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Abstract. Binary Factor Analysis (BFA) is a typical problem of Inde-
pendent Component Analysis (ICA) where the signal sources are binary.
Parameter learning and model selection in BFA are computationally in-
tractable because of the combinatorial complexity. This paper aims at an
efficient approach to BFA. For parameter learning, an unconstrained bi-
nary quadratic programming (BQP) is reduced to a canonical dual prob-
lem with low computational complexity; for model selection, we adopt
the Bayesian Ying-Yang (BYY) framework to make model selection au-
tomatically during learning. In the experiments, the proposed approach
cdual shows superior performance. Another BQP approximation round

is also good in model selection and is more efficient. Two other methods,
greedy and enum, are more accurate in BQP but fail to compete with
cdual and round in BFA. We conclude that a good optimization is es-
sential in a learning process, but the key task of learning is not simply
optimization and an over-accurate optimization may not be preferred.

1 Introduction

Binary Factor Analysis (BFA) explores latent binary structures of data. Unlike
in clustering analysis where the observations are scattered around several un-
correlated centers, in BFA the cluster locations are correlated and represented
by a binary vector with independent dimensions. From an information theo-
retic perspective, the observables can be traced to several independent binary
random variables as information sources. Research on BFA has been conducted
with wide applications. One stream has been focused on analysis of binary data
[1] with the aid of Boolean Algebra. The broad variety of binary data, such as
social research questionnaires, market basket data and DNA microarray expres-
sion profiles, gives this research enormous practical value. Another stream tries
to discover binary factors in continuous data [2] [3] [4], taking advantage of the
representational capacity of the underlying binary structure. The present work
falls in the second category.

A general and difficult problem in BFA is the combinatorial complexity in
the inference of a m-bit binary code y(x) or a 2m-point posterior distribution
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p(y |x) for each training sample x. Past efforts in tackling this problem include
applying the Markov Chain Monte Carlo (MCMC) methods [3], or restricting
the model so that the posterior distribution has independent dimensions [2].

Another difficulty in BFA is to determine an appropriate length of the internal
binary code y. The traditional approach for model selection has to enumerate a
set K and perform maximum likelihood (ML) learning for each candidate length
dim(y) ∈ K, then the optimal length is selected via minimizing an information
criterion [5] [6]. This two-phase approach suffers from excessive computation due
to the computational complexity of BFA. In the past decade efforts have also
been made to determine a proper model scale during parameter learning. As a
general framework for parameter learning and model selection, BYY harmony
learning [7] [8] is capable to discard redundant structures during training. The
paper [8] investigates machine learning versus optimization from the BYY per-
spective, where BFA is discussed as a special case. The paper [4] studies BFA
under the BYY framework, where p(y |x) is assumed to be free of structure.

This paper considers the same BFA model as in [4] and [2]. In help of a canon-
ical duality of BQP [9][10], we can compute efficiently for each training sample
xt a binary code y(xt). As learning proceeds, redundant binary dimensions
are identified and discarded with a BYY learning algorithm [8]. A comparison
among four BQP methods is presented. The proposed approach cdual is not the
best in BQP optimization but presents superior performance in BFA learning.
A relax-and-round method round, which is rather rough from an optimization
perspective, is also good in model selection and provides a performance even
better than the accurate BQP techniques.

The rest of this paper is organized as follows. Section 2 introduces BFA and
a BYY learning algorithm. Section 3 imports the canonical duality theory to
overcome the BQP computational bottleneck. Section 4 includes an experimental
comparison among four BQP methods in BFA learning. Section 5 concludes.

2 Binary Factor Analysis

This paper studies the BFA model

q(y) =
m∏

i=1

θ
(1+yi)/2
i (1− θi)(1−yi)/2, q(x |y) = G(x |Ay + c, Σ), (1)

where y ∈ {−1, 1}m is an internal binary code, 0 < θi < 1, i = 1, 2, . . . , m, x is
a continuous observation, G(· |μ, Ψ ) denotes a Gaussian distribution with mean
μ and covariance Ψ , Σ is a positive definite diagonal matrix. This model has
been studied previously from different perspectives [11] [4] [2].

Within the BYY framework [7], another joint distribution p(x, y) describes
the observations with p(x) and the inference of binary codes with p(y |x). In
this paper, p(x) is chosen as p(x) =

∑N
t=1 δ(x− xt)/N , where δ(.) is the Dirac

delta function; p(y |x) = δ(y − ŷ(x)) is assumed to be free of structure, where
ŷ(x) is derived through maximizing the harmony function [7] [8] such that
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ŷ(x) = arg max
y∈{−1,1}m

log q(x, y) = argmin
y∈{−1,1}m

{
1
2
yT Qyy − fT

y (x)y
}

, (2)

Qy=AT Σ−1A, fy(x)=[log θ − log(1− θ)] /2+AT Σ−1(x−c), θ=(θ1, . . . , θm)T .
By definition, the harmony function is

H(p || q) =

∫
p(x)p(y |x) log q(y)q(x |y) dy dx =

1

N

N∑

t=1

H̃(xt, ŷ(xt), Θ),

H̃(x, y, Θ) =

m∑

i=1

[
1 + yi

2
log θi +

1 − yi

2
log(1 − θi)

]
+ log G (x |Ay + c, Σ) . (3)

BYY harmony learning with automatic model selection (BYY-AUTO) is imple-
mented by maximizing H(p || q) on the training set. Starting from a large initial
coding length, the gradient flow of H(p || q) may either push θi to 0 or 1 when yi

turns deterministic, or push the ratio ||Ai||22/
√

AT
i ΣAi (Ai is the i’th column

of A) to 0 when Aiyi is flooded by noise. In both these cases the i’th bit of
y is identified as redundant and is discarded while the learning proceeds. The
learning process is sketched in Algorithm 1.

Algorithm 1. Free structure BYY-AUTO learning algorithm for BFA
Input : A set {xt}Nt=1 ⊂ �n of observations

Output: An estimated binary coding length dim(y); Θ = {θ, A, c, Σ}
Initialize dim(y) with a large integer m0; Θ0 = {θ0, A0, c0, Σ0};1

repeat2

Take Xe ⊂ {xt}Nt=1 sequentially or through a sampling algorithm;3

Encode Xe into {ŷ(x) : x ∈ Xe} with a binary encoder;4

Update Θ along the gradient flow of
∑

x∈Xe
H̃(x, ŷ(x), Θ);5

if θi < ε or θi > 1− ε or ||Ai||22 < δ
√

AT
i ΣAi then6

Discard the i’th dimension of y; update Θ accordingly;7

until H(p || q) has reached convergence ;8

In the experiments we fix ε = 0.1, δ = 2, |Xe| = N , m0 = 2m� − 1, where

m� = dim(y�) is the “true” binary dimension in synthetic data generation.

3 Canonical Dual Approach to Binary Encoding

In BFA, a binary encoder ŷ : {xt}Nt=1 → {−1, 1}m is usually employed so that
a function can be computed numerically or a mapping, such as p(y |x, Θ), can
be regularized with the encoding results. In the context here, we need such an
encoding, as in Eq. (2) or line 4 in Algorithm 1, to maximize H(p || q) in Eq.
(3) by a gradient-based optimization. Eq. (2) is a BQP that falls in NP-hard.
The BFA-specific formula of Qy and fy(x) can not make the problem easier.
An approximation is required to avoid the combinatorial complexity.



Canonical Dual Approach to Binary Factor Analysis 349

Both exact and heuristic approaches to BQP have been widely studied in the
literature of optimization [12]. Recently Gao et al. have constructed a pair of
canonical dual problems for BQP [9] [10] with zero duality gap. The solution ζ̄
of the canonical dual problem

(Pd) : max
ζ>0

{
P d(ζ) = −1

2
fT

y (x)
[
Qy + diag(ζ)

]−1
f y(x) − 1

2
eT ζ

}
, (4)

if exists, will lead to a solution ŷ(x) = (Qy + diag(ζ̄))−1fy(x) of Eq. (2), where
e = (1, 1, . . . , 1)T . In contrast to the primal BQP, Pd is a constrained convex
optimization problem that can be handled much more efficiently. Algorithm 2
employs a gradient descent to solve BQP through solving Pd in Eq. (4).

Algorithm 2. min
y∈{−1,1}m

{
1
2
yT Qy − fT y

}
via max its canonical dual

Normalize Qnew = Qold/tr(Qold), fnew(x) = fold(x)/tr(Qold);1

Pre-process Qnew = Qold + ΛQ, ΛQ is diagonal (optional);2

Initialize ζ = max(−Qe− f , Qe + f − 2diag(Q));3

for epoch ← 1 to max epochs do4

y = (Q + diag(ζ))−1f ;5

� = (y ◦ y − e)/2;6

if || � ||∞ < Threshold then break;7

ζ = ζ + γ� (γ > 0 is a small learning rate);8

Round y to {−1, 1}m; return y.9

In the experiments, max epochs = 50, Threshold = 0.5, γ = 0.02. Step 2 is

a classical trick [12] based on y2
i ≡ 1 but not adopted in the experiments.

Table 1. Algorithms for solving the BQP in Eq. (2)

Name Description

enum exhaustively enumerate y ∈ {−1, 1}m, which was used in BFA [4]
greedy the greedy BQP algorithm on page 203 [12]
cdual the canonical dual approach to BQP (Algorithm 2 in this paper)
round round ỹ = Q−1

y f y(x) to the nearest binary vector in {−1, 1}m, which
was proposed (Table II, page 836 [11]) for BFA learning under the name
“fixed posteriori approximation”

Figure 1 shows the accuracy and efficiency of the BQP algorithms listed in
Table 11. round is fastest but its performance degenerates greatly as dim(y)
increases; greedy is most accurate among {round, cdual, greedy} but suffers
from O(dim3(y)) computation [12]; cdual is less accurate than greedy but is

1 All experiments in this paper are implemented with GNU Octave 3.0.3 on a Intel
Core 2 Duo 2.13GHz with 1GB RAM running FreeBSD 7.0.
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Fig. 1. Performance (out of 100 runs) of the BQP algorithms with tr(Q) = 1.0

much more efficient. As ||fy(x)||2 turns small, round becomes a little more
accurate while the error of cdual and greedy raises up significantly.

If ||fy(x)||2 is small enough such that ||Q−1
y fy(x)||∞ < 1, then �P d|ζ=0 <

0. From the convexity of P d(ζ) on �m+, the dual solution ζ̄ > 0 does not
exist. This explains the failure of cdual on small ||fy(x)||2. We further consider
its impact on BFA learning. In Algorithm 1, dimension i will be deducted if
|θi − 0.5| is large enough, hence θ is in a small neighbourhood around 0.5e and
||fy(x)||22 = ||AT Σ−1(x − c) + [log θ − log(1− θ)] /2||22 is a convex function
minimized around x = c. A small ||fy(x)||2 is due to samples lying between the
2m representative clusters in BFA. cdual is not accurate on these samples.

4 Experiments

This section compares enum, greedy, cdual and round in BFA with synthetic
data generated according to Eq. (1). Because of space limitation, we concentrate
on the case where dim(x) = 10, y evenly taking values from the 2m−1 points
{y ∈ {−1, 1}m : mod [

∑m
i=1(yi + 1)/2, 2] = 0}2, A = QΛ, Q is orthogonal,

Λ = diag(λ1, λ2, . . . , λm), λi uniformly distributed over the interval (1, 2) so that
the scale ||Ai||2 in each binary dimension does not vary too much, and Σ = σ2I.
Three aspects that may affect the learning performance are investigated: the true
binary dimension(dim(y�)), the sample size(N) and the noise level(σ).

4.1 Binary Matrix Factorization with Fixed Dimension

We fix the binary dimension by skipping line 6 ∼ 7 in Algorithm 1 and study its
performance on the binary matrix factorization (BMF) Xn×N = An×mY m×N ,
2 This is a subset of {−1, 1}m ⊂ �m that can only be well separated with ≥ m

hyperplanes. Hence the “true” binary dimension is m. It is chosen instead of {−1, 1}m

to simulate data in real world where not all 2m binary encodings are valid or observed.
A comparison between data generated with this 2m−1-point subset and {−1, 1}m is
nevertheless interesting but omitted here for saving space.
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where A is real and Y ∈ {−1, 1}m×N . Such a factorization differs from the
classical BMF in that the matrix to be factored is continuous rather than boolean
and is different from [3] in the factorization form. It may be useful in recovering
binary signals from continuous observations. For example, a noisy binary image
Y can be reverted after rotation or scaling. Figure 2 presents the BMF error and
learning time over dim(y). The training error gets an order round > cdual >
greedy > enum while the running time is in a reverse order. When dim(y)
is large, round and cdual is not as accurate as the others because of their
deteriorated BQP accuracy. As a trade-off they are much faster. Training time
of round appears to be constant over dim(y). greedy has avoided the exponential
complexity of enum but still requires huge computation on a large dim(y). To
sum up, cdual and greedy are recommended for the BMF task.
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4.2 Model Selection on Synthetic Data

In Algorithm 1, dim(y) is initialized large enough and deducted during learn-
ing. Since computational overhead arises when dim(y) is large, how soon this
deduction stops determines the learning efficiency. With a true binary dimension
dim(y�) = 5 and the learner’s dim(y) initialized to 9, Figure 3 shows the av-
erage dimension deduction curve after 100 independent runs for σ ∈ {0.1, 0.3}.
Two observations are made. (a) the convergence speed of dim(y) is in the same
order as the BQP speed in Figure 1(b). Convergence slows down as the noise
level increases. (b) cdual is robust to noise and yields the best accuracy; enum
and greedy overestimates the model scale; round also shows a slight tendency of
overestimation. The over/under estimation is controlled by the threshold δ and
is related to |Xe| in Algorithm 1. They are both fixed in this paper for brevity.

Consider one binary dimension yi with a small ||Ai||2 and big noise. Maximiz-

ing H(p || q) may further shrink ||Ai||22/
√

AT
i ΣAi to achieve model selection.

The error of cdual on the samples lying among the 2m representative clusters
forms a natural regularization to dimension deduction. An over-accurate binary
encoder does not have this type of regularization therefore tends to overesti-
mation. Similar cases may arise in clustering. A carefully designed optimization
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Fig. 4. “κ(dim(y))” out of 100 independent runs for each configuration tetrad

(dim(x), dim(y�), N, σ) ∈ {10} × {3, 5} × {50, 200} × {0.05, 0.1, 0.2, 0.4}, where κ is

the number of correctly estimated dim(y) and dim(y) is the average dim(y)

algorithm which is not so accurate at the cluster boundaries may be good for
model selection. As a sub-procedure, an optimization should be customized for
learning instead of being isolated and implemented as accurately as possible.

Figure 4 shows the percentage κ of correctly estimated dim(y) and the average
resulting dim(y) on a 2×2×4 configuration grid. According to the experiments
κ is sensitive to the threshold δ which is set to 2 here. Generally the performance
degrades as N goes small or dim(y�) goes large. In the batch algorithm where
|Xe| = N , the resulting model scale tends to be smaller as σ increases. Therefore
κ may increase with σ during overestimation, as in the case of {enum, greedy,
round}. cdual is the most robust and shows the best performance in nearly all
configurations. round is also good especially when σ is large. Moreover, they
outperform greedy and enum considerably in computational cost.

5 Concluding Remarks

The combinatorial complexity in BFA has been avoided through a canonical dual
approach and the ML training enumeration in model selection has been avoided
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by the BYY harmony learning. Among the algorithms investigated, cdual pro-
vides the best overall performance; round is comparably accurate on large noise
and is much more efficient; greedy and enum are both inaccurate and time-
consuming. A good optimization is crucial in learning. Learning, however, is
not simply optimization. It includes an essential task to select a hierarchy of
structures and a proper level in this hierarchy, which is difficult on small sample
size and may get promoted with a customized optimization. A more detailed
discussion on BFA learning and optimization will follow in subsequent works.
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