
Bayesian Ying�Yang System and Theory as
A Uni�ed Statistical Learning Approach �I��
for Unsupervised and Semi�Unsupervised Learning

Lei Xu

Department of Computer Science and Engineering
The Chinese University of Hong Kong� Shatin� NT� Hong Kong� China
Fax ��� ���� ����� Email lxu�cs	cuhk	hk� http
��www	cse	cuhk	edu	hk��lxu�

An Invited book chapter� S� Amari and N� Kassabov eds��
Brain�like Computing and Intelligent Information Systems�
����� Springer�Verlag � pp��������

Abstract� A uni�ed statistical learning approach called Bayesian Ying�
Yang �BYY� system and theory has been developed by the present author in
recent years� This paper is the �rst part of a recent e�ort on systematically
summarizing this theory� In this paper� we show how the theory functions as a
general theory for unsupervised learning and its semi�unsupervised extension
on parameter learning� regularization� structural scale or complexity selection�
architecture design and data sampling� Speci�cally� it is shown how the general
theory provides new theories for unsupervised pattern recognition and cluster�
ing analysis� factorial encoding� data dimension reduction� and independent
component analysis� such that not only several existing popular unsupervised
learning approaches� �e�g�� �nite mixture with the EM algorithm� K�means
clustering algorithm� Helmholtz machine� principal component analysis plus
various extensions� Informax and minimum mutual information approaches
for independent component analysis� � � � � etc�� are uni�ed as special cases
with new insights and several new results� but also a number of new unsu�
pervised learning models are obtained� In a sister paper ��	
� this theory is
further shown to function as a general theory for supervised learning too�
from which we get new theories for supervised classi�cation and regression
such that the existing approaches for multilayer net� mixtures�of�experts� and
radial basis function nets are uni�ed as special cases� with not only new in�
sights and new learning algorithms but also new selection criteria for the
number of hidden units and experts� In another sister paper ���
� this theory
is further shown to function as a general theory for learning on time series
also� not only with the hidden Markov model and the linear state space based
Kalman �lter as special cases� but also with several temporal learning models
and algorithms obtained�

�� Introduction

Perception and Association are two primary tasks of a brain�like system for
intelligent interactions between the inner activities in the system and the
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external environment that the system is facing� Given a pattern or object x in
an external environmentX� the task of perception is to build a representation
y for x in the internal representation domain Y of the intelligent system as
the foundation of subsequent high level intelligent activities� According to
the di�erence of the numeric type of y� the task is usually called pattern
recognition� encoding� feature extraction � � � � etc� respectively� Given x in X
and z in another external environment Z� the task of association is to build
an associative link from x to z via the intelligent system� which represents
the system�s response to external environment under a given external input�
According to the numeric type of z� the task is usually called classi�cation�
regression� function approximation� control action� � � � � etc� respectively� The
intelligent system�s ability of implementing the two tasks are obtained via
unsupervised and supervised learning�

In the past two decades� various models and theories have been proposed
for each of the two primary intelligent tasks and related learning problems� In
the recent three years� a new statistical approach called Bayesian Ying�Yang
�BYY� system and theory has been developed by the present author��	���
	��	�� 	��	�
� Not only the two intelligent tasks and their related learning
issues can be systematically described in a single framework� but also several
existing major statistical models and theories for both unsupervised learn�
ing and supervised learning can be naturally uni�ed with deep insights and
cross�fertilizations� Furthermore� as stated in the previous abstract section�
this approach also provides a general theory on parameter learning� regular�
ization� structural scale or complexity selection� architecture design and data
sampling in various major areas of statistical learning� with a considerable
number of interesting new results obtained�

This paper concentrates on the BYY learning system and theory for imple�
menting various perception tasks via unsupervised learning and its extension
called semi�unsupervised learning� with the fundamental issues introduced
in Secs 	� and new systems and theories proposed in Secs� ���� for unsu�
pervised pattern recognition and clustering analysis� factorial encoding� data
dimension reduction� and independent component analysis� respectively� A
sister paper ��	
 will concentrate on introducing the BYY learning system
and theory for various association tasks via supervised learning� Moreover�
how this general theory works for learning on time series will be given in
another sister paper ���
�

�� Basic Bayesian Ying�Yang System and Its Learning

The perception tasks can be summarized into the mapping x � X � y � Y �
which is described by the conditional distribution p�yjx� in the probabilistic
formulation� p�yjx� is implemented by a device or passage Myjx�

As shown in Fig�	��� in our framework the learning of this pMyjx
�yjx�

is not independent� but regarding as a part of the problem of estimat�
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ing joint distribution p�x� y�� x � X� y � Y � Under the Bayesian frame�
work� we have two complementary representations p�x� y� � p�yjx�p�x� and
p�x� y� � p�xjy�p�y�� We use two sets of models M� � fMyjx�Mxg and
M� � fMxjy�Myg to implement each of the two representations�

pM��x� y� � pMyjx
�yjx�pMx

�x�� pM��x� y� � pMxjy
�xjy�pMy

�y�� �	���

We call Mx as a Yang��visible� model� which describes p�x� on the visible
domainX� and My as a Ying���invisible� model which describes p�y� on the
invisible domain Y � Also� we call the passage Myjx for the �ow x � y as a
Yang��male� passage since it performs the task of transferring a pattern��a
real body� into a code��a seed�� We call a passage Mxjy for the �ow y � x as
a Ying��female� passage since it performs the task of generating a pattern��a
real body� from a code��a seed�� Together� we have a YANG machine M� to
implement pM��x� y� and a YING machine M� to implement pM��x� y�� A
pair of YING�YANG machines is called a YING�YANG pair or a Bayesian
YING�YANG system� Such a formalization compliments to a famous Chi�
nese ancient philosophy that every entity in universe involves the interaction
between YING and YANG�

Fig� ���� The joint input�representation spaces X�Y and the Ying�Yang system	

The task of specifying a Ying�Yang system is called learning in a broad
sense� which consists of the following four levels of speci�cations�

��� Representation Domain Y and Its Complexity
We will encounter both the cases that y is discrete as in Item �	 and Item

�	� and that y is real as in Item �	�	 Strictly speaking� we can only use p��� as in

p�y�� p�yjx�� pMyjx�yjx�� and pMy �y� to denote densities when y is real	 When y is

discrete� they should be probabilities instead of densities and we should use P ���

to replace p���	 However� for convenience� even for a discrete y we still use p��� for

denoting probabilities	 Readers may identify the di�erence according to whether y

�
It should be �Yin� in the current Mainland Chinese spelling system� However� I prefer to
use �Ying� for the beauty of symmetry�
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is real or discrete	 Moreover� in the cases that x can be either real or discrete� we

also use the same convention for p�x�� pMx �x�� and pMxjy
�xjy��

With this preparation� we are ready to introduce the following choices for
the design of Y domain� corresponding to di�erent types of x� y tasks�
� Item ��� Y consists of a number of discrete labels or equivalently y �

�� �� � � � � kr�	 That is� x is mapped into one of kr labels� which is usually called
pattern recognition in general or classi�cation in particular	 Also� it is called
clustering when all the input samples x � X that bear the same label in y forms
a connected subset in X	

� Item ��� Y consists of the kr bits binary vectors y � �y�� � � � � ykr �� yj � f�� g	
That is� x is mapped into one binary code of kr bits� which is called as encoding	
The following two special cases are of particularly interesting


� �a� Factorial encoding if the bits of y are independent p�y� �
Qkr

i��
p�yi�	

� �b� Exclusive encoding if it is constrained that
Pkr

i��
yi �  withPkr

i�� p�yi � � � � which is actually the equivalent form of the above y �
�� �� � � � � kr� and thus corresponds to pattern recognition	

� Item ��� Y consists of the kr dimensional real vectors y � �y�� � � � � ykr ��
yj � R	 In this case� usually X is also assumed to be real in Rd	 That is� an
d dimensional vector x is mapped into a kr�� d� dimensional real vector y�
which is called data transformation in general	 Also� it is called data dimension
reduction or feature extraction when kr � d	 The following two special cases are
of particularly interesting

� �a� Independent Component Analysis �ICA�	 In this case� it is assumed that

each dimension of y is independent� i	e	� p�y� �
Qkr

i��
p�yi�	 The well known

Principal Component Analysis �PCA� is a special example in this case	
� �b� Distributed dimension reduction and Visualized map	 That is� x is

mapped into one of qr localized distributions in Rkr � i	e	� p�y� is a �nite mix�
ture model or a mixture of gaussians	 Particularly� when kr � � or �� we got
an �D or �D visualized map for the distribution of the original high dimension
data	

In all the cases above� the integer kr represents the scale or complexity of
representation� and its selection will be discussed later�

�	� Architecture Design�
We need to specify the architectures of four components pMx

�x�� pMyjx
�yjx��

pMxjy
�xjy� and pMy

�y�� based on the given set of training samples together
with some previous knowledge and assumption� For convenience� we let a
denote one of elements in fx� xjy� yjx� yg and Sa denote the architecture of
pMa

�a�� Roughly speaking� each pMa
�a� has three choices�

� Item ��� Fixed or Partially Fixed 	 It means that pMa �a� is simply �xed at
some empirical estimation� based on a given set of training samples	 In the case
that the given set is only Dx � fxigNi�� from an original density po�x�� i	e	� for
a pure unsupervised learning problem� pMx �x� is �xed on some parametric or
nonparametric empirical density estimation of the original po�x�� e	g	� pMx�x� �
phx �x� given by a nonparametric kernel estimate ���


phx �x� �
�

	Dx

X
xi�Dx

Khx �x� xi�� Khx �r� �
�

hdx
K�

r

hx
�� �����

with a pre�xed kernel function K��� and a pre�xed smooth parameter hx	
In some practical cases� we may have a hybrid data set DH � fDx�y� Dxg with

Dx�y � fxi� yig
N�
i��� Dx � fxig

N�
i��	 That is� for some input x we know y� so we
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can use not only Dx � fxig
N�
i�� to get phx �x� by eq	��	��� but also Dx�y to make

pMyjx
�yjx� partially �xed at on some parametric or nonparametric empirical

density estimation of the original po�yjx�� e	g	� by the kernel estimates


phx �x� �
�

	DH

X
x��DH

Khx �x � x
�� �

�

	DH



X
x��Dx

�
X

�x��y��Dx�y

�Khx �x� x
��� ����

phy �yjx� �
�
�d�y � y��� �x� y�� � Dx�y �Item �����
�

h
kr
y

K� y�y
�

hy
�� �x� y�� � Dx�y �Item ���� � �d�y� �

�
� for y � ��
�� for y �� ��

with a pre�xed smooth parameter hy	 We call this learning problem as semi�
unsupervised learning problem	

� Item ��� Free	 It means that pMa�a�� a � fxjy� yjx� yg is a totally unspeci�ed
density or probability function in the form p�a� without any constraint by itself	
Thus� it is free to change such that it can be speci�ed through other components
indirectly	 However� in order to have a useful Ying�Yang pair� its each part �i	e	�
either M� or M�� should has no more than one component free in the same time	
In this paper� we will simply use p�a� to denote that pMa�a� is free	

� Item ��	 Parameterized Architecture	 It means that pMa�a�� a � fxjy� yjx� yg is
either a simple parametric density� e	g	� a gaussian pMxjy

�xjy� � G�x�mxjy��xjy�
with mean mxjy and variance matrix �xjy� or a compounded parametric density
with some of its parameters de�ned by a complicated function with a given para�
metric architecture consisting of a number elementary units that are organized
in a given structure	 Taking a three layer perceptron as an example� we have the
following S�x�W �

S�x�W � � 
my� � � � � � mykr
�� myi

� s�

kbX
j��

w
���
i�j

s�x
T
W

���
j

� w
���
j�� ��� �����

as the meanmyjx of pMyjx�yjx� � G�y�myjx� �
�I�� whereW � fw���

i�j �W
���
j � w

���
j��g�

s�u� is a sigmoid function� and kb represents the scale or complexity of the para�
metric architecture	
Generally speaking� the design of a parameterized architecture consists of
� �a� Speci�cation of density function form pa�a�� e	g	� we have pMyjx�yjx� �

G�y� S�x�W �� ��I� in eq	��	��	
� �b� Speci�cation of one or several types of elementary units in a �xed basic

structure with a complexity kba	 For example� it can be a simple sigmoid neuron
or a gaussian unit with kba ignored� or it can be a myi given by eq	��	�� with
a complexity kba	

� �c� Speci�cation of a structure on how to organize those elementary units
into the architecture	 For example� by the cascade organization of sigmoid
neurons� we can get a three layer perceptron eq	��	��	

��� Model Selection
More precisely� it should be called as Structural Scale Selection for select�

ing the set of scale parameters k � fkr� qr� fkbagg with each elements de�ned
as above� For the simple cases� some of the elements in k can disappear� Par�

ticularly� for eq	��	�� we have kr � N and kbx is indirectly speci�ed by the smooth

parameter hx	 That is� hx � h�kbx� or k
b
x � kbx�hx�	 Actually� if we quantize hx into

a number of discrete values h� � h� � � � �hkbx � � � �� we get a de�nite mapping

between kbx and hkbx 	
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��� Parameter Learning or Estimation
After the above three levels of speci�cations� the only unspeci�ed part

for each component pMa
�a�� a � fxjy� yjx� yg is a set �a of parameters in

certain domains� Putting all of them together� we get the parameter set � to
specify� which is usually done automatically by some optimization algorithm�
In the literature� this task is also called learning simply in a narrow sense�

��� A Summary
The learning in a BYY system is a process of the above four levels of

speci�cations� based on the nature of the perception task� the given set of
training samples� and some previous knowledge and assumption� This process
consists of the following parts�

� �a� Based on the nature of the perception task� the domain Y and its complexity
kr are designed�

� �b� Based on the given set of training samples� pMx �x� is pre�xed at some non�
parametric empirical estimate phx �x�� e	g	� by eq	��	�� or eq	��	��� and sometimes
pMyjx�yjx� is partially �xed by eq	��	���

� �c� Based on some previous knowledge� assumption and heuristics� architecture
design is made on S � fSxjy � Syjx� Syg to specify whether each of them is free�
and if not free� to further specify its parameterized architecture�

� �d� We also need to select structural scale fkbxjy � k
b
yjx� k

b
yg�

� �e� Then� we implement parameters learning on � � f�xjy � �yjx� �yg	

The entire process will be guided by the theory given in the next section�

�� Basic Bayesian Ying�Yang Learning Theory

Our basic theory is that the speci�cations of an entire Ying�Yang system
should best enhance the so called Ying�Yang Harmony or Marry� through
minimizing a harmony measure called separation functional�

Fs�M��M�� � Fs�pMyjx
�yjx�pMx �x�� pMxjy

�xjy�pMy �y�� � �� ����

Fs�M��M�� � �� if and only if pMyjx
�yjx�pMx �x� � pMxjy

�xjy�pMy �y��

which describes the harmonic degree of the Ying�Yang pair� Such a learning
theory is called as Bayesian Ying�Yang �BYY� Learning Theory� Particularly�
if we only know Dx and the learning is based on pre�xing pMx

�x� at some
estimate fromDx� we call it BYY Unsupervised Learning� if we know a hybrid
data set DH � fDx�y� Dxg and the learning is based on pre�xing pMx

�x� and
pre�xing pMyjx

�yjx� partially at some estimates from DH � we call it BYY
Semi�unsupervised Learning�

Generally speaking� Fs�M��M�� should increase as the discrepancy be�
tween pMxjy

�xjy�pMy
�y� and pMyjx

�yjx�pMx
�x� increases� Three categories of

separation functionals� namely Convex Divergence� Lp Divergence� and De�
correlation Index� have been suggested in ���� ��
� Particularly� the Convex
Divergence is de�ned as

Fs�M��M�� � f��� �
Z
x�y

pMyjx
�yjx�pMx �x�f�

pMxjy
�xjy�pMy �y�

pMyjx
�yjx�pMx �x�

�dxdy� ����
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where f�u� is strictly convex on ������� When f�u� is twice di�erentiable
with f��� � �� eq����	� is equivalent to Csiszar general divergence ��
� The
BYY learning is called Bayesian Convex YING�YANG �BCYY� learning�

For convenience� in this whole paper we adopt such a convention that
�a�
R
u
denotes the integral operation when u is known to be a real � �b� in

general when whether u is real or discrete is unclear yet�
R
u
denotes either

the integral operation for a real u or the summation operation for a discrete
u� �c� we explicitly use

P
u if u is already known to be discrete�

When f�u� � u� � � � � � � eq	��	�� becomes

Fs�M��M�� � ��
Z
x�y


pMyjx
�yjx�pMx�x��

��� 
pMxjy
�xjy�pMy �y��

�
dxdy� ���

we call it as Positive Convex �PC� divergence� which is closely related to Renyi��

divergence	 Interestingly� when � � ���� it leads to the Hellinger distance ��� which

has a nice symmetric feature and can also be shown to be the only common special

case of the above mentioned Lp Divergence and De�correlation Index ��� ��	
When f�u� � lnu� eq����	� reduces into the well known Kullback Diver�

gence�

KL�M��M�� �

Z
x�y

pMyjx
�yjx�pMx �x� ln

pMyjx
�yjx�pMx �x�

pMxjy
�xjy�pMy �y�

dxdy� ����

In this special case� the BYY learning is called Bayesian�Kullback YING�
YANG �BKYY� learning�

Although the major function of a BYY system is determined by architec�
ture design and a BYY system learned with di�erent separation functionals
under the same architecture design usually performs the same task� di�erent
separation functionals indeed bring some di�erent features in learning and
implementation�

The nice property lnxy � lnx � ln y makes the Kullback divergence
the most elegant one for implementation� For example� we can decompose
KL�M��M�� into

KL�M��M�� � �HMyjx
�Q�Myjx�M�� � Cfy�M���g

�HMx �

HMyjx
�

Z
x

pMx �x�HMyjx
�x�dx� HMyjx

�x� � �
Z
y

pMyjx
�yjx� ln pMyjx

�yjx�dy�

Cfy�M���g
� �

Z
y

pM� �y� ln pMy �y�dy� pM� �y� �

Z
x

pMyjx
�yjx�pMx�x�dx�

Q�Myjx�M�� �

Z
x

pMx �x�QfMyjx�Mxjyg
�x�dx� HMx � �

Z
x

pMx �x� ln pMx �x�dx�

QfMyjx�Mxjyg
�x� �

Z
y

pMyjx
�yjx� ln pMxjy

�xjy�dy� ����

As will be observed in the following sections� this decomposition brings us
at least two advantages� First� it helps us to get further deep insights in
the level of each or some combination of the four components� Second� the
decomposition on the level of components usually will result in considerable
saving in computation� In addition� from the next section� we can also observe
that the property lnxy � lnx� ln y and the decomposition also help to best
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exploit the structural features in the BYY systems with more complicated
architectures�

Thus� BKYY learning is the most useful case and has been extensively
studied in ��	�	�� 	��	�
� In this paper� most cases will also concentrate on it
and just consider some other separation functional at one speci�c occasion�

More formally� the theory given by eq������ provides theoretical guides on
the following speci�c aspects�

� Item ��� Parameter estimation or learning� which is usually called
learning in the narrow sense� That is� given S and k �xed� we determine

�
�
� arg

g

min
�

Fs��� S� k��

�arg� means augment� �
g

min � denotes the global minimization� ����

� Item ��� Structural scale selection� or called model selection� Given
S� we determine

k
� � arg

g

min
k

K� K � fj � J��j� �
g

min
k

J��k�g� J��k� � Fs��
�
� k� S�� ����

That is� to pick the smallest one among those values of k that makes
J��k� reach its smallest value� In other words� we select the most economic
structural scale when we have multiple choices� Usually� once J��k� reaches
its smallest value at k�� it will keep this smallest value for all k � k��
We also have an alternative way for selecting k�

k
�
� arg

g

min
k

J��k�� J��k� � �
Z
x�y

pM� �x� y�j�� ln pM� �x� y�j��dxdy� ����

where pMi
�x� y�j�� � i � �� 	 denote the learned joint densities given in

eq��	��� with the parameter �� given by eq������ This J��k� is a kind of
complexity measure of the BYY system and is expected to be the smallest
for the least complicated system� Usually� J��k� reaches its smallest only
at one value of k� In the most cases� the results of eq������ and eq������ are
the same� However� each way has a di�erent feature� For eq������� because
J��k� is actually random also� we should consider this issue when getting
K� especially for a limited number of samples� While for eq������� at some
special cases� J��k� may provide a wrong result because it biases to k � ��
In fact� J��k� is just a part of J��k��

� Item ��� Architecture evaluation� That is� for a set of architecture
S � fS�i�� i � �� � � � � Nsg� we select the one S

�i�� with

i
�
�

g

min
i

J�S
�i�

�� J�S
�i�

� � �
Z
x�y

pM� �x� y�jf���k�g ln pM� �x� y�jf���k�gdxdy� ����

where the meaning is similar to the case of eq������ above�
� Item ��� Regularization� For a limited number N of samples� regular�
ization can be obtained via the following three ways�
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� �a� Impose some structural constraint on one component to regularize the
other components	 For example� for a forward net we can design Syjx with
more freedom to ensure its representation ability� but design Sxjy with less
freedom to regularize the learning to get a good generalization	 Similarly� for
a backward net or generative model� we can design Sxjy with more freedom to
ensure its representation ability� but design Syjx with less freedom to regularize
the learning to get good generalization	

� �b� If we have several possibilities for estimating pMx �x� and pMyjx
�yjx��

we choose a best one that minimizes Fs�M��M��	 For example� pMx �x�
and pMyjx

�yjx� are estimated by pMx �x� � phx �x� given by eq	��	�� and

pMyjx
�yjx� � phy �yjx� by eq	��	��� the smooth parameters hx� hy can also

be optimized by

fh�x� h�yg � arg
g

min
fhx�hyg

Fs��
�� k�� S�i

��� hx� hy�� �����

� �c� Even interestingly� we can improve the generalization via Re�sampling	
At the beginning� we can use some simple methods to get some estimates on
pMx�x� and pMyjx

�yjx� �e	g	� to avoid the implementation di�culty of integral

operations� we simply let pMx �x� � phx �x� given by eq	��	�� with hx � � and
pMyjx�yjx� � phy �yjx� by eq	��	�� with hy � � such that the integral operations

are turned into summations�	 After learning� we can get new estimates on
pMyjx�yjx� and pM� �x� �

R
y
pMxjy �xjy�pMy �y�dy	 Then� we re�sample from

them a number of new samples to add in the original training set� and use
the enlarged training set to estimate pMx �x� and pMyjx�yjx� by the kernel
estimates with hx � � and hy � � again	 We can repeat the similar procedure
if necessary until the resulted Fs reaches its most smallest value	

�� Structuralized BYY Systems and Theories

��� The Architecture of YING�YANG System with Output Action for
Supervised Learning� In a sister paper by the present author ��	
� the above
basic BYY learning system and theory have been naturally extended into a
more sophisticated form with three new components added for implement�
ing various supervised classi�cation and regression tasks such that not only
the existing learning methods and theories for multilayer net� mixtures�of�
experts� and radial basis function nets are uni�ed as special cases with new
learning algorithms� but also new selection criteria obtained for the number
of hidden units and experts� Readers are referred to ��	
 for details�

��� The Cascade or Ladder Architecture of YING�YANG Pairs� We con�
sider the case that y consists of m subsets y � fy�j�� j � �� � � � �mg with each
forming a layer that satis�es

Item ��� y�j� is only dependent to the immediate lower layer y�j��� and imme�
diate upper layer y�j���� and y�j��� and y�j��� are independent under a given y�j�	
That is p�y�j���� y�j���jy�j�� � p�y�j���jy�j��p�y�j��� jy�j��� p�y�j���� y�j�jy�j���� �

p�y�j�jy�j����� and p�y�j�� y�j���jy�j���� � p�y�j�jy�j����	
In this special case� we have
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pMy �y� � pMy �y
�m��

mY
j��

pMy �y
�j��� jy�j��� pMyjx

�yjx� �
mY
j��

pMyjx
�y�j�jy�j����� �����

Moreover� we make the notations changes �a� x�j� � y�j��� and pMy �y
�j���jy�j�� �

pMxjy
�x�j�jy�j�� � �b� x��� � x and pMyjx

�y���jx���� � pMyjx
�y���jx�� and then sub�

stitute them into eq	��	�� we further get

pMy �y� � pMy �y
�m��

mY
j��

pMxjy
�x�j�jy�j��� pMyjx

�yjx� �
mY
j��

pMyjx
�y�j�jx�j��� �����

Next� we put them into eq������� we can get

KL�M��M�� �

mX
j��

KLj�M��M���

KLj�M��M�� �

Z
x�j��y�j�

pMyjx
�y�j�jx�j��pMyjx

�x�j�jx�j����

� ln
pMyjx

�y�j�jx�j��pMyjx
�x�j�jx�j����

pMxjy
�x�j�jy�j��pMy �y

�j�jy�j��� � dx�j�dy�j�� ����

Still� we make the notations changes pMx
�x�j�� � pMyjx

�x�j�jx�j���� and

pMy
�y�j�� � pMy

�y�j�jy�j����� and put them into eq������� we �nally get

KLj�M��M�� �

Z
x�j��y�j�

pMyjx
�y�j� jx�j��pMx �x

�j�� ln
pMyjx

�y�j�jx�j��pMx �x
�j��

pMxjy
�x�j�jy�j��pMy �y

�j��
dx

�j�
dy

�j�
�

�����

Therefore� we see that the entire Ying�Yang system can be regarded as
consisting of m Ying�Yang pairs in a cascade or ladder architecture� As a
whole the entire system implements the following cascade bi�directional map�
pings�

x � x��� � y��� � x��� � y��� � x��� � � � � � x�m� � y�m��

y�m� � x�m� � y�m��� � x�m��� � y�m��� � � � � � y��� � x��� � x� �����

Thus� the minimization of KL�M��M�� for the entire system is simply the
minimization of the summation

Pm
j��KLj�M��M��� This kind of property

makes us possible to concentrate on the learning of the basic form given in
the previous section�

��� The Star Architecture of YING�YANG Pairs� We consider the case

that x consists of m subsets x � fx�j�� j � � � � � �mg that satis�es

Item ��� The subsets x�j� becomes independent to each other under a given
y	 That is� p�x���� � � � � x�m�jy� �

Qm

j��
p�x�j�jy�	 In this special case� we have

pMxjy �xjy� �
Qm

j��
pMxjy �x

�j�jy�	

This property will simplify the term Q�Myjx�M�� in eq	��	�� into

Q�Myjx�M�� �

mX
j��

Z
xj

pMx �xj �QfMyjx�Mxjyg
�xj�dxj �
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QfMyjx�Mxjyg
�xj� �

Z
y

pMyjx
�yjxj� ln pMxjy

�xjjy�dy �����

��� The Tree Architecture of YING�YANG Pairs	 By combining the above cas�
cade and star architectures� we can obtain various tree architectures	 In those cases�
we can also exploit the architecture�s features to facilitate the learning� in help of
eq	��	��� eq	��	��� and eq	��	��	

Finally� we should point out that for the cases that non�Kullback separation

functionals are used� we cannot get the above nice features anymore	 However� we

can still heuristically enforce some of these features such that the learning on the

above structuralized architectures can also be facilitated to some extent	

�� BKYY� Understandings and Implementations

In the case of Kullback divergence eq������� for a �xed pMx
�x� based on Dx�

the term �HMx
in eq������ is irrelevant and thus can be ignored� That is�

minM��M� KL�M��M�� is equivalent to minfMyjx�M�gKl�M��M�� with

Kl�M��M�� �

��HMyjx
� Q�Myjx�M�� � Cfy�M���g

�R
x
pMx �x�KLyjx�x�dx � Lx�M� �

�Q�Myjx�M�� � IMyjx
�KLy � IMyjx

� HM��y �HMyjx
�

KLyjx�x� �

Z
y

pMyjx
�yjx� ln

pMyjx
�yjx�

pM� �yjx�
dy� Lx�M� �

Z
x

pMx �x� ln pM� �x�dx�

pM� �yjx� �
pMxjy

�xjy�pMy �y�

pM� �x�
� pM� �x� �

Z
y

pMxjy
�xjy�pMy �y�dy�

HM��y � �
Z
y

pM� �y� ln pM� �y�dy� KLy �

Z
y

pM� �y� ln
pM� �y�

pMy �y�
dy� �����

with the other notations kept the same as in eq�������
Here� we have three decompositions for Kl�M��M��� This �rst one is the

most convenient one for implementation� The other two are useful in some
speci�c cases� Moreover� they also provide us two other types of interesting
interpretations for the BKYY learning as follows�

� Item ��� pMx �x� is an approximation of the true density po�x�� while pM� �x� is
the marginal density or called mixture density by the Ying model	 Thus� Lx�M�

is the log�likelihood function of pM� �x�	 Moreover� pM��yjx� can be regarded as
the Ying model�s mirror of pMyjx�yjx�	 Therefore� the BKYY learning attempts

to do maximum likelihood �tting on x with pM��x� and to minimize the expected
discrepancy KLyjx�x� between the Yang passage and its mirror	

� Item ��� Q�Myjx�M�� is an approximation of the expectation of the mixed log�
likelihood QfMyjx�Mxjyg

�x�� which represents the �t between a pattern generated

via the Ying passage from y and the current input x � X� and the �t is weighted
or coordinated by the probability pMyjx�yjx� of the y under the current x by
the inverse mapping via the Yang passage	 KLy represents the discrepancy be�
tween pMy �y��i	e	� the original density in Y � and pM� �y� �i	e	� the density in Y
described by the Yang model�	 Moreover� IMyjx is the information transmitted
via the Yang passage	 Therefore� the BKYY learning is equivalent to minimize
the weighted �t between the input pattern x and the pattern generated from the
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Ying passage and to minimize the discrepancy between the original density in
Y and the density in Y described by the Yang model� as well as to minimize
the information transmitted via the Yang passage	 The last minimization seems
counter�intuitive at �rst glance	 Actually� it is a regularization to avoid the over�
�t of the Ying�Yang system on the current pMx�x� through preventing the Yang
passage from over�coordination	

Moreover� from eq������ we can also easily get the following two facts
which will be used in the subsequent sections�

� Item ��� When pMyjx
�yjx� is free� minfMyjx�M�gKl�M��M�� will result in

pMyjx
�yjx� � pM� �yjx� � pMxjy

�xjy�pMy �y�	pM� �x� ��	��

This point can be easily observed from KLyjx�x� � �	
� Item ��� When pMy �y� is free� minfMyjx�M�gKl�M��M�� will result in

pMy �y� � pM� �y� �

Z
x

pMyjx�yjx�pMx�x�dx� ��	��

This point can be easily observed from KLy � �	

In eq������ and eq������� to avoid the di�culty of computing integral in
implementation� we approximately let pMx

�x� � phx �x� given by eq��	�	�
and pMyjx

�yjx� � phy �yjx� by eq��	��� simply with hx � � and hy � �� and
obtain�

Lux�M�
�

�

	Dx

X
x�Dx

ln pM� �x�� Lsux�M�
� ��L

u
x�M�

�
��

	Dx�y

X
�x�y��Dx�y

ln pM� �x��

Q
u�Myjx�M�� �

�

	Dx

X
x�Dx

QfMyjx�Mxjyg
�x��

Q
su�Myjx�M�� � ��Q

u�Myjx�M�� �
��

	Dx�y

X
�x�y��Dx�y

ln pMxjy
�xjy��

H
u
Myjx

�
�

	Dx

X
x�Dx

HMyjx
�x�� H

su
Myjx

� ��H
u
Myjx

� ��

	Dx�y

X
�x�y��Dx�y

ln pMyjx
�yjx��

puM�
�y� �

�

	Dx

X
x�Dx

pMyjx
�yjx�� psuM�

�y� � ��p
u
M�

�y� �
��

	Dx�y

X
�x�y���Dx�y

�d�y � y���

�� �
	Dx

	Dx � 	Dx�y

� �� �
	Dx�y

	Dx � 	Dx�y

� �����

where the superscript �u� and �su� denote the cases of unsupervised and
semi�unsupervised learning respectively� That is� it is equivalent to use the
empirical averages to approximate the above mentioned expectations�

Correspondingly� we have that minM��M� KL�M��M�� is equivalent to
minfMyjx�M�gKl�M��M�� with

Kl�M��M�� �

�
�

�Dx

P
x�Dx

KLyjx�x� � Lux�M�
�

�Hu
Myjx

�Qu�Myjx�M�� � Cfy�M���g
� for unsupervised learning� �����

Kl�M��M�� �

�
��

�Dx

P
x�Dx

KLyjx�x� �
��

�Dx�y

P
�x�y��Dx�y

ln
pMyjx

�yjx�

pM�
�yjx� � Lsux�M�

�

�Hsu
Myjx

�Qsu�Myjx�M�� � Cfy�M���g
�

�����
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for semi�unsupervised learning�
In summary� KL�M��M�� given by eq������ or eq������ is the most general

case for BKYY learning� Kl�M��M�� given by eq������ is a special case for
a completely �xed pMx

�x� based on Dx such that the possibilities given by
the previous Item ����b���c� are omitted� Kl�M��M�� given by eq������ is a
further speci�c case with pMx

�x� � phx �x� given by eq��	�	� and pMyjx
�yjx� �

phy �yjx�� by eq��	��� simply with hx � � and hy � ��
As some indirect evidences for the justi�cation of BKYY learning� in the

following we show that several di�erent speci�c expressions of Kl�M��M��
given by eq������ or eq������ have actually been used under di�erent speci�c
semantics and from di�erent perspectives in the literature within the past
decade already�

� Item ��� In the special case of �nite mixture with the speci�c design eq	��	� in
Sec	 �� we can get that the Kl�M��M�� given by eq	��	�� for the unsupervised
case is actually equivalent to the cost function D�W��� proposed heuristically in
���� and also �

�Dx

P
x�Dx

KLyjx�x� is equivalent to F �W��� in ��� too	
� Item ��	 In the special case of gaussian mixture with same spherical variance�
Kl�M��M�� in the above Item �	� at the special case� or equivalently D�W����
can be shown to be equivalent to the cost function F termed as Helmholtz free
energy ��� derived from the minimum description length �MDL� principle for
auto�encoders� if we ignore a constant part in F due to the quantization width	

� Item ��
 Denoting pMxjy �xjy�pMy �y� � p�y� xj��	 In the special case that

pMyjx�yjx� � p�yjx� is free� by combining the two terms �Qu�Myjx�M�� �

Cfy�M���g into one� we can see that the Kl�M��M�� given by eq	��	�� for the
unsupervised case is actually equivalent to the cost function F �P��� given by
equation ��� in ���� derived heuristically but linked to � free energy� again	

� Item ��� In the special case of �nite mixture in general as well as gaussian mix�
ture as an example� by ignoring some constants� the special case of Kl�M��M��
in the above Item �	�� or equivalently D�W���� is also equivalent to a vector
quantization cost function derived from minimizing the uncoded �i	e	� error� bits
and the wasted bits for the transmission channel�s capacity ����	

� Item ��� In the special case that y is a binary vector for representing all the
hidden states of a multilayer networks with both bottom�up and top�down con�
nection weights� pMyjx�yjx� and pMxjy �xjy� are two factorial �or factorizable

within each layer� probability distributions corresponding to the both bottom�
up and top�down connections� respectively� the instantaneous version of the
Kl�M��M�� given by eq	��	�� for the unsupervised case� i	e	� Kl�M��M���x� �
�HMyjx�x��QfMyjx�Mxjyg

�x� �Cfy�M���g can be shown to be equivalent to the

free energy F �d� ��Q� used in Helmholtz Machine ��� ��� obtained in the moti�
vation of using it as a upper bound of the negative log�likelihood function of
generating a data by the top�down connections as a generative model	

In this paper� Kl�M��M�� given by eq������ or eq������ is obtained as special
cases of KL�M��M�� given by eq������� which is proposed as a harmony
measure of a Ying�Yang pair in a BYY system for a uni�ed general statistical
learning framework� Not only it is interesting that

� �a� Kl�M��M�� from this new perspective coincides with those existing criteria
in several speci�c cases above�

� �b� In comparison with Kl�M��M��� the general form KL�M��M�� is not a
trivial generalization because the part contributed by pMx�x� cannot be omitted
for many cases� e	g� the case of the cascade architecture given in eq	��	�� and
the cases of improving the generalization as suggested by the previous Item
�	��b���c��
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But also from this new perspective we can obtain a number of new insights
and a number of new uses just fromKl�M��M�� given by eq������ or eq�������
as have been stated in Sec�� and will be further elaborated later�

Before closing this section� we brie�y discuss the Convex Divergence
eq����	�� with which unfortunately we cannot get the decomposition simi�
lar to that in eq������� Therefore� minM��M� Fs�M��M�� should be made as a
whole� In its implementation� to avoid the di�culty of integral operation in
implementation� we also approximately let pMx

�x� � phx �x� given by eq��	�	�
with hx � � and pMyjx

�yjx� � phy �yjx� by eq��	��� with hy � �� However�
this time we can only do so for pMyjx

�yjx�pMx
�x� outside f���� Otherwise�

letting h � � for the pMyjx
�yjx�pMx

�x� inside f��� will result in a nonsense
result� Basically� with the constant f��� ignored� we let

F
u
s �M��M�� � � �

	Dx

X
x�Dx

Z
y

pMyjx
�yjx�f�

pMxjy
�xjy�pMy �y�

pMyjx
�yjx�ph�x�

�dy� �����

Fsus �M��M�� � ��F
u
s M��M� � ��

	Dx�y

X
�x�y���Dx�y

�d�y � y��f�
pMxjy

�xjy�pMy �y�

pMyjx
�yjx�ph�x�

��

As will be discussed sometimes later� BCYY learning has some interesting
features di�erent from BKYY learning�

�� Features of Basic BYY Learning System and Theory

The above proposed Basic BYY learning system and theory have the following
favorable features�

��� Implemented by Alternative Minimization� The speci�c structure
of the Ying�Yang system given in Fig�	�� facilitates the implementation of
minM��M� Fs� which can be made by an iterative procedure to modify ��S� k
in M��M� alternatively� namely we have

Step � � Fix M� � M
old
� � get M

new
� � argmin

M�

Fs�

Step � � Fix M� � Mold
� � get Mnew

� � argmin
M�

Fs� �����

which is guaranteed to reduce Fs until converged to one local minimum�

��� A Uni�ed Statistical Theory for Unsupervised and Semi�unsupervised
Learning� Di�erent designs on domain Y and on architecture S � fSxjy� Syjx�
Syg� as well as di�erent choices on speci�c forms of separation functionals
will lead us to quite a large number of di�erent speci�c types of Ying�Yang
system and thus a large number of speci�c learning models� Therefore� the
BYY system with the above learning theory actually can function as a uni�ed
general statistical learning theory which can provide the speci�c systems and
theories for the following major areas of unsupervised learning and its semi�
unsupervised extension on the hybrid set DH discussed in Item 	���

� �a� BYY Pattern Recognition System and Theory	 It is the special case given by
Item �	 or equivalently Item �	��b�	
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� �b� BYY Factorial Encoding System and Theory	 It is the special case given by
Item �	��a�	

� �c� BYY Data Dimension Reduction System and Theory	 It is the special case
given by Item �	�� including Distributed dimension reduction and Visualized
map� which is a new data analysis tool	

� �d� BYY Independent Component Analysis System and Theory� which includes
Principal component analysis �PCA� as a special case	 It is the special case given
by Item �	��a� and Item �	��a�	

As will be shown in the subsequent sections� these BYY speci�c systems and theories

will not only include the existing major learning models and theories in each area

as special cases� but also provide them new theories for modeling or structural scale

selection as well as architecture evaluation	 Moreover� many new variants and new

models can also be obtained with new interesting features	

��� A New Framework for Improving Generalization in Finite Sam�
ples� For improving the generalization ability� the existing regularization ap�
proaches or generalization error�s up�bound estimation methods �e�g�� VC
dimension method� introduce an extra penalty term to the original error cost
function to be minimized together� and the existing Bayesian type approaches
introduce a priori density on the parameters� Being di�erent from all these
existing approaches� the BYY learning system and theory holds the following
interesting features for improving generalization�

� �a� The BYY learning system and theory introduce two complement architec�
tures to regularize each other and use the selection criteria eq	��	�� and eq	��	��
to optimize the architectures such that the generalization can be improved	

� �b� Instead of targeting on minimizing the expected generalization error as an
absolute standard by the existing approaches� the BYY learning system and
theory aims at a relative standard � minimizing the discrepancy of the two
learned complement models under the current set of �nite samples	

� �c� The BYY system and theory only bases on the two complement Bayesian
representations� there is no use of a priori on the parameters	 Instead� a priori is
embedded via the designs of the two complement architectures	

� �d� In addition� the two Bayesian representations may not be equal� i	e	� the
Bayesian rule may not be exactly true but only approximately holds	 Therefore�
our approach should not be confused with the existing Bayesian approach� but
can be regarded a new type of Structural and Relaxed Bayesian approach	

�	� Being Easily Extended Into A Uni�ed Statistical Theory For Various
Structuralized Architectures for supervised learning as well as various struc�
turalized learning purposes� as shown in Sec���

	� BYY Pattern Recognition System and Theory

��� Finite Mixture� Pattern Recognition or Clustering Analysis
We consider the special case of Item 	�� with y � �� � � � � kr and denote

k � kr� Moreover� we assume that x � Rd and pMx
�x� � phx �x� given by

eq��	�	�� with other architectures being pMxjy
�xjy� � p�xj�y� and

pMy �y� � �y � ��

kX
y��

�y � �� pMyjx
�yjx� � p�yjx� � ��

kX
y��

p�yjx� � �� �����
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That is� we have pMxjy
�xjy� is parametric� pMyjx

�yjx� and pMy
�y� are free

probability functions� We also denote �k � f�y� �yg
k
y���

As shown in ��
� we can obtain a number of interesting results�

� Item 
�� Since pMyjx
�yjx� is free� from Item �	� and eq	��	�� we have pMyjx

�yjx� �
pM� �yjx� and KLyjx�x� � �	 Thus� for a given k it follows also from eq	��	�� that
minfp�yjx���kgKl�M��M�� is equivalent to max�k L��k� with 


L��k� � Lux�M�
�

�

	Dx

X
x�Dx

ln p�x��k�� p�x� �k� �

kX
y��

�yp�xj�y�� p�yjx� � p�xj�y��y
p�x� �k�

�

�����
where L��k� is the log�likelihood function of the �nite mixture p�x��k�	 That is�
the parameter estimation part on �k is equivalent to maximum likelihood learning
of the �nite mixture p�x��k���� ��	

� Item 
�� Since pMy �y� is free� from Item �	� we have eq	��	��	 It further follows
from eq	��	�� that the Alternative Minimization algorithm eq	��	� becomes

Step � � From eq������� get pnew�yjx� � p�yjx�j
�k��

old
k

�

Step � � �
new
y �

�

	Dx

X
x�Dx

p
new�yjx�� �

new
y � argmax

�y

fQu�Myjx�M��g� ����

which is exactly the well known EM algorithm ��� �� ���	 Here� we obtain it via
a much simpler way with its convergence proved very easily	

� Item 
�� More interestingly� we can solve a long unsolved open problem�to
select the best k� by eq	��	�� or eq	��	�� with their speci�c forms as follows


J��k� �
�

	Dx

X
x�Dx

kX
y��

p��yjx� ln p��yjx� � J��k��

J��k� � � �

	Dx

X
x�Dx

kX
y��

p
��yjx� ln p�xj��y� �

kX
y��

�
�
y ln �

�
y� �����

where for each pre�xed k� p��yjx�� ��y and ��y are the results of BYY learning
eq	��	�� by a given learning algorithm� e	g	� the EM algorithm eq	��	��	
Assume that ko is the true number of the original mixture that x comes from	
Under a very mild condition on p�xj�y� that can be satis�ed by gaussian and
other exponential family densities� we can prove that J��ko� � J��k� for k � ko

and J��k
o� � J��k� for k � ko� as Nhd � � and h � ����	 Moreover� we can

also prove J��k
o� � J��k� for any k �� ko for those cases that the densities in a

mixture are not highly overlapped ��� ��	
� Item 
�� For the Gaussian mixture� i	e	� p�xj�y� � G�x�my��y�� the above

EM algorithm eq	��	�� will be simpli�ed to the more speci�c form as given in
����	 More importantly� we can select the best number of gaussians by a further
simpli�ed form of J��k� or J��k� with ��� ��� ��� ���


J��k� �

kX
y��

��y ln
p
j��

y j �
kX

y��

��y ln�
�
y� �����

� Item 
�� For the Gaussian mixture at the special case that �y � ��I and
�y � 	k� using my as the center of a cluster and letting the corresponding
p�yjx� to be hard�cut into
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I�yjx� �
n
�� if y � arg maxjp�jjx� � arg minjkx�mjk��
�� otherwise�

�����

then using I�yjx� to replace p�yjx� in the EM algorithm for Gaussian mixture
in this special case� we will obtain exactly the well known k�means algorithm
for the Mean Square Error �MSE� clustering analysis or vector quantization
��� ��� ���	 In the existing literature� however� k must be pre�given manually
or heuristically ����	 More importantly� from eq	��	�� we can get the following
criterion for selecting the best number of k�a solution for an open problem
unsolved for decades ��� ��� ��� ���


J
gh
� �k� � d ln 	� � ln k� or J

gh
� �k� � k

p
Ed
MSE

�

	
� �

EMSE

d	Dx

� EMSE �
�

	Dx

X
x�Dx

kX
y��

I�yjx�kx�myk�� �����

Moreover� the k�means algorithm for the MSE clustering is for the clusters of
spherical shape with �y � ��I only	 For various special cases of �y �� ��I� from
the EM algorithm for Gaussian mixture we can obtain various types of extensions
of the k�mean algorithm� including those so called Weighted MSE clustering�
Mahalanobis distance clustering or elliptic clustering etc	 Furthermore� we can
also get various speci�c forms of the criterion eq	��	�� for detecting the number
of clusters ��� ���	

� Item 
�	 More generally� we consider the �nite mixture p�x��k� given by eq	��	��
with ����j �� ����j and �j � fwj�mj� �

�
��j � �

�
��jg

p�xj�j� � �p
�
	��j	��j

e���	d�x��j �� d�x� �j � �
k
wT
j
�x�mj �

kwjk
k�

	���j
�

k�I �
wjw

T
j

kwjk
� ��x�mj �k�

	���j
�

�����

In this case� the EM algorithm eq	��	�� has the following speci�c form


Step� � From eq������� get pnew�jjx� � p�jjx�j
�k��

old
k

�

Step� � �newj �
�

	Dx

X
x�Dx

pnew�jjx�� mnew
j �

�

�new
j

	Dx

X
x�Dx

pnew�jjx�x�

�new
j �

�

�new
j

	Dx

X
x�Dx

pnew�jjx��x�mj ��x�mj �
T �

w
new
j is a solution of eigen� equation �

new
j w

new
j � �jw

new
j �

�	
�
��j �

new
� �j� or �	

�
��j�

new
�

�

�new
j

	Dx

X
x�Dx

p
new

�jjx�k
wTj �x �mj �

kwjk k��

�	���j �
new �

�

�new
j

	Dx

X
x�Dx

p
new�jjx�k�I � wjw

T
j

kwjk�
��x�mj �k�� �����

where 
j is either the largest or the smallest eigenvalue	
To have a deep insight on the result of this EM algorithm� we start to consider
a simplest case of a single density k � 	 In this case� it is easy to know that mj

is the mean vector of Dx	 Moreover� wj� �
�
��j � �

�
��j have two possible solutions as

follows

� �a� When 
j is chosen as the largest eigenvalue in solving the above eigen�

equation� ����j � wj are the largest eigenvalue and the corresponding eigenvector

of the covariance matrix of Dx� respectively� and ����j are the summation of
all the remaining eigenvalues	 That is� the learning is the so called principal
component analysis �PCA� learning ��	
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� �b� When 
j is chosen as the smallest eigenvalue in solving the above eigen�
equation� ����j � wj are the smallest eigenvalue and the corresponding eigenvec�

tor of the covariance matrix of Dx� respectively� and ����j are the summation
of all the remaining eigenvalues	 That is� the learning is the so called minor
component analysis �MCA� learning ����	

Then we consider the general case with k � 	 For each density localized at mj�
we have PCA or MCA� depending on whether its 
j is chosen as the largest or
the smallest eigenvalue	 Thus� as a whole� we actually get the so called localized
PCA or localized MCA or localized hybrid PCA and MCA learning ���� �� ���	
Moreover� we can select the best number of densities by eq	��	�� with j��

y j re�
placed by the product �����j�

new������j�
new�	

Furthermore� we can modify Step � in eq	��	�� into the following adaptive one


Step� � �newj � ��� ���oldj � �pnew�jjx�� mnew
j � �� � ��mold

j � �
pnew�jjx�
�new
j

x�

w
new
j � w

old
j � �

�d�x�wj � mj � 	�� 	��

�wj
j
wj�w

old
j

� ������

�	���j�
new � ��� ���	���j�

old � �
pnew�jjx�
�new
j

k
wTj �x�mj �

kwjk k��

�	���j�
new � ��� ���	���j�

old � �
pnew�jjx�
�new
j

k�I � wjw
T
j

kwjk�
��x�mj �k��

where � � � is a learning stepsize	 Thus� we get an adaptive algorithm� which
has the same performance as the batch way EM algorithm eq	��	��	 Particularly�
for a component density we can get PCA learning as long as ����j � ����j initially�

and MCA as long as ����j � ����j initially	

In addition� in eq	��	��� eq	��	�� and eq	��	�� the factor kwjk
� can be discarded

under the constraint kwjk� � 	
� Item 
�
 We can easily extend the above case into localized principle subspace
analysis �PSA� or localized minor subspace analysis �MSA� as well as a hybrid of
the two ���� �� ��� by replacing the vector wj with a matrix Wj which consists
of qj column vectors� as well as making the following changes

� �a� kwjk

� �  is replaced by WT
j Wj � I� and the second choice of d�x��j�

in eq	��	�� becomes d�x��j� with �j � fWj �mj� ���j � ���jg and

d�x��j � �
k�WT

j Wj �
� �
�WT

j �x�mj �k�
	���j

�
k�I �Wj �W

T
j Wj�

��WT
j ��x�mj �k�

	���j
� ������

� �b� In Step � of eq	��	���Wnew
j is a solution of eigen�equation �new

j Wnew
j �

Wnew
j j with j consisting of the qj largest eigenvalues of �new

j for PSA or
the qj smallest eigenvalues of �new

j for MSA	

� �b� In Step � of eq	��	��� the updating formulae for �����j�
new and �����j�

new

should also be modi�ed accordingly with eq	��	�	
Again� we can select the best number of densities by eq	��	�� in the same way as
in Item �	�	

� Item 
�� All the previously discussed cases can be extended to their extensions
with semi�unsupervised learning� what we need is the following substitutions

� �a� In eq	��	��� we replace L��k� � Lux�M�

by L��k� � Lsux�M�
from eq	��	���

� �b� In eq	��	��� we replace Qu�Myjx�M�� by Qsu�Myjx�M�� from eq	��	���
� �c� In eq	��	��� we let �newy is given by

�
new
y �

��

	Dx

X
x�Dx

p
new�yjx� � ��

	Dx�y

X
�x�y���Dx�y

�d�y � y
��� ������

and replace Qu�Myjx�M�� by Qsu�Myjx�M�� from eq	��	���
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� �d� The criterion eq	��	�� is replaced by

J��k� �
��

	Dx

X
x�Dx

kX
y��

p��yjx� ln p��yjx� � J��k��

J��k� � �
kX

y��

�
�
y ln�

�
y �

��

	Dx

X
x�Dx

kX
y��

p
��yjx� ln p�xj��y�

� ��

	Dx�y

X
�x�y���Dx�y

kX
y��

�d�y � y
�� ln p�xj�y�� �����

� �e� For gaussian mixture� the EM algorithm eq	��	�� becomes


Step � � get pnew�yjx� � �oldy G�x�mold
y � �old

y �P
k

y��
�oldy G�x�mold

y ��old
y �

�

Step � � get �newy by eq��������and get

mnew
y �

��

�newy 	Dx

X
x�Dx

pnew�yjx�x�
��

�newy 	Dx�y

X
�x�y���Dx�y

�d�y � y��x�

�
new
y �

��

�newy 	Dx

X
x�Dx

p
new

�yjx��x�my��x �my �
T

�
��

�newy 	Dx�y

X
�x�y���Dx�y

�d�y � y
���x�my��x �my �

T
� ������

Again� we can select the best number of gaussians by eq	��	�� with the con�
verged parameters by the above algorithm	
Particularly� for the special case that �y � ��I and �y � 	k� via hard�cutting
p�yjx� into I�yjx� by eq	��	�� after the above Step  and then using I�yjx� to
replace all p�yjx� in the Step �� we can get a semi�unsupervised extension of
the k�means algorithm	 Moreover� in eq	��	��� EMSE is replaced by

EMSE �
��

	Dx

X
x�Dx

kX
y��

I�yjx�kx�myk�� ��

�newy 	Dx�y

X
�x�y���Dx�y

�d�y�y��kx�myk�

������

� �f� In the Step � of eq	��	��� �newj �mnew
j ��new

j are given by those in Step � of
the above eq	��	��	 Moreover� we update

�	���j�
new �

��

�new
j

	Dx

X
x�Dx

p
new�jjx�kw

T
j �x �mj �

kwjk
k��

�
��

�newy 	Dx�y

X
�x�y���Dx�y

�d�y � y��kw
T
j �x�mj �

kwjk
k�� ������

�	���j�
new �

��

�new
j

	Dx

X
x�Dx

pnew�jjx�k�I � wjw
T
j

kwjk�
��x �mj �k�

�
��

�newy 	Dx�y

X
�x�y���Dx�y

�d�y � y
��k�I �

wjw
T
j

kwjk�
��x�mj �k��

In addition� in eq	��	�� for �x�y�� � Dx�y we just use �d�y � y�� replace
pnew�yjx�	
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��� A General BYY Pattern Recognition System and Theory
We further consider the case of Exclusive Encoding given in Item 	�	�b�

with a binary vectory � 
y�� � � � � ykr �� yj � f���g�
P

kr

j��
yj � �� i�e�� y can only take

those k di�erent values in which only one element is � while all the others
are zero� In this case� we have

pMy �yj � �� � 
j �

kX
j��


j � �� pMyjx
�yj � �jx� � 
j�x��

kX
j��


j�x� � �� ������

When pMy
�y� is free� from Item ��� we have eq������� It further follows from

eq������ that


j �
�

	Dx

X
x�Dx


j �x�� ������

Furthermore� we consider a general design on the density pMxjy
�xjy� and

the probability function pMyjx
�yjx� given by

pMxjy
�xjy� �

kY
j��

pj �xjy� �j�yj � 
j �x� �
egj�x���P
k

j��
egj�x���

� ������

where gj�x� ��� j � �� � � � � k are parametric functions with its architecture
pre�designed� Two typical examples are �g��x� ��� � � � � gk�x� ��
 being the out�
put of �a� a multilayer perceptron and �b� a radial basis function networks�
For pMxjy

�xjy�� it is easy to observe that we have pMxjy
�xjy� � pj�xjy� �j�

when yj � � or equivalently the j�th element of y is � while all the others are
zero� In general� pj�xjy� �j� has the following typical choices�

pj �xjy� �j� �

������
�����

pj �xjy� �j� �
n
G�x� fj �y�Wj �� �j�� for real x�Q

k

n��
qj�n�y�

xn ��� qj�n�y��
��xn � for binary x�

p�xjy� �� �
n
G�x� f�y�W �� ��� for real x�Q

k

n��
qn�y�

xn ��� qn�y��
��xn � for binary x�

pj �xj�j� �
n
G�x�mj ��j �� for real x�Q

d

n��
qxn
j

�� � qj �
��xn � for binary x�

������

where x � 
x�� � � � � xd�� � � qj � �� and qj�n�y� � ���exp��fj�n�y�Wj ��
�� with fj �y�Wj � �


fj���y�Wj �� � � � � fj�d�y�Wj �� being the output of the j�th backward network from
y � x with parameter set Wj� which is implemented by either a multilayer
perceptron or a radial basis function networks� Particularly� when fj �y�Wj � �

f�y�W � and qj�n�y� � qn�y�� we actually have only one network�
With the above design� we get a general BYY pattern recognition system

with its learning made by minfMyjx�M�gKl�M��M�� with Kl�M��M�� given
by eq������ or eq������� implemented by eq����� in general with either unsu�
pervised learning or semi�unsupervised learning� After learning� this system
recognizes x to the class yj � � as long as �j�x� � maxr �r�x��

In the following� we consider several of its special cases�
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� Item 
�� Given pMx �x� � phx �x� by eq	��	��	 When �a� pj�xjy� �j� � p�xj�j�
with p�xj�j� from exponential family� �b� the function family Gj represented
by gj�x� �� is large enough such that �jp�xj�j� � Gj� we have that p�yjjx� is

e�ectively free to be �jp�xj�j�	
Pk

j�� �jp�xj�j� by minfMyjx�M�gKl�M��M��	

Thus� via the mapping j �
Pk��

q��
�qyq we can return back to exactly the �nite

mixture case given in eq	��	�	 For example� we have this case when p�xj�j� �
G�x�mj��j� and Gj is a family of all the quadratic functions of x	

� Item 
�� Given pMx �x� � phx �x� by eq	��	�� still	 When �a� pj�xjy� �j� �
p�xj�j� but �b� p�yjjx� given by eq	��	�� is in its general case� we cannot get
Step  in eq	��	��	 Instead� it should be replaced by �new � argmin�Kl�M��M��	

However� via the mapping j �
Pk��

q�� �qyq we can still update M� by Step � in

eq	��	��	 In this case� the Yang model does not totally follow but regularizes or
restricts the Ying model	 We call this case as constrained �nite mixturemodel and
the alternative minimization algorithm via the above modi�cation on eq	��	�� as
the constrained EM algorithm	 In this case� we can still use eq	��	�� for selecting
the best number of k� as long as p��yjx� is given by eq	��	�� with ��� ��y and
��y being the converged results by the constrained EM algorithm	

� Item 
��� When �a� p�yj jx� given by eq	��	�� is in its general case� �b�
pj�xjy� �j� is one of the other di�erent choices given in eq	��	�� �� we can get
a number of di�erent forward and backward Ying�Yang pairs	 All of them
can be trained by minfMyjx�M�gKl�M��M�� implemented by eq	��	� or a spe�

ci�c algorithm obtained from eq	��	�� via either unsupervised learning with
pMx �x� � phx �x� by eq	��	�� or semi�unsupervised learning with pMx �x� � phx �x�
by eq	��	��	 We can also select the best k� by eq	��	�� with their speci�c form
similar to eq	��	�� or its semi�unsupervised version eq	��	��	

��� Variants from Non	Kullback Separation Functionals
By replacing the Kullback divergence with other non�Kullback separation

functionals� we can get the corresponding variants for all the previously intro�
duced speci�c cases of the BYY PR system and learning theory� For example�
for the Convex Divergence eq����	�� in general we can implement learning by
eq����� with Fs�M��M�� given by eq������� for either unsupervised learn�
ing with pMx

�x� � phx �x� by eq��	�	� or semi�unsupervised learning with
pMx

�x� � phx �x� by eq��	����
Particularly� for the �nite mixture given in eq������� in order to simplify

the computation� we simply force p�yjx� to be given by eq����	�� resulting in

Step � � From eq������� get p
new

�yjx� � p�yjx�j
�k��

old
k

�

Step � � get �
new
y by eq��������and �

new
y � argmax

�y

f ��

	Dx

X
x�Dx

f�
p�x��k�

ph�x�
� �

��

�newy 	Dx�y

X
�x�y���Dx�y

�d�y � y��f�
p�x��k�

ph�x�
�g�

or get �
new
y by solving

X
x�DH

w�y� x�
d ln p�xj�y�

d�j
� �� ������

w�y� x� �

�
f ��

p�x��k�

ph�x�
�
p�x��k�

ph�x�
pnew�yjx�� x � Dx �

f ��
p�x��k�

ph�x�
�
p�x��k�

ph�x�
�d�y � y��� �x� y�� � Dx�y �

f ��u� �
df�u�

du
�

Here� the original weight pnew�yjx� is reweighted into w�y� x�� we call the
corresponding EM algorithm as the Re�weighted EM �REM� algorithm�
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In the special case of gaussian mixture� the above Step 	 will take the
following speci�c form�

m
new
y �

�

�new
j

	DH

X
x�DH

w�y� x�x� �
new
y �

�

�new
j

	DH

X
x�DH

w�y� x��x�mnew
y ��x�mnew

y �T �

������

The algorithm given by eq����		� or eq����		� is for semi�unsupervised
learning� It will reduce into the cases for unsupervised learning when DH �
Dx with �� � �� �� � �� Dx�y � ��


� BYY Factorial Encoding System and Theory

��� A General BYY Factorial Encoding System and Theory
We consider the special case of Item 	�	 �a� with y � �y�� � � � � ykr 
� yj �

f�� �g and denote k � kr� We still use pMx
�x� � phx �x� given by eq��	�	� with

h� �� Moreover� other architectural designs are made as follows�

pMy �y� �

kY
j��



yj

j
��� 
j �

��yj � � � 
j � ��

pMyjx
�yjx� �

kY
j��


j �x��
yj ��� 
j �x� ��

��yj �

pMxjy
�xjy� �

�
p�xjy� ��� in general�
G�x� f�y�W �� ��� gaussian x�Q

d

n��
qn�y�W �xn ��� qn�y�W ����xn � for binary x�


j �x�� � s�gj�x� ��� qn�y�W � � s�f
�n�

�y�W ��� �����

where s�r� is a sigmoid function� e�g�� s�r� � �	�� � e�r� or others with
its range on ��� �
� g�x� �� � �g��x� ��� � � � � gk�x� ��
 are the output of a for�
ward network which can be either a multilayer perceptron or a radial basis
function networks� and f�y�W � � �f��y�W �� � � � � fd�y�W �
 are the output of
a backward network which can be either a multilayer perceptron or a radial
basis function networks�

With the above design� we get a general BYY Factorial Encoding Sys�
tem with its learning made by minfMyjx�M�gKl�M��M��� implemented by
eq����� in general� via either unsupervised learning with pMx

�x� � phx �x�
by eq��	�	� or semi�unsupervised learning with pMx

�x� � phx �x� by eq��	����
After learning� this system transforms x into a factorial binary code y�

From computational point of view� the above general design for pMxjy
�xjy�

cannot avoid the summation over all the values of y in its computing on
Q�Myjx�M�� because we cannot factorize pMxjy

�xjy� in the same way as y �
�y�� � � � � yk
� To reduce this computational load� we change pMxjy

�xjy� into the
following speci�c design with E�yjx� � 

��x��� � � � � 
k�x� �� �

pMxjy
�xjE�yjx�� �

�
p�xjE�yjx�� ���
G�x� f�E�yjx��W �� ���Q

d

n��
qn�E�yjx��W �xn ��� qn�E�yjx��W ����xn �

�����
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Such a design is still reasonable because pMxjy
�xjy� is still a density or

probability function�
With the above design� by using � to denote anyone of the three choices �i�

�� �ii�W�
� and �iii�W � we have thatKl�M��M�� given by eq������ becomes

J�k�� �� �

��Hu
Myjx

� Qu�Myjx�M�� � Cufy�M���g
�

�Hsu
Myjx

� Qsu�Myjx�M�� � Csufy�M���g
�

H
u
Myjx

� � �

	Dx

X
x�Dx

kX
j��


s�gj � ln s�gj� � ��� s�gj �� ln ��� s�gj ���� gj � gj �x���

H
su
Myjx

� ��H
u
Myjx

� ��

	Dx�y

X
�x�y��Dx�y

kX
j��


yj ln s�gj � � ��� yj� ln ��� s�gj����

Q�Myjx�M�� �

�
�

�Dx

P
x�Dx

pMxjy
�xjE�yjx��� unsupervised

�
�DH

P
x�DH

pMxjy
�xjE�yjx��� semi�unsupervised�

C
u
fy�M���g

� � �

	Dx

X
x�Dx

kX
j��


s�gj�x� �� ln 
j � �� � s�gj�x� ��� ln ��� 
j ��

C
su
fy�M���g

� ��C
u
fy�M���g

� ��

	Dx�y

X
�x�y��Dx�y

kX
j��


yj ln 
j � ��� yj � ln ��� 
j ��� ����

When pMy
�y� is free� from Item ��� and eq������� we have


j �

�
�

�Dx

P
x�Dx


j�x� �� unsupervised�
��

�Dx

P
x�Dx


j�x� � �
��

�Dx�y

P
�x�y��Dx�y

yj
j �x��� semi�unsupervised�
�����

Therefore� under a pre�xed k for the number of bits of y� we have that the
algorithm eq����� takes the following speci�c forms�

Step � � get 
new

that minimizes or reduces �e�g�� by gradient descent� J�k�� ��
by eq������� and get 
j by eq�������

Step � � get �
new

that maximizes or increases �e�g�� by gradient descent�
Q
u�Myjx�M�� or Q

su�Myjx�M�� by eq������ �����

Furthermore� we can also select the best k� by eq������ or eq������� with

J��k� � J�k��� ���� f�� ��g � arg
g

min
f���g

J�k�� ���

J��k� �

�
�Qu�Myjx�M�� � Cufy�M���g

�

�Qsu�Myjx�M�� � Csufy�M���g
�

at f� � ��g� �����

This ��� �� can be estimated via the above algorithm eq�������

��� Several Interesting Speci
c Cases
In the following� we consider several speci�c examples�

� Item ��� We consider the case that pMy �y� and pMyjx�yjx� are given by eq	��	�

with pMy �y� free� and pMxjy �xjE�yjx�� is given by eq	��	�� with pMxjy �xjE�yjx��
� G�x� f�E�yjx��W �� I�	 In this case� we have

g�x� � � T x�  � 
T� � � � � � Tk �T � f�y� � � WTE�yjx� � WT S�T x��
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pMxjy
�xjE�yjx�� � �p

�

e�kx�W

TS��T x�k� � S�T x� � 
s�g��x���� � � � � s�gk�x�����

Q
u�Myjx�M�� � �du��W � � const� d

u��W � �
�

	Dx

X
x�Dx

kx �W
T
S�T x�k��

Q
su�Myjx�M�� � �dsu��W � � const� d

su��W � �
�

	DH

X
x�DH

kx �W
T
S�T x�k��

H
u
Myjx

� � �

	Dx

X
x�Dx

kX
j��


s�Tj x� ln s�
T
j x� � ��� s�Tj x�� ln ��� s�Tj x����

H
su
Myjx

� ��H
u
Myjx

� ��

	Dx�y

X
�x�y��Dx�y

kX
j��


yj ln s�
T
j x� � �� � yj� ln �� � s�Tj x����

Cufy�M���g
� � �

	Dx

X
x�Dx

kX
j��


s�Tj x� ln 
j � ��� s�Tj x�� ln ��� 
j ���

C
su
fy�M���g

� ��C
u
fy�M���g

� ��

	Dx�y

X
�x�y��Dx�y

kX
j��


yj ln 
j � ��� yj �ln��� 
j��� �����

and we further have J�k� �� �� � J�k� ��W � � const and

J�k��W � �

�
�

�Dx

P
x�Dx

J�x��W ��

�
�DH

P
x�DH

J�x� �W �
� J�x��W � �

P
k

j��

s�Tj x� ln

s��T
j
x�

�j
� �� � s�Tj x�� ln

��s��T
j
x�

���j
� � kx�WTS�T x�k�� �����

With pre�xed k� the minimization of J�k� ��W � can be implemented by a special
case of the algorithm eq	��	��� that is� we have

Step � � Update  in one step by gradient descent on J�k��W ��

Step � � Fixed S�
T
x� and then update W by the least square or gradient

descent technique to reduce d
u��W � or dsu��W � by eq������� �����

After this learning� We select the best k� by eq	��	�� or eq	��	��� with J��k� �
J�k� ���W �� given by eq	��	�� directly and J��k� � J�k� ���W �� given by eq	��	��
with J�x���W � replaced by

J�x� ��W � � �

kX
j��

�s��Tj x� ln �j � �� s��Tj x�� ln �� �j��� kx�WT S��T x�k��

��	��

For getting a deep insight� we further consider the unsupervised case with  � WT �

In this case� J�k��W � in eq	��	�� becomes J�k�W � with J�x��W � replaced by

J�x�W � �

kX
j��


s�wjx� ln
s�wjx�


j
� ��� s�wjx�� ln

�� s�wjx�

�� 
j
�� kx�WT S�Wx�k�� ������

which can be still implemented by eq	��	�� such that we update W in Step  with
only the one at the front of S�Wx� �xed at its old value� and then we update W
again in Step �	
Interestingly� we observe that the minimization of J�k�W � consists of the min�
imization of

P
x�Dx

kx �WT S�Wx�k� as a part	 While this part is exactly the
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Least Mean Square Error Reconstruction �LMSER� for nonlinear one layer net
proposed in ���� together with gradient descent algorithm given there also	 This
nonlinear LMSER learning is not only shown in ���� to be able to automatically
break the symmetry in self�organization on data� but also applied to implement
Independent Component Analysis �ICA� later by ���	 However� up to now it lacks
a theoretical analysis to understand it better	
The above link between J�k�W � and this LMSER learning provides us a new
insight	 As discussed previously� the minimization of J�k�� �� or equivalently
J�k�W � as a whole is for building a system which can encode x into a factorial
code y with independent bits	 In other word� the minimization of

P
x�Dx

kx �
WT S�Wx�k� is for minimizing the square error between x and its reconstruction
WT S�Wx� from the factorial code y of independent components	
Therefore� the minimization of the above J�k�W � given by eq	��	� and its gen�
eral form in eq	��	�� can be called Factorial Encoding LMSER for unsupervised
learning as well as its semi�unsupervised extension	

� Item ��� The Factorial Encoding LMSER can be extended	 With �� as a pa�
rameter to be learned too� we let pMxjy

�xjE�yjx�� � G�x� S�WT x�� 	�I�	 In this case�

the minimization of J�k��� �� with respect to �� will result in

	� �

�
�

�Dx

P
x�Dx

kx� �Wx�k� �
�

�DH

P
x�DH

kx � S�Wx�k� � ������

J�x�W� � � ��� ln 	� �
P

k

j��

s�Tj x� ln

s��T
j
x�

�j
� ��� s�Tj x�� ln

��s��T
j
x�

���j
��

After this learning� we can get J��k� � J�k� ���W �� with the above J�x� ��W �
in eq	��	�� directly and J��k� � J�k� ���W �� with J�x���W � replaced by

J�x��W � � ��� ln 	� �
kX
j��


s�Tj x� ln 
j � ��� s�Tj x�� ln ��� 
j ��� �����

� Item ��� We assume that pMy �y� and pMyjx
�yjx� are given by eq	��	��� and

pMxjy
�xjE�yjx�� �

Q
k

n��
qn�E�yjx��W �xn �� � qn�E�yjx��W ����xn to be factorial in�

stead of Gaussian	 We also have g�x� �� � �Tx� and 
q��E�yjx��W �� � � � � qd�E�yjx��W �� �

S�f�y�W �� � S�WE�yjx�� � S�WS�T x��	 With this design� we can get a special case
of the above J�k� �� �� in the form

J�k�� �� � J��W� k� � const� J�k��W � �

�
�

�Dx

P
x�Dx

J�x��W� k��

�
�DH

P
x�DH

J�x��W� k��

J�x��W� k� �

kX
j��


s�Tj x� ln
s�Tj x�


j
� ��� s�Tj x�� ln

�� s�Tj x�

�� 
j
�

�
dX

n��


x�n ln qn�E�yjx��W � � ��� x�n� ln ��� qn�E�yjx��W ���� ������

Moreover� the second term can be rewritten into an equivalent formPd

n��
�x�n ln

x�n
qn�E�yjx��W � � �� x�n� ln

��x�n
��qn�E�yjx��W � �	 Furthermore� if we let x�n

approximated by its mean Ex�n� then under such an approximation� for the case
of unsupervised learning on J�k� �� �� we get that J���W� k� given by eq	��	��
becomes exactly the same as the �F����� given in equation ��	� in ��� for the
Deterministic Helmholtz machine under the special case of one hidden layer �
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� Item ��� From the perspective of eq	��	�� and the above general BYY Factorial
Encoding system and theory� we can also get some new insights and several new
variants for this deterministic one hidden layer Helmholtz machine

�a� The learning directly based on eq	��	�� without letting x�n approximated
by its mean Ex�n provides a variant which is more reasonable because x�n is
known from the training set directly and also even more importantly is that the
correlation between the input data x and the hidden layer E�yjx� are accounted
instead of only considered the correlation between Ex and E�yjx�� a weak point
of the deterministic one hidden layer Helmholtz machine as pointed out by ���	
In addition� such a learning can be implemented by a simpli�ed form of eq	��	��
through just alternatively updating � andW by gradient method� which is known
to be guaranteed to converge	 Furthermore� from eq	��	�� this learning can be
easily extended to the case of semi�unsupervised learning	
�b� According to the previous Item �	�� we can select the best k� by eq	��	��
or eq	��	��� with J��k� � J�k� ���W �� given by eq	��	�� directly and J��k� �
J�k� ���W �� given by eq	��	�� with J�x� ��W� k� replaced by

J�x��W� k� � �
kX
j��


s�Tj x� ln 
j � ��� s�Tj x�� ln ��� 
j ��

�
dX

n��


x�n ln qn�E�yjx��W � � ��� x
�
n� ln ��� qn�E�yjx��W ����������

This is an issue untouched in Helmholtz machine ��� ��� although it is obviously
important	
�c� Other choices for implementing g�x� �� and f�y�W � can be considered to
get di�erent variants	 For examples� �i� g�x� �� by a forward multilayer net� and
f�y�W � by a RBF net� �ii� g�x� �� by a RBF net� and f�y�W � by a backward
multilayer net� �iii� both g�x� �� and f�y�W � by RBF nets� �iv� both g�x� �� and
f�y�W � by multilayer nets	

��� The Cascade Architecture
We consider the case given by the previous Item ���� In this case� generally

speaking� we can get the extension of the general BYY Factorial Encoding
system and theory given in Sec���a�� Particularly� we can also get the spe�
ci�c variants of the Factorial Encoding LMSER in the cascade architecture�
Moreover� we further consider a case by adding in the following feature�

Item ��� The components within each layers y�j� � �y�j�� � � � � � y�j�kj � are indepen�

dent	 In this case� if we treat each layer with KL�M �j�
� �M

�j�
� � given by eq	��	�� in

the same way as we did in Item �	� with x�n approximated by its mean Ex�n still� we
can get that KL�M��M�� given by eq	��	�� is equivalent to the �F����� given in
equation ��	� in ��� for the Deterministic Helmholtz machine in the general case
of m layers	 As in the case of Item �	��a�� we can also directly use each training
sample without letting x�n approximated by its mean Ex�n	

Furthermore� according to Item �	�� we can also investigate the number of hid�

den units in each layer via KL�M��M�� given by eq	��	�� and KL�M
�j�
� �M

�j�
� �

given by eq	��	��	
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�� BYY Data Dimension Reduction System and Theory

We consider the special case of Item 	�� with y � �y�� � � � � ykr 
� yj � R and
denote k � kr� We assume that y has a density of �nite mixture�

pMy �y� � p�yj�� �
nyX
j��

�jp�yj�j�� �j � ��

nyX
j��

�j � �� �����

and y generates the current input x � Rd� d � k� via the Ying passage that
consists of nxjy linear or nonlinear channels x � f�y�Wj � � e

�j�
xjy

� j � �� � � � � nxjy�
disturbed by noises e

�j�
xjy

from p�e�j�
xjy

j�j�� That is� we have

pMxjy
�xjy� �

nxjyX
j��

�jp�x� f�y�Wj �j�j�� �j � ��

nxjyX
j��

�j � �� �����

The purpose of the so called data dimension deduction is to invert x back
to �t the original low dimension y� via the Yang passage that consists of nyjx
channels g�x� �j�� j � �� � � � � nyjx� described by a �nite mixture�

pMyjx
�yjx� �

nyjxX
j��

�jp�yjx� g�x� j �� �j �� �j � ��

nyjxX
j��

�j � �� ����

We consider the case of unsupervised learning only� With the above ar�
chitecture design and let pMx

�x� � phx �x� given by eq��	�	� with h � ��
we get a general BYY data dimension reduction system with its learning
minfMyjx�M�gKl�M��M�� by eq������ and eq������� which is implemented by

eq����� in general for determining all the parameters

� � f�j � �j� �j � j � �j�Wj� �jg� �����

We can also select the best k��the dimension of the original y according to
Item ��	 with

J��k� � J���
�
� k�N��� f��

�N�g � arg
g

min
f��Ng

J���� k�N ��

J���� k�N � � Kl�M��M��� N � fnyjx� nxjy� fnygg� �����

J��k� � J���
�
� k�N��� J���� k�N � � �

Z
x�y

pM� �x� y�j�� ln pM� �x� y�j��dxdy�

After learning� we map x back to y either stochastically according to
pMyjx

�yjx� given by eq������ or deterministically by taking

E�yjx� �
nyjxX
j��

�jE
p�yjx� g�x�j �� �j ��� �����

while at the same time its inverse mapping E�xjy� �
Pnxjy

j�� �jf�y�Wj � provides
a reconstruction of x with noises �ltered out�
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This general BYY data dimension reduction system will have di�erent
speci�c cases and simpli�cations� Basically speaking� for eq������ and eq����	�
the simplest case can be that nyjx � � and nxjy � �� Here� the di�erences of
nyjx and nxjy will not a�ect the functions that the system can perform but
indeed a�ect the performance in implementing the functions� These functions
are mainly based on the value of ny and the density form of p�yj�j��

The system can implement at least the following functions�

� Item ��� In eq	��	�� when p�yj�j� � G�y�m�j�
y ��

�j�
y �� the system maps x into

not only a low dimension data y via eq	��	��� but also into one of nyjx clusters or

gaussians G�y�m�j�
y ��

�j�
y �� j � � � � � �m	 That is� the tasks of the data dimension

reduction and unsupervised classi�cation are combined together	 Particularly�
when the dimension of y is � or �� i	e	� k � � or �� we get a kind of �D or �D
visualizations of the high dimensional data� which will be a very useful tool for
interactive data analysis by human eyes although it has not been studied in the
literature yet	

� Item ��� If pMy �y� is independent on its components� then we will get a special
case of independent component analysis that will be studied in Sec	�	

� Item ��� In the case that ny � nyjx � nxjy � � and we have the case of

the linear dimension reduction y � �Tx � eyjx under the assumption that x is

generated from y by the linear transform x � WT y � exjy with E�y� � � and

E�xeTxjy� � �	 From y � �Tx � eyjx � �T �WT y� � �T exjy � eyjx� it is desired
that


T
W

T � I� �T exjy � eyjx� �����

With this as a starting point and also with the following designs by gaussian
densities

pMyjx
�yjx� � G�eyjx����yjx� � G�y� T x��yjx��

pMxjy
�xjy� � G�exjy����xjy� � G�x�WT y� �xjy��

pMy �y� � G�y� ���y�� �y � �y is diagonal� �����

we get a general BYY linear data dimension reduction system and theory by
minfMyjx�M�gKl�M��M�� under the constraint eq	��	��� with Kl�M��M�� given

by eq	��	� or eq	��	��	 In this case� ��T exjy � eyjx actually implies �T�xjy� �

�yjx which can be inserted into G�y� �T x��yjx� to reduce the parameter �yjx

during the learning	 Thus from eq	��	�� we have

HMyjx
� Hyjx � const� Qfyjx�xjyg � Qx�y � const� Cfy�M���g

� Cy � const�

Qx�y � ����fln j�xjy j�
Z
x

pMx �x�Tr
�
��
xjy

Z
y

G�y�
T
x��yjx�exjye

T
xjydy�dxg�

Cy � ���fln j�yj�
Z
x

pMx �x�Tr
�
��
y

Z
y

G�y� T x��yjx�yy
Tdy�dxg�

Cy � ���fln j�yj�
Z
x

pMx �x�Tr
�
��
y ��yjx � 

T
xx

T
��dxg

� ���fln j�yj� Tr
���y 
T ��xjy � Rx��g�

Rx �

Z
x

pMx �x�xx
Tdx� Hyjx � ���fk� ln jT�xjyjg�

Kl�M��M�� � J��� k�� J��� k� � �Hyjx � Qx�y � Cy � � � fW���xjy� �yg� �����

The learning by min� J��� k� can again be implemented by a simpli�ed form
of eq	��	�	 After learning� we can also select the best k� according to eq	��	��
which is now simpli�ed into
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J��k� � J���� k�� �� � arg
g

min
��

J��� k�� J��k� � J���
�� k�� J���� k� � �Qx�y � Cy�

������

In the rest of this section we will show that a special case of this general linear
dimension reduction system and theory includes principal component analysis�
minor component analysis as well as their combinations	

��� A Linear Dimension Reduction System and Theory�
We continue the case of Item ��� by further constraining  � WT �WWT �

Ik��xjy � 	�I� In this special case� from eq������ and eq������� we have

eyjx � �Wexjy� �yjx � W	
�
IdW

T � 	
�
Ik� E�exjye

T
xjy� � 	

�
Id�

exjy � x�WT y � x�WT �Wx � eyjx� � x �WTWx �WT eyjx�

Tr
exjye
T
xjy � � kx�WTWxk� � Tr
eyjxeyjx� � �Tr
�I �WTW �xeTyjxW ��Z

x

pMx �x��

Z
y

G�exjy� ���yjx�xe
T
yjx�dy � E�xeTyjx� � ��Z

x

pMx �x�Tr


Z
y

G�exjy� ���yjx�Tr
exjye
T
xjy �dy�dx � Ekx�W

T
Wxk� � k	

�
�

Ekx�WTWxk� �

Z
x

pMx �x�kx�WTWxk�dx�

exjy � x�W
T
Wx �W

T
Wexjy � x �W

T
Wx � exjy �W

T
Wexjy�

Ekx�W
T
Wxk� � Tr
�I �W

T
W �E�exjye

T
xjy��I �W

T
W �T � � �d � k�	��

Qx�y � ����fd ln 	� � 	
��

Z
x

pMx �x�Tr


Z
y

G�exjy����yjx�Tr
exjye
T
xjy �dy�dxg

Qx�y � ����fd ln 	� � dg� Hyjx � ���fk� k ln 	�g�
Cy � ���flnj�yj� Tr
���y W �Rx � 	

�
I�WT �g� ������

Therefore J�k��� given in eq������ is simpli�ed into

J�k�W��y � � �d�k� ln 	��k�lnj�yj�Tr
���y W �Rx�	
�
I�WT �� 	

� �
�

d� k
Ekx�WT

Wxk��
������

From eq�����	�� we can get the following interesting results�

� Item ��� We pre�x y � diag�
� � � � � � 
k � with 
� � � � � � 
k � � such that

uj � 	��� � ����
j

�
P

k

j��
�
��
j

d�k � � �� 	�� � �
d�k

P
n

j�k��
�xj � where 
x� � � � � �


xd are the eigenvalues of Rx	 In this case� it follows from Ekx � WTWxk� �

Tr
Rx � WRxW
T � that 	J�k���

	W
� � 	Tr
UWRxW

T �
	W

with U � diag
u�� � � � � uk�	 Thus�
minfW�WWT�Ig J�k�W� �y� is equivalent to maxfW�WWT�Ig Tr
UWRxW

T �	 Following
the results of ���� we get that the row vectors of W will be the �rst k principal
components of Rx respectively	 That is� we get the true k�PCA����	 Moreover�
if 
j � 
� for all j such that uj � u � �� we have that the row vectors of W
spans the same subspace spanned by the �rst k principal component vectors of
Rx	 That is� we get the so called principal subspace analysis �PSA� �� ���	

� Item ��� In the case of Item �	�� the problem of how to decide the dimension
k still remains an important open question in the literature without theoretical
guide available yet	 Here� we can select the best k� � argmingk J��k� by eq	��	��
or k� � argmingk J��k� eq	��	�� with

J��k� � �k ln 	�� � k� J��k�� J��k� � d ln 	
��

� lnj��yj � k�

fW�
� �

�
yg � arg

g

min
fW�
yg

J�k�W� �y��
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��y � W��Rx � 	��I�W�T � 	�� �
�

d� k
Ekx �W�TW�xk��

or J��k� � �d � k� ln

P
d

j�k��
�xj

d � k
�

kX
j��

ln ��xj �

P
d

j�k��
�xj

d � k
��

J��k� � d ln

P
d

j�k��
�xj

d � k
�

kX
j��

ln ��xj �

P
d

j�k��
�xj

d � k
� � k� �����

� Item ��	 In the case of Item �	�� we let 
� � � � � � 
k � � such that dj � � for all
j	 We can get the complementary part of PCA� that is� the row vectors of W will
be the eigenvectors of Rx that correspond to the k smallest eigenvalues� respec�
tively� which is called minor component analysis�MCA����� �� ���	 Moreover� we
can also get the complementary part of PSA� called MSA���� �� ���	

� Item ��
 Instead of pre�xing y in the cases of Item �	� and Item �	�� we
implement minfW��yg J�k�W� y�	 We can similarly get that the row vectors of

W � will be the k eigenvectors of Rx such that Tr�UWRxW
T � is maximized�

which is equivalent to PCA in some special cases� and to MCA in some other
special cases� as well as a combination of PCA and MCA	

��� BYY ICA System and Theory

��� A General ICA System and Theory�
The situation is quite similar to that discussed in Sec����� for the general

data dimension deduction system and theory� The key di�erent point here is
that y � �y�� � � � � ykr 
 with k � kr can be either real as Item 	�� or binary as
Item 	�	�a� such that y is from an independent density�

pMy �y� � p�yj�� �
kY
j��

p�yjj�j � ������

where p�yjj�j� is a parametric model� More generally� it can be

p�yj j�j� �
ny�jX
r��

�r�jp�yj j�r�j�� �r�j � ��

ny�jX
r��

�r�j � �� ������

We regard that this factorial y generates a pattern to �t the current input
x� via the Ying passage that is the same as that previously given in eq����	��
The purpose of the so called Independent Component Analysis �ICA� is to
attempt to invert x back to this y of independent components� through the
Yang passage given exactly the same as in eq�������

With the above architecture design� from eq������ we get a general BYY
ICA system with its learning made by the theory of min� J��� k�N � with
� � f�r�j� �j� �j � �j� j� �j� �jg and

J���k�N � � �Hyjx �Qfx�yg � Cy� N � fnyjx� nxjy �fny�jgg� �����

Hyjx � �
Z
x

pMx �x�


Z
y

nyjxX
j��

�jp�yjx� g�x� j�� ln
nyjxX
j��

�jp�yjx� g�x�j ��dy�dx�
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Qfx�yg �

Z
x

pMx �x�


Z
y

pMyjx
�yjx� ln

nxjyX
j��

�jp�x � f�y�Wj �j�j�dy�dx�

Cy � �
Z
y

pM� �y� ln

kY
j��

p�yjj�j�dy� pM� �y� �

nyjxX
j��

�j

Z
x

p�yjx� g�x� j��pMx �x�dx�

This min� J��� k�N � can be implemented by eq����� in general� We can
also select the best k��the number of independent component by eq������
or eq������ with

J��k� � J���� k�N��� f���N�g � arg
g

min
f��Ng

J��� k�N ��

J��k� � J���
�
� k�N��� J���� k�N � � �Qfx�yg � Cy � ������

After learning� similar to Sec������ we can also map x back to y and get a
reconstruction of x with noises �ltered out�

The above proposed form is the general one that covers all the possible
cases� First� the generating channel as shown in eq����	� includes the cases�

� �a� x is generated from y by either linear f�y�Wj� �WT
j y or nonlinear f�y�Wj�

channel and by either single or multiple channels	
� �b� x is generated from y either with noise or without noise and either gaussian

noise or other noises	
� �c� the dimension d of x is either equal to �d � k� or unequal to �d �� k� the

dimension k of y� and the dimension k of y is either known or unknown	
� �d� the source y is either binary or real	

Second� the channel from x back to y as shown in eq������ includes the cases�

� �e� the inverting channel consists of either single or multiple models	
� �f� p�yjx� g�x� �j�� is either gaussian or non�gaussian	 When p�yjx� g�x� �j�� is

gaussian and the regression is
R
y
yp�yjx� g�x� �j��dy � g�x� �j�� we have that

g�x� �j� is either liner or nonlinear	

This general form can be further simpli�ed into various speci�c forms with
di�erent levels of complexity according to di�erent speci�c assumptions� The
following are some examples�
� Item ��� We consider the case that �a� nyjx � � nxjy � � and d � k� �b�
p�yj j�j� is given by eq	��	�� �c� there is no noise� i	e	� for in�nite small volumes
Vy � � and Vx � �� we have

pMyjx
�yjx� �

n
���Vy� if y � g�x���
�� otherwise� pMxjy

�xjy� �
n

���Vx� if x � f�y�W ��
�� otherwise�

������

From eq	��	�� directly� we can simplify J���k�N � given in eq	��	�� into

J�� �� � ln
�Vx

�Vy
�

kX
j��

Z
x

pMx �x� ln p�gj �x��j�j �dx� where g�x� � � 
g��x��� � � � gk�x����

������

Particularly� when g�x� �� � �Tx �i	e	 the linear ICA model�	 We have ln �Vx
�Vy

�

� ln j�j and eq	��	�� becomes

J�� �� � � ln jj�
kX
j��

Z
x

pMx �x� ln p�
T
j xj�j�dx� where j is j� th column of � ������
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This is just the so called maximum likelihood ICA model ���� which is also shown
to be equivalent to the mutual information method �MMI� by Amari� Cichocki�
� Yang ����� and Informax by Bell � Sejnowski ������ both can be found in
���	 Particularly� when p�yj j�j� is given by eq	��	��� we get the �nite mixture
based implementation for the information theoretic ICA approach ��� �� ��	

� Item ��� All the others are kept the same as in Item �	� except we allow that
the pre�given k can be smaller than d� i	e	 k � d� and also noise is considered
� i	e	� x � f�y�W � � ex with pMxjy

�xjy� � G�x�f�y�W �� ��I� and EyeTx � �	

In this case� since argmin����kflimVy��Hyjxg � limVy��fargmin����k Hyjxg� we
have argmin����k J����� k� � argmin����k �J����� k� �Hyjx� and thus can ignore
Hyjx	 So� we get

Qfyjx�xjyg � ����fln �
 � d ln 	� � dg� 	
� � d

��
Ekx � f�g�x� ��W �k�� ������

J�� �� 	�� k� � ���d lnEkx� f�g�x� ��W �k� �
kX
j��

Z
x

pMx �x� ln p�gj �x��j�j �dx�

as a new nonlinear ICA model	 Particularly� when g�x� �� � �T x�f�y�W � �
WT y� � � WT � we have a new linear ICA model as follows


J�� �� 	�� k� � ���d lnEkx � T xk� �
kX
j��

Z
x

pMx �x� ln p�
T
j xj�j�dx� ������

For both the linear and nonlinear cases above� we can also select the best number
of sources by k� � argmink J�k� with J�k� � ming

f������g
J��� ����� k�	

� Item ��� In the case of Item �	�� if we let pMyjx�yjx� � G�y� g�x� ����yjx�
instead� then we have

HMyjx
� ����k� ln �
 � ln j�yjxj�� �yjx � E
�y � g�x� ���y � g�x���T ��

Qfyjx�xjyg � ����fln �
 � d ln 	� �
Qx�y

	�
g�

Qx�y �

Z
x

pMx �x�


Z
y

G�y� g�x� �� �yjx�kx � f�y�W �k�dy�dx�

Cy � �
kX
j��

Z
x

pMx �x�


Z
yj

G�yj� gj�x� �� 	
�
j�yjx� ln p�yj j�j�dyj �dx�

J��� k� � ���fd ln 	� � k � ln j�yjxj�
Qx�y

	�
g � Cy� � � f� �� 	� ��yjxg��������

as a generalization of eq	��	�� for nonlinear ICA� where ��j�yjx is the j�th diagonal

element of �yjx	 When g�x� �� � �T x� f�y�W � �WT y� � � WT � we have

�yjx � E
�y�T x��y�Tx�T �� Qx�y �

Z
x

pMx �x�


Z
y

G�y� g�x��� �yjx�kx�WT yk�dy�dx�

�������
and use them to replace �yjx and Qx�y in eq	��	��� we get a generalization of
eq	��	�� for linear ICA	
For both the linear and nonlinear cases above� we can also select the best number
k� of sources by eq	��	�� or eq	��	�� with

J��k� �
g

min
�

J��� k�� J��k� �
g

min
�

J���� k�� J���� k� � ���fd ln 	�� Qx�y

	�
g�Cy� �������
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� Item ��� Being di�erent from Item �	�� in the case of Item �	� we let
pMyjx

�yjx� given by eq	��	� and pMxjy
�xjy� given by eq	��	��� then we again

get the Factorial Encoding LMSER learning discussed in Item �	 and Item �	��
which can also be used for linear and nonlinear ICA with best number of sources
k selected under the situation that there is noise	

� Item ��� We can also extend the cases discussed in Items �	�� �	� and Item
�	� by using p�yjj�j� given by eq	��	��� such that we can get even better per�
formances based on using �nite mixtures as did in ��� �� ��	

��� Conclusions

Bayesian Ying�Yang �BYY� system and theory has been systematically intro�
duced as a uni�ed statistical learning approach on parameter learning� reg�
ularization� structural scale selection� architecture designing and data sam�
pling� For unsupervised learning and its semi�unsupervised extension� this
paper has shown how the general theory provides new theories for unsu�
pervised pattern recognition and clustering analysis� factorial encoding� data
dimension reduction� and independent component analysis� such that not only
several existing popular unsupervised learning approaches are uni�ed as spe�
cial cases with new insights and new results� but also a number of new models
and new results are obtained� In the sister papers ��	
 and ���
� this theory
has further been shown to function as a general theory for various problems
of supervised learning and time series learning as well�
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The basic ideas of the BYY learning system and theory in this paper and its
sister paper ��� as well as several my previous papers started three years ago� the
�rst year of my returning to HK	 As HK in transition to China� this work was in
transition to its current shape	 This paper and its sister paper are both completed
in the �rst week that HK� a harmony of the eastern and western cultures� returned
to China and thus I myself formally returned to my motherland as well	 I would
like to use my this work� an e�ort on the harmony of an ancient Chinese philosophy
and the modern western science� as a memory of this historic event	


