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Abstract—We propose a binary matrix factorization (BMF)
algorithm under the Bayesian Ying-Yang (BYY) harmony
learning, to detect protein complexes by clustering the proteins
which share similar interactions through factorizing the binary
adjacent matrix of the protein-protein interaction (PPI) net-
work. The proposed BYY-BMF algorithm automatically deter-
mines the cluster number while this number is usually specified
for most existing BMF algorithms. Also, BYY-BMF’s clustering
results does not depend on any parameters or thresholds, unlike
the Markov Cluster Algorithm (MCL) that relies on a so-called
inflation parameter. On synthetic PPI networks, the predictions
evaluated by the known annotated complexes indicate that
BYY-BMF is more robust than MCL for most cases. Moreover,
BYY-BMF obtains a better balanced prediction accuracies than
MCL and a spectral analysis method, on real PPI networks
from the MIPS and DIP databases.

I. INTRODUCTION

Protein-protein interactions (PPI) play key roles in the
biological processes including cell cycle control, differentia-
tion, protein folding, signaling, transcription, translation and
transport etc. Protein complexes are groups of proteins that
densely interact with one another [1]. They are key molecu-
lar entities that perform cellular functions. Identifying these
interacting functional modules is essential to understand the
organization of biological systems. A large amount of pro-
tein interactions produced by high-throughput experimental
techniques enables us to uncover the protein complexes.
However, high-throughput methods are known to yield non-
negligible rates of false-positives and false-negatives, due
to the limitations of the experimental techniques and the
dynamic nature of protein interactions. Thus, it is difficult
to accurately predict protein complexes from a PPI network.

PPI networks are generally represented as undirected
graphs with nodes being proteins and edges being interac-
tions. Various algorithms have been used to detect subgraphs
with high internal connectivity [2], [3], [4]. One reputed
algorithm is Markov Cluster Algorithm (MCL) [5], which
simulates flow in a graph, causes flow to spread out within
natural clusters and evaporate inbetween different clusters.
The value of a so-called inflation parameter strongly influ-
ences the clusters and the cluster number. MCL was used to

∗ Corresponding Author: lxu@cse.cuhk.edu.hk
† These authors contributed equally to this work.

detect protein families [6], and was shown to be remarkably
robust against random edge additions and deletions in quan-
titative evaluations [3], [7]. Particularly, “MCL had the best
performance on both simulated and real data sets” [7]. In
addition, a spectral clustering (SC) method was introduced
in [8] for finding functional modules from a PPI network.
Clusters are constructed by selecting a proportion of top
absolute values of elements of each eigenvector correspond-
ing to large eigenvalues, and controlling the cluster internal
connectivity and cluster-size through thresholds.

In this paper, we propose a binary matrix factorization
(BMF) algorithm under Bayesian Ying-Yang (BYY) learn-
ing [9], [10], [11] to predict protein complexes from PPI
networks. The BMF models the binary adjacent matrix 𝑋
of the PPI interaction graph as a product of two low-rank
matrices 𝐴 and 𝑌 with binary entries, i.e., 𝑋 ≈ 𝐴𝑌 ,
where each column of 𝑌 represents the interaction pattern
of the corresponding protein via weighting the columns of
𝐴. A cluster consists of proteins sharing similar interaction
patterns. The roles of 𝐴 and 𝑌 are exchangeable due to
their symmetric positions in 𝑋 ≈ 𝐴𝑌 , and thus BMF gives
a biclustering on both the rows and columns of 𝑋 [12].

We propose a BMF learning algorithm, shortly denoted as
BYY-BMF, under the BYY best harmony principle [9], [10].
It has the following merits: (1) It automatically determines
the cluster number (or equivalently the low-rank) during
the learning process, in contrast to most existing BMF
algorithms [13], [14] which require a given cluster number;
(2) Its clustering result does not depend on any thresholds
or parameters, as opposed to MCL [5] which relies on the
inflation parameter for the partition boundaries, as well as
SC [8] which strongly depends on thresholds to construct
clusters through eigen-decomposition. Moreover, BYY-BMF
can be applied to biclustering on a rectangular dyadic matrix.

We adopt the strategy in [3] to test the performance
of our algorithm. A test interaction graph is constructed
from a set of annotated complexes from the MIPS database
[15] by linking the proteins in the same complex, and
then altered by random edge additions or deletions un-
der various proportions to simulate the false positives and
false negatives in PPI data. The predictions are evaluated
with annotated complexes by Sensitivity, Positive-predictive
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value (PPV), Accuracy and Separation [3]. Since MCL
was evaluated in [3] to be more robust than other three
popular complex-prediction algorithms on the above four
criteria, and regarded in [7] as “the leading technique for
direct and module-assisted function prediction”, we focus
on comparing BYY-BMF with MCL. The BYY-BMF may
converge to a local optimum due to the current implemen-
tation technique. By selecting the output with the highest
harmony measure under repeated random initializations,
BYY-BMF’s predictions are more robust against the false
positives and false negatives than MCL’s best predictions
with the inflation parameter optimally tuned according to
the test performance which is impractical because the test
performance is evaluated with the true annotated complexes.
Thus, BYY-BMF still has room for improvement with a
possible more effective implementation guided by the har-
mony measure [10]. Moreover, for real PPI networks from
MIPS [15] and DIP [16], the BYY-BMF by averaging all
repeated evaluation results is better than MCL (with the most
frequently used value for the inflation parameter) and SC, in
balancing Sensitivity and PPV. In addition, we demonstrate
BYY-BMF’s biclustering performance on synthetic gene
expression data given in [17].

II. PROTEIN COMPLEX PREDICTION PROBLEM

The PPI network is usually represented as an undirected
graph 𝐺 = (𝑉,𝐸) [3], [4], where a node 𝑣𝑖 (𝑖 = 1, . . . , 𝑛)
in 𝑉 represents a protein, and an edge 𝑒 = (𝑣𝑖, 𝑣𝑗) in 𝐸
represents an interaction between the proteins 𝑣𝑖 and 𝑣𝑗 . The
symmetric adjacent matrix is defined as 𝑋 = [𝑥𝑖𝑗 ], where
𝑥𝑖𝑗 = 1 if there is an interaction between 𝑣𝑖 and 𝑣𝑗 , other-
wise 𝑥𝑖𝑗 = 0. Mathematically, protein complexes are defined
as sets of nodes with more edges amongst its members than
between its members and the rest. Many methods (see e.g.,
[4]) were used to detect proteins complexes. A reputed one
is called the Markov Cluster Algorithm (MCL) [5], which
was shown to be very robust [3].

MCL [5] simulates flow using two algebraic operations
on matrices. The first operation is expansion, which models
the spreading out of flow. The second is inflation to model
the contraction of flow, mathematically a Hadamard power
followed by a diagonal scaling. The flow becomes thicker
in regions of higher current and thinner in regions of
lower current. MCL generates non-overlapping clusters by
controlling the flow to spread out within natural clusters and
to evaporate inbetween different clusters. The value of an
inflation parameter strongly influences the cluster number.

A spectral clustering (SC) method was introduced in [8]
to find quasi-cliques (and quasi-bipartites) in a PPI network.
First, it calculates the eigen-decomposition 𝑋 = 𝑈𝐷𝑈𝑇 for
eigenvectors (the columns of 𝑈 ) and corresponding eigenval-
ues (diagonal elements of the diagonal matrix 𝐷); Then, it
constructs clusters by selecting top 𝛼𝑠𝑐% absolute values of
each eigenvector corresponding to large eigenvalues; Finally,

it discards the nodes linked to less than 𝛽𝑠𝑐% of nodes within
a cluster. The obtained clusters depend on the proportion of
selection 𝛼𝑠𝑐% and the internal connectivity by 𝛽𝑠𝑐%.

III. A NOVEL BINARY MATRIX FACTORIZATION

ALGORITHM UNDER BAYESIAN YING-YANG LEARNING

Binary Matrix Factorization (BMF) has been studied
in various factorization forms [13]. In the following, we
focus on 𝑋 ≈ 𝐴𝑌 , the same form as in [14], where
𝑋 = [𝑥𝑖𝑗 ]𝑛×𝑁 , 𝑥𝑖𝑗 ∈ {0, 1}, and 𝐴 = [𝑎𝑖𝑗 ]𝑛×𝑚,
𝑌 = [𝑦𝑗𝑡]𝑚×𝑁 , 𝑎𝑖𝑗 , 𝑦𝑗𝑡 ∈ {0, 1}. As interpreted in [12],
𝑋 ≈ 𝐴𝑌 equivalently performs a biclustering on the rows
(features) of 𝑋 by 𝐴 and on the columns (items) of 𝑋 by
𝑌 , where each feature/item is assigned to one cluster or
more. Most existing BMF algorithms are implemented for a
given low-rank 𝑚 (or equivalently the cluster number). For
the protein-complex prediction problem, 𝑋 is a symmetric
binary adjacent matrix of the PPI network with 𝑛 = 𝑁 , and
thus we can further constrain 𝐴 = 𝑌 𝑇 . Next, we propose a
novel BMF algorithm under the Bayesian Ying-Yang (BYY)
harmony learning [9], [10], [11].

We present a probabilistic model for the task of binary
matrix factorization. The joint likelihood is 𝑞(𝑋,𝐴, 𝑌,𝜽) =
𝑞(𝑋∣𝐴, 𝑌,𝜽)𝑞(𝐴∣𝜽)𝑞(𝑌 ∣𝜽), where

𝑞(𝑋∣𝑌,𝐴) =∏𝑁
𝑡=1

∏𝑛
𝑖=1 (1− 𝑢𝑖𝑡)

𝑥𝑖𝑡 (𝑢𝑖𝑡)
1−𝑥𝑖𝑡 ,

𝑢𝑖𝑡 = exp
{
−𝜂
∑𝑚

𝑗=1 𝑎𝑖𝑗𝑦𝑗𝑡 − 𝜈
}
, 𝜂 > 0, 𝜈 ≥ 0,

(1)

𝑞(𝑌 ∣𝜶) =
∏𝑁

𝑡=1

∏𝑚
𝑗=1 𝛼

𝑦𝑗𝑡

𝑗 ,∑𝑚
𝑗=1 𝛼𝑗 = 1, 𝛼𝑗 ≥ 0, 𝜶 = {𝛼𝑗},

𝑞(𝐴∣𝜷) =∏𝑛
𝑖=1

∏𝑚
𝑗=1 𝛽

𝑎𝑖𝑗

𝑗 ,∑𝑚
𝑗=1 𝛽𝑗 = 1, 𝛽𝑗 ≥ 0, 𝜷 = {𝛽𝑗}.

where both each coloumn of 𝑌 and each row 𝐴 are
contrained to have one and only one “1”. Furthermore,
we adopt Dirichlet priors 𝒟(𝜶∣𝝀𝛼, 𝜉𝛼) and 𝒟(𝜷∣𝝀𝛽 , 𝜉𝛽)
respectively for the parameter 𝜽 = {𝜶,𝜷} with hyper-
parameters Ξ = {𝜉𝛼,𝝀𝛼, 𝜉𝛽 ,𝝀𝛽}, where 𝒟(𝒛∣𝒂, 𝑏) =

Γ(𝑏)∏𝑚
𝑗=1 Γ(𝑏𝑎𝑗)

∏𝑚
𝑗=1 𝑧

𝑏𝑎𝑗−1
𝑗 .

Systematically developed over a decade [11], [9],
Bayesian Ying-Yang (BYY) harmony learning is a general
statistical learning framework for parameter learning and
model selection under a best harmony principle. For the
above BMF model, the harmony measure is as follows:

𝐻(𝑝∥𝑞) =
∑

𝑨,𝑌,𝑋

∫
𝑝(𝜶,𝜷∣𝑋)𝑝(𝑨, 𝑌 ∣𝑋,𝜶,𝜷)𝑝(𝑋)

⋅ ln[𝑞(𝑋∣𝑌,𝑨)𝑞(𝑌 ∣𝜶)𝑞(𝑨∣𝜷)𝑞(𝜶∣Ξ)𝑞(𝜷∣Ξ)]𝑑𝜶𝑑𝜷, (2)

where 𝑞(⋅) gives the Ying representation, and 𝑝(⋅) gives the
Yang representation. All components in Ying representation
follow from the above specifications. In Yang representation,
the empirical density 𝑝(𝑋) = 𝛿(𝑋 −𝑋𝑁 ) is adopted with
𝑋𝑁 = {𝒙𝑡}𝑁𝑡=1, and the other components are free, i.e., no
constraints on their probability density functions.
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Algorithm 1 The Sketched BYY-BMF algorithm

Input: data 𝑋 = [𝒙1, . . . ,𝒙𝑁 ]
Initialize 𝑨, 𝑚 = 𝑚𝑖𝑛𝑖𝑡, 𝜶, 𝜷, 𝜉𝛼 = 𝜉𝛽 = 𝑚/2,

𝝀𝛼 = 𝝀𝛽 = [1, . . . , 1]/𝑚, 𝜂 = 0.98, 𝜈 = 0.01.
repeat

Yang-Step:
𝑌 (𝜏) = argmax𝑌 ln[𝑞(𝑋∣𝑌,𝑨(𝜏−1))𝑞(𝑌 ∣𝜶(𝜏−1))];
𝑨(𝜏) = argmax𝑨 ln[𝑞(𝑋∣𝑌 (𝜏−1),𝑨)𝑞(𝑨∣𝜷(𝜏−1))];

Ying-Step:
𝜶(𝜏) = argmax𝜶 ln[𝑞(𝑌 (𝜏)∣𝜶)𝑞(𝜶∣Ξ)];
𝜷(𝜏) = argmax𝜷 ln[𝑞(𝑨(𝜏)∣𝜷)𝑞(𝜷∣Ξ)];

Model-Selection-Step:
for 𝑗 = 1 to 𝑚 do

if 𝛼𝑗 < 𝜂0 or 𝛽𝑗 < 𝜂0 then
Discard the 𝑗-th dimension; 𝑚 ← 𝑚− 1;

end if
end for

until ∣𝐻(𝜏)(𝑝∥𝑞)−𝐻(𝜏−1)(𝑝∥𝑞)∣ < 10−5∣𝐻(𝜏)(𝑝∥𝑞)∣
Output: 𝑨, 𝑌 = [𝒚1, . . . ,𝒚𝑁 ], 𝑚
Notations: 𝑚𝑖𝑛𝑖𝑡 is an initial integer for 𝑚; 𝜏 is the
iteration number; 𝜂0 is a very small positive value.

The best harmony, i.e, maximizing 𝐻(𝑝∥𝑞), leads the
unknown Yang components to be Dirac delta functions. To
achieve the best harmony, a Ying-Yang alternative procedure
is implemented and sketched in Algorithm 1. In this algo-
rithm, the cluster number starts from a large enough 𝑚𝑖𝑛𝑖𝑡,
and reduces accordingly in the “Model-Selection-Step”. This
automatic reduction results from a least complexity nature in
maximizing 𝐻(𝑝∥𝑞). One interpretation [10] is as follows:
The maximization forces Ying representation to match Yang
representation, but they may not be perfectly equal due to
a finite sample size and other constraints. At the equality,
𝐻(𝑝∥𝑞) becomes the negative entropy, further maximizing
which will minimize system complexity.

Our BYY-BMF algorithm considers an effective factoriza-
tion and an automatic determination of the cluster number
simultaneously, while most existing BMF algorithms need
a given cluster number. In the “Yang-Step”, 𝑌 (𝜏) can be
computed by individual maximizations over each column
of 𝑌 . It is similar for computing 𝐴(𝜏). With 𝑌 ’s columns
(and 𝐴’s rows) having one and only one “1”, the above
BYY-BMF outputs non-overlapping clusters. Due to the
non-convexity of eq.(2), different initializations may lead
to different local optima by BYY-BMF. To tackle this
problem, we can repeat random initializations and select the
output with the highest harmony measure. More effective
implementations are possible.

IV. EXPERIMENTS

A. Data Sets

As in [4], the reference protein complexes contain, in
total, 428 complexes by combining manually curated 216
complexes from MIPS [15], 92 complexes from Aloy et
al. [18], and 295 complexes from the SGD database [19].
The PPI network data sets are: (1) constructed from the
MIPS complexes by instantiating a node for each protein and
linking by an edge any two proteins within the same com-
plex; (2) collected from MIPS database [15], with 12, 317
interactions among 4543 proteins, or from DIP database [16]
with 4405 interactions among 2144 proteins 1.

B. Evaluation Criteria

To evaluate the accuracy of the predictions, we adopt the
following four criteria used in [3], [4].

Sensitivity (Sn) is defined as follows:

𝑆𝑛 = {∑𝑛
𝑖=1 max𝑗{𝑇𝑖𝑗}} /

∑𝑛
𝑖=1𝑁𝑖, (3)

where 𝑛 and 𝑚 is the number of reference and predicted
complexes respectively, and 𝑇𝑖𝑗 is the number of common
proteins in the 𝑖-th reference complex and the 𝑗-th predicted
complex, and 𝑁𝑖 is the number of proteins in the 𝑖-th
reference complex. A high 𝑆𝑛 value implies a good coverage
of proteins in the reference complexes.

Positive predictive value (PPV) is defined as

𝑃𝑃𝑉 =
{∑𝑚

𝑗=1 max𝑖{𝑇𝑖𝑗}
}
/
∑𝑚

𝑗=1 𝑇⋅𝑗 , (4)

where 𝑇⋅𝑗 =
∑𝑛

𝑖=1 𝑇𝑖𝑗 . A high PPV value indicates the
predicted complexes are likely to be true positive.

Accuracy(Acc) is the geometric average of 𝑆𝑛 and 𝑃𝑃𝑉 ,

𝐴𝑐𝑐 =
√
𝑆𝑛 × 𝑃𝑃𝑉 , (5)

which balances the complementary information provided by
𝑆𝑛 and 𝑃𝑃𝑉 : 𝑆𝑛 increases to 1 for the big cluster of all
proteins, while 𝑃𝑃𝑉 reaches 1 for single-protein clusters.

Separation(Sep) value is given by

𝑆𝑒𝑝 =
√

1
𝑛

∑𝑛
𝑖=1

∑𝑚
𝑗=1 𝑠𝑖𝑗 ⋅ 1

𝑚

∑𝑚
𝑗=1

∑𝑛
𝑖=1 𝑠𝑖𝑗 , (6)

where 𝑠𝑖𝑗 = 𝑇 2
𝑖𝑗/(𝑇⋅𝑗𝑇𝑖⋅), and 𝑇𝑖⋅ =

∑𝑚
𝑗=1 𝑇𝑖𝑗 . A high 𝑆𝑒𝑝

indicates a better general correspondence between predicted
and reference complexes.

1The file “Scere20100614CR.txt” from DIP is used, and the proteins in
this file without systematic names according to the yeast protein list in
“http://www.uniprot.org/downloads” are discarded.
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Table I
EVALUATIONS OF DIFFERENT CLUSTERING ALGORITHMS ON THE TEST

GRAPH 𝑋0,0 (#C: NUMBER OF PREDICTED COMPLEXES)

algorithm Sn PPV Acc Sep #C

true 1.0000 0.7219 0.8497 0.7826 216

BMF(opt) 0.9844 0.8459 0.9125 0.8652 179

BMF(avg) 0.9764 0.7805 0.8730 0.7861 147

MCL(1.8) 0.9920 0.7689 0.8734 0.8474 157

MCL(opt) 0.9818 0.7936 0.8827 0.8560 164

SC(10%, 1%) 0.6788 0.2661 0.4250 0.0238 622

C. Results

1) On Altered Graphs by Randomly Adding and Deleting
Edges: As in [3], we build a test graph 𝑋 from the MIPS
complexes [15] by linking the protein nodes in the same
complex. For a systematic evaluation, we alter the test graph
𝑋 to be 𝑋𝑎,𝑑, where 𝑎 and 𝑑 denote the percentages of
randomly added or deleted edges with respect to the number
of original edges in 𝑋 . The set of percentage pairs (𝑎, 𝑑)
is 𝑃𝐴𝐷 = {(𝑎, 𝑑) ∣ 𝑎 ∈ {0, 0.05, 0.1, 0.2, 0.4, 0.8, 1.0}; 𝑑 ∈
{0, 0.05, 0.1, 0.2, 0.4, 0.8} }.

Table I evaluates the predicted complexes by various
algorithms with respect to the MIPS complexes. The “al-
gorithm true” uses the MIPS complexes as the predicted
complexes. The BYY-BMF algorithm is implemented with
random initialization (𝑚𝑖𝑛𝑖𝑡 = 300, 𝜅 = 1) by 103 inde-
pendent trials. The BMF(avg) averages the results of all
trials, while the BMF(opt) denotes the trial with the highest
value of the harmony measure by eq.(2). The MCL(1.8)
means the MCL process with the inflation parameter being
1.8, while MCL(opt) denotes the MCL implementation of
possible best accuracy on the test graph, with the optimal
inflation parameter value 3.4 (see Table (2) in [3], where
1.8 is the most frequent value). SC(10%,1%) means SC is
implemented with 𝛼𝑠𝑐% = 10% and 𝛽𝑠𝑐% = 1%.

The observations from Table I are as follows. (1) The
BMF(opt) outperforms the BMF(avg) by relieving the local
optimum problem with a better initialization guided by the
harmony measure at the cost of more computation; (2) The
values of the inflation parameter influences MCL’s prediction
accuracies; (3) The BMF(opt) is better than MCL(opt), and
they both outperform the rest algorithms.

Figure 1 presents the results of 9 out of 42 percentage
pairs (𝑎, 𝑑) in 𝑃𝐴𝐷, due to space limit. According to Table
I, we further compare the robustness of BMF(opt) (using
the same initialization as in Table I) and MCL(opt) (using
the optimal inflation parameter values given by the Table
(2) in [3]). For each of 10 runs for each (𝑎, 𝑑), a graph is
generated via random edge additions and deletions on the
test graph. The evaluation results are averaged in Figure 1.

It can be observed from Figure 1 that BMF(opt) becomes
more robust than MCL(opt) as the percentages becomes
large, except for the case (𝑎, 𝑑) = (0%, 80%). For more

details about this case, we also include the results of
BMF(avg) and MCL(1.8). The results show that MCL(opt)
(with inflation parameter being 1.3) balances the Sensitivity
and 𝑃𝑃𝑉 much better than MCL(1.8), while BMF(opt)
and BMF(avg) take the 2𝑛𝑑 and 3𝑟𝑑 places respectively.

2) On Real PPI Data Sets: Two real PPI data sets are
collected from the MIPS [15] and DIP [16]. For a fair,
practical comparison, we average the results of 10 runs of
BYY-BMF with 𝑚𝑖𝑛𝑖𝑡 = 600, and chose the most often used
inflation parameter value 1.8 for MCL.

Figure 2 evaluates the predictions with the 428 reference
complexes. BYY-BMF has a better prediction Accuracy,
which balances the Sensitivity and the 𝑃𝑃𝑉 , than MCL,
followed by SC, while MCL obtains the best separation
value. That the separation value of BYY-BMF is lower than
MCL in Figure 2 is likely due to the initialization problem as
indicated in Table I. The used reference complexes probably
cannot cover all true complexes underlying the PPI networks
from MIPS and DIP, and thus, as indicated in [3], 𝑃𝑃𝑉
and Separation only indicate factional actual complexes
annotated already, whereas Sensitivity is likely to provide
more relevant information of the coverage of the reference
complexes recovered in the predictions.

D. On Gene Expression Data for Biclustering

In addition, we demonstrate to use our BYY-BMF as a
biclustering algorithm on synthetic gene expression data in
[17]. The original data, which consist of non-overlapping
biclusters, are added with random Gaussian noise under
increasing noise levels (i.e., the standard deviation). Figure
3 indicates that the performance of BYY-BMF is very robust
against noise.

V. CONCLUSION

We have proposed a Binary Matrix Factorization (BMF)
algorithm under Bayesian Ying-Yang (BYY) harmony learn-
ing, to tackle the problem of predicting protein complexes
from a protein-protein interaction (PPI) network. The algo-
rithm has the following merits: (1) The input of the known
cluster number required by most existing BMF algorithms is
not necessary; (2) As opposed to MCL and SC, BYY-BMF
has no dependence on any parameters or thresholds.

Experimental results show that our BYY-BMF algorithm,
if implemented by searching the output with the highest
BYY harmony measure under repeated random initializa-
tions, is more robust against PPI false positives and false
negatives than MCL using optimal inflation parameters
tuned by the testing accuracies. The prediction results on
large real world PPI networks indicate that the average
results of repeated independent trials by BYY-BMF obtains
a better balanced prediction accuracy, while MCL has a
relative advantage in separation value. In addition, we have
demonstrated the effectiveness and robustness of BYY-BMF
in biclustering on synthetic gene expression data.
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Figure 1. Prediction evaluations of BMF and MCL on altered graphes constructed from a test graph, with 𝑎𝑑𝑑% edges randomly added and/or 𝑑𝑒𝑙%
edges randomly deleted with respect to the original number of edges

Sn PPV Acc Sep
0

0.1

0.2

0.3

0.4

0.5
MIPS−Complex: ( add, del ) = ( 0.00, 0.80 )

 

 

BMF(avg)
SC(10%,1%)
MCL(1.8)

Sn PPV Acc Sep
0

0.1

0.2

0.3

0.4

0.5
MIPS−Complex: ( add, del ) = ( 0.00, 0.80 )

 

 
BMF(avg)
SC(10%,1%)
MCL(1.8)

Figure 2. Prediction accuracies of BMF, MCL and SC on real world PPI networks collected from MIPS (left) and DIP database (right)

Furthermore, although BYY-BMF has a local optimum
problem resulted from the current implementation proce-
dure, the improvement by repeating the random initializa-
tions for a higher harmony measure indicates BYY-BMF still
has room for improvement via more effective implementa-
tions [10]. Also, BYY-BMF can be extended and used on
those data with non-overlapping clusters.
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Figure 3. The matching score is calculated by DEFINITION 2 in [17]. The bicluster relevance reflects to what extent the generated biclusters represent
true biclusters, while the module recovery quantifies how well each true bicluster is recovered. The details of other algorithms are referred to [17].
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