It can be seen
that the distribution in this figure is significantly different
from the case with independent variables.

In the third case, C, ε2 is defined as ε2 =
1−ε2

1

1.4
. Similar

to case B, the factors F1 and F2 are uncorrelated but
not independent, but a is negative in case C. The dis-
tribution of εr in case C appear in a different form (see
Figure 1(c)). Figure 1(d) compares the cumulative dis-
tribution function of three cases. In the dependent cases
(B and C), it is possible to make P (εr) either larger or
smaller than that in the independent case. This relies on
how the factors are dependent on each other. In all cases,
the two factors are uncorrelated to each other, but only
case A has independent factors. When the variables are
added together, the same mean, and as well as the same
variance, of the sums are obtained in all cases (i.e. mean
= 0, variance = 2). The only difference is on the prob-
ability distribution of the sums. In the next section, we
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Fig. 3. Case B. The density and cumulative distribution of εr

when the variance of ε1 has been changed. The dark bars
in the top figure and the solid lines in the bottom figure
indicate the case when variance = 1. The light bars and
dotted lines indicate the case when variance = 0.75.

will show how these distributions affect the errors of the
predicted returns.

IV. The Prediction Error in the First Example

Suppose we have a predictor which gives a better pre-
diction on the factors. For a good predictor, we refer
to one which gives a smaller error variance in the pre-
diction of the factors (i.e. variance of ε1 and ε2 are
smaller). For example, when we reduce the variance of
the errors in each component to 0.75, Figure 2 shows the
density and cumulative distribution function of εr in case
A, compared to that when the variance is equal to 1. It
shows that Pr(εr) has been reduced when εr < 0. How-
ever, in the dependent cases, case B (Figure 3) shows
an increase in Pr(εr) for εr < 0 while case C (Figure 4)
shows a decrease in Pr(εr) for εr < 0. In conclusion, the
independent factors would reduce the probability of the
downside error in the return when we have a good predic-
tor. In the cases of the dependent factors, the downside
error could be increased or decreased, depending on the
relationship between the factors.

V. The Second Example

The example in the previous section compares the in-
dependent factors and the dependent factors. In this
section, we demonstrate an example which requires the
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Fig. 4. Case C. The density and cumulative distribution of εr

when the variance of ε1 has been changed. The dark bars
in the top figure and the solid lines in the bottom figure
indicate the case when variance = 1. The light bars and
dotted lines indicate the case when variance = 0.75.

decomposition of the factors, either using independent
factor model or traditional factor models. We would also
show the effect of having a good predictor in both models.

Suppose the distribution of two stock prices are given
as in Figure 5, i.e.uniformly distributed within the rhom-
bus. The x-axis and y-axis of the figure denote the prices
of the stocks. When we construct the factor model from
the data, it is possible to obtain an infinite number of
factor models. In traditional factor models, we require
that the factors are uncorrelated. With this uncorrela-
tion restriction, it is still possible to obtain more than
one solution. For example, Figure 6 shows the axes of
two uncorrelated factors, x1 and x2, denoted by the two
straight lines on the graph. These factors are obtained
using Principle Component Analysis (PCA). The axes
are extracted in a way that the error variance along the
principle axis is minimized. It has to be noted that the
axes are orthogonal to each other. Although the factors
are uncorrelated, they are not independent. Figure 7
shows the distribution of another set of uncorrelated fac-
tors, y1 and y2. obtained by Independent Component
Analysis (ICA). In this case, the factors are independent
and uncorrelated. In order to make the factors indepen-
dent, the axes are no longer orthogonal.
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Fig. 5. The distribution of the returns of two stocks
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Fig. 6. The lines indicate the axes of the uncorrelated factors
extracted using PCA.

VI. The Prediction Error in the Second

Example

Let us assume that there is a good predictor for the
factors in the factor model. If there is such a predic-
tor, we could use the predicted factors to estimate the
stock returns and hopefully we could reduce the risk of
having unexpected poor returns. Similar to the previous
example, we define that a good predictor is one which
reduces the variance of the errors. In the subsequent fig-
ures, we use dots to denote the outcomes of the uniformly
distributed stock returns, and the circles to denote the
difference between the distribution in Figure 5 and the
outcomes from our good predictor. In other words, the
circles indicate those unexpected poor returns that we
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Fig. 7. The lines indicate the axes of the independent factors
extracted using ICA.

want to avoid.
In the case of independent factor model, if a good pre-

dictor helps us to reduce the error of one of the factors,
(indicated by the circles in Figure 8), this knowledge is
very useful for us work out the distribution of the stock
returns. Projecting the data into the x-axis gives us the
distribution of the stock values of the first stock. As the
circles are concentrated on the left hand side, it is easy to
figure out that we have substantially avoid the chances of
have a a low return on the first stock. Similarly, with a
good predictor on the other factor, (Figure 9), we could
avoid certain low returns on the second stock, with values
projected on the y-axis.

If the factor model is constructed by PCA, we may
not gain the same benefit. Suppose we have knowledge
to avoid the low return in one of the factors (indicated by
the circles in Figure 10). Similar to the independent fac-
tor model, we can make use this knowledge to reduce the
downside risk of the first stock. On the other hand, with a
good predictor of the second factor to avoid certain nega-
tive errors in the second factor (indicated by the circles in
Figure 11), it is impossible for us to avoid the occurrence
of the lowest returns of neither stocks. This example
shows that a good predictor in one or some of the factors
extracted by the factor models using ICA may not help
us to have a better prediction on the stock returns. This
is different from the independent factor model, which the
distribution of the return is the convolution of the dis-
tributions of the individual factors. Hence, we would
certainly be able to benefit from a good predictor on the
independent factors.

VII. Conclusions and Discussions

In this paper, by giving two examples, we have demon-
strated the difference between factor models using inde-
pendent factors and uncorrelated factors. Independent
factors imply uncorrelated factors but not vice versa.
One advantage of the independent factor models is that
the resultant distribution of the return is the convolution
of the individual factors. Analysis of the return is rela-
tively easy, comparing to the dependent cases. In terms
of prediction performance, independent factor models
would gain advantage in the estimation of the return and
in the avoidance of the loss when having a more accurate
prediction on the factors. This, however, may not be the
case in uncorrelated factor models.
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Fig. 8. Independent factors extracted using ICA. The circles
indicate the distribution of low returns on factor 1.
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Fig. 9. Independent factors extracted using ICA. The circles
indicate the distribution of low returns on factor 2.
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Fig. 10. Uncorrelated factors extracted using PCA. The cir-
cles indicate the distribution of low returns on factor 1.
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Fig. 11. Uncorrelated factors extracted using PCA. The cir-
cles indicate the distribution of low returns on factor 2.


