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Abstract: Inception of Markowitz’s modern portfolio the-
ory has also fuelled the development of asset pricing mod-
els for empirical finance, ranging from linear single-factor
models like the capital asset pricing model to fairly com-
plex multi-factor models such as the arbitrage pricing the-
ory (APT). It is well-known in the literature of finance that
APT could be used for modelling the underlying security
returns generation process. In this paper, we investigate a
generalized version of the APT model, called the macroeco-
nomics modulated independent state-space model, in terms
of model specification adequacy as well as its performance
on prediction. Empirical results reveal that the model is not
only well-specified, but also superior to the temporal factor
analysis model in stock price and index forecasting, thanks
to its salient capabilities of modelling both short-term and
long-term market dynamics.

Keywords: Arbitrage pricing theory, macroeconomic fac-
tors, white noise test, temporal factor analysis

1 INTRODUCTION

An important milestone of modern financial modelling
was laid down by Markowitz’s 1952 landmark paper [7]
in modern portfolio theory. In the subsequent years, devel-
opment in formal models of financial asset prices was wit-
nessed by Sharpe’s capital asset pricing model (CAPM) [13]
in 1964, Merton’s intertemporal CAPM [8] in 1973, Ross’s
arbitrage pricing theory (APT) [12] in 1976, and those of
Lucas and Breeden. All such models have one thing in com-
mon. They are all based on a single notion of general equi-
librium in which demand equals supply across all markets
in an uncertain world where individuals and corporations
act rationally to optimize their own welfare. It comes out
of the result of interaction between prices, preferences and
probabilities.

As uncertainties induce risk, one of the central questions
of modern finance is the necessity of some tradeoff between
risk and expected return. Defining the appropriate measures
of risk and reward, determining how they might be linked
through fundamental principles of economics and psychol-
ogy, and then estimating such links empirically using his-
torical data and performing proper statistical inference are
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issues that rest on the heart of financial modelling for asset
pricing.

Financial asset pricing models are usually divided over
two fundamental issues. They are respectively what consti-
tutes and how risk affects security returns. For instance, the
CAPM model was structured on the belief that relevant risk
measure is related to just one aspect of the macroeconomy–
market fluctuation. Although inception of the model was
largely attributable to the development of Markowitz’s port-
folio theory, a major breakthrough of the model was due
to the identification and splitting between systematic and
diversifiable idiosyncratic risk. Unfortunately, the model
was not without its drawbacks. The most critical one was
related to the assumptions underlying its derivation. The
model was inextricably linked with quite a number of as-
sumptions, and some of them, predominantly homogeneous
expectation of investors about the market, were documented
in the literature to be empirically unrealistic. To rectify this
weaknesses as well as to further extend the capabilities of
the CAPM model, the APT was proposed in [12], which as-
sumed that the cross-sectional expected returns of securities
follow a multi-factor model characterized by their sensitiv-
ities, usually called factor loadings. Both the CAPM and
the APT models could be broadly regarded as typical rep-
resentatives of the class of the more general, linear models.
In fact, apart from modelling by linear regression, attempts
have been made on nonlinear regression. The aim was to ex-
plore any substantially nonlinear hidden relationship. How-
ever, there are several disadvantage of nonlinear modelling
as compared to the linear one. First, nonlinear modelling in-
volves complicated procedures and it is not rare that the dis-
covered optimum relation turns out to be counter-intuitive.
Second, due to the diversity of all possible nonlinear rela-
tions, parametric modelling techniques become inappropri-
ate and frequently it is difficult to find a suitable interpreta-
tion of the final results.

Previously, we have made an effort to solve the rotation
indeterminacy problem encompassing the traditional APT
by considering its temporal extension, called the temporal
factor analysis (TFA) model. In this paper, we further in-
vestigate the macroeconomics modulated independent state-
space model, which not only is an extension of the linear
TFA model proposed in [16], but also has a salient feature
of modelling both short-term and long-term dynamics in the
financial market. As implied by its name, the model at-
tempts to relate macroeconomic variables to the stock re-
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turns generation process. However, quite different from
[1, 2, 3, 4, 6, 9, 14] which explicitly modelled the relation
between asset prices and real economic activities such as
production rates, productivity, growth rate of gross national
product, unemployment, yield spread, interest rates, infla-
tion, dividend yields and so forth, it models such relation in
a subtle way via the independent hidden factors that affect
the stock market.

The rest of the paper is organized in the following way.
Sections 2 briefly reviews the APT and the Gaussian TFA
model respectively. Section 3 introduces, with considerable
detail, the macroeconomics modulated independent state-
space model. Section 4 investigates empirically its model
specification adequacy. Section 5 compares its performance
on stock indices prediction with the TFA model which is its
degenerated variant. Section 6 concludes the paper.

2 Review of Related Models

This section briefly reviews two close ancestors of the
macroeconomics modulated independent state-space model.

2.1 The Arbitrage Pricing Theory

The APT begins with the assumption that then × 1 vec-
tor of asset returns,Rt, is generated by a linear stochastic
process withk factors [12, 10, 11]:

Rt = R̄ + Aft + et (1)

whereft is thek × 1 vector of realizations ofk common
factors,A is then× k matrix of factor weights or loadings,
andet is an× 1 vector of asset-specific risks. It is assumed
thatft andet have zero expected values so thatR̄ is then×1
vector of mean returns. The model addresses how expected
returns behave in a market with no arbitrage opportunities
and predicts that an asset’s expected return is linearly related
to the factor loadings or

R̄ = Rf + Ap (2)

whereRf is an×1 vector of constants representing the risk-
free return, andp is k × 1 vector of risk premiums. Similar
to the derivation of CAPM, (2) is based on the rationale that
unsystematic risk is diversifiable and therefore should have
a zero price in the market with no arbitrage opportunities.

2.2 Gaussian Temporal Factor Analysis

Suppose the relationship between a stateyt ∈ Rk and an
observationxt ∈ Rd is described by the first-order state-
space equations as follows [15, 16]:

yt = Byt−1 + εt, (3)

xt = Ayt + et, t = 1, 2, . . . , N. (4)

whereεt andet are mutually independent zero-mean white
noises withE(εiεj) = Σεδij , E(eiej) = Σeδij , E(εiej) =

0, Σε andΣe are diagonal matrices, andδij is the Kronecker
delta function:

δij =

{
1, if i = j,

0, otherwise.
(5)

We call εt driving noise upon the fact that it drives the
source process over time. Similarly,et is called measure-
ment noise because it happens to be there during measure-
ment. The above model is generally referred to as the TFA
model.

In the context of APT analysis, equation (1) can be ob-
tained from equation (4) by substituting (R̃t − R̄) for xt

andft for yt. The only difference between the APT model
and the TFA model is the added equation (3) for modelling
temporal relation of each factor. The added equation repre-
sents the factor seriesy = {yt}T

t=1 in a multi-channel auto-
regressive process, driven by an i.i.d. noise series{εt}T

t=1

that are independent of bothyt−1 and et. Specifically, it
is assumed thatεt is Gaussian distributed. Moreover, TFA
is defined such that thek sourcesy(1)

t , y
(2)
t , . . . , y

(k)
t in this

state-space model are statistically independent.

3 The Macroeconomics Modulated Independent State-
Space Model

3.1 Overview of the Model

The macroeconomics modulated independent state-space
model was proposed by Xu with an aim to model the fi-
nancial market in a state of general equilibrium. Unlike
traditional APT, it further utilizes observed macroeconomic
variables and indices to implement the concept of long-term
equilibrium in economics. In general, the model takes the
following form [16]:

yt = Byt−1 + Hzt−1 + εt (6)

xt = Ayt + et (7)

zt = Cyt + Evt + εt (8)

whereεt, et andεt are Gaussian white noises and indepen-
dent from each other,εt is independent of bothzt−1 and
yt−1, et andεt are independent ofyt andvt.

Typically, zt consists of a number of macroeconomic in-
dices andvt consists of a number of known non-market fac-
tors that affect the macroeconomy. Specifically,Hzt−1 de-
scribes the indirect effect of the macroeconomic indices to
the security market via the hidden factorsyt, andCyt de-
scribes the feedback effect of the market to the macroeco-
nomic indices.

We consider the model describes a capital market via both
short-term and long-term dynamics. For short-term dynam-
ics, xt, yt and perhapszt move to reach an equilibrium in
the sense that the series ofεt, et andεt become stationary
white noises, while the parametersB,H,A,C,E and the
statistics ofεt, et andεt can be regarded as relatively con-
stant due to slow changing. For long-term dynamics, the
parametersB,H,A,C,E and the statistics ofεt, et andεt

are all changing to cohere to equilibrium.



3.2 An Algorithm for Implementation

An adaptive algorithm is given in [16] for implementation
of the macroeconomics modulated independent state-space
model. WithH fixed,Hzt acts as a constant and can be re-
garded as a part of the mean ofεt. The task of estimating
H is a linear regression problem whenyt, yt−1 andB are
fixed. In particular, forG(εt|Hzt−1, Λ), G(et|0,Σx) and
G(εt|0,Σz), the algorithm consists of four steps shown be-
low.

Step 1 Estimateyt via ŷt by maximum likelihood
ŷt =[Λ−1 + AT Σx

−1A + CT Σz
−1C]−1 · [AT Σx

−1x̄t

+CT Σz
−1(z̄t −Evt) + Λ−1(Byt−1 + Hz̄t−1)]

Step 2 Update parameters of (6)
Bnew =Bold + ηdiag[εtŷ

T
t−1],

Hnew =Hold + η[εtẑ
T
t−1],

Λnew =(1− η)Λold + ηdiag[εtε
T
t ],

Step 3 Update parameters of (7)
Anew =Aold + η[etŷ

T
t ],

Σx
new=(1− η)Σx

old + ηdiag[ete
T
t ],

Step 4 Update parameters of (8)
Cnew =Cold + η[εtŷ

T
t ],

Enew =Eold + η[εtv̂
T
t ],

Σz
new =(1− η)Σz

old + ηdiag[εtε
T
t ],

In this paper, due to the absence of known non-market
factors affecting the macroeconomy, the termEvt is deleted
by simply settingE = 0 in (8) and thus the relevant learning
rules are omitted.

4 White-Noise Test on Model Specification Adequacy

It is common in the literature of statistics that test for
model adequacy should immediately follow parameter es-
timation of the model under consideration. Usually a model
is considered adequate only if the residual component con-
sists of white noise. Sinceεt in (6) is likely to be temporally
correlated, we require the estimated residual to be substan-
tially serially uncorrelated, i.e., autocorrelation of its lags
should not be significantly different from zero. On the other
hand, for bothet of (7) andεt of (8) to be adequate, the es-
timated residuals should be largely uncorrelated among its
components.

4.1 Data Consideration

We carry out the analysis using past stock price and re-
turn data of Hong Kong. Daily closing prices of 30 actively
trading stocks covering the period from January 1, 1998 to
December 31, 1999 are used. The number of trading days
throughout this period is 522. These stocks belong to the
Hang Seng Index (HSI) constituents. HSI is the most repre-
sentative index in the Hong Kong stock market. For macroe-
conomic indices, we use the 1 month Hong Kong Inter-Bank

Middle Rate, the Hang Seng Index and the Dow Jones In-
dustrial Average (DJIA) respectively. The DJIA is used as a
proxy in view of its significant co-integration effect [5] with
the HSI.

4.2 Data Preprocessing

Before carrying out the analysis, the stock prices should
be converted to stationary stock returns. The transformation
applied can be described in four steps as shown below.

Step 1 Transform the raw prices to returns by
Rt = pt−pt−1

pt−1
.

Step 2 Calculate the mean return̄R by 1
N

∑N
t=1 Rt.

Step 3 SubtractR̄ from Rt to get the zero-mean
return.

Step 4 Let the result of above transformation be the
adjusted returñRt.

4.3 Test Statistics

To check if the residualεt behave as a white-noise pro-
cess, we adopt the Ljung-Box modifiedQ-statistic shown
below. TheQ-statistic can be used to test whether a group
of autocorrelations is significantly different from zero.

Q = N(N + 2)
s∑

k=1

r2
k(ε̂)

N − k
(9)

whereN is the effective number of observations ands is
the lag order. If the sample value ofQ calculated above ex-
ceeds the critical value ofχ2 with s− 1 degrees of freedom
at α = 5%, then we can conclude that at least one value of
rk is statistically different from zero at 5% level of signif-
icance and suspect the residuals are serially correlated and
not white.

On the other hand, to investigate whether each cross cor-
relation coefficient of the observation noise residualset and
εt is not significantly different from zero, we apply thet-test
with the test statistic given by

t =
r√

1− r2
· √n− 2, (10)

wherer is the correlation coefficient of a sample ofn points
(xi, yi) as given by

r =
∑

(xi − x)(yi − y)
[
∑

(xi − x)2
∑

(yi − y)2]
1
2
. (11)

Assume that thex andy values originate from a bivariate
Gaussian distribution, and that the relationship is linear, it
can be shown thatt follows Student’st-distribution with
n − 2 degrees of freedom. Again the predefined level of
significance is set atα = 5%.

4.4 Empirical Test Results

Results ofQ statistics andp-values for the residualεt at
lags from order 1 to 15 are shown in Table 1. At 5% level of



significance, autocorrelations of all residuals are not signif-
icantly different from zero. It implies that the specification
of (6) is adequate. As foret, partial results showingt-test on
correlation coefficients of the first two stocks with respect to
the 30 HSI constituents are shown in Table 2. Results of the
other 28 stocks are omitted due to space constraint. Out of
435 cross correlation coefficients, only 11 of them, or 2.53%
are statistically significant atα = 5%. As the percentage is
quite small, the results are satisfactory and we accept the
null hypothesis that the residualset are substantially white.
Similar results forεt are shown in Table 3.

Table 1: Results showingQ-statistic andp-value of residual
εt for 30 HSI constituents.

Lag Q-Stat p-value Q-Stat p-value

Residual 1 Residual 2
1 0.0056 0.9403 0.0077 0.9299
2 0.4153 0.8125 0.0081 0.9960
3 1.8558 0.6029 0.6221 0.8914
4 2.6812 0.6125 0.7548 0.9444
5 4.3332 0.5025 1.1613 0.9485
6 6.0460 0.4181 3.7385 0.7120
7 7.8827 0.3431 9.7960 0.2005
8 7.8827 0.4450 9.8682 0.2744
9 8.0167 0.5325 9.9039 0.3584

10 8.7007 0.5607 11.6716 0.3077
11 9.1603 0.6071 11.7318 0.3842
12 9.2222 0.6838 14.9980 0.2416
13 11.6317 0.5581 17.0208 0.1984
14 13.3091 0.5024 17.2598 0.2427
15 13.3499 0.5753 19.1754 0.2060

Residual 3 Residual 4
1 0.0318 0.8585 0.1188 0.7303
2 0.2229 0.8945 3.2264 0.1993
3 0.2250 0.9735 7.1968 0.0659
4 0.4433 0.9788 7.2105 0.1252
5 0.5247 0.9912 7.2607 0.2020
6 3.0091 0.8077 8.9177 0.1783
7 4.3104 0.7434 9.4983 0.2189
8 4.3568 0.8236 10.4737 0.2334
9 5.0294 0.8317 11.5217 0.2417

10 5.2900 0.8710 16.7004 0.0813
11 5.3412 0.9135 16.7067 0.1169
12 6.1249 0.9096 17.0780 0.1468
13 7.6111 0.8680 19.6578 0.1041
14 7.6424 0.9071 22.9557 0.0611
15 7.8130 0.9310 23.2691 0.0787

5 Simulations of Stock Price and Index Prediction

One possible application of the macroeconomics modu-
lated independent state-space model is in stock price and
index forecasting. Specifically, after setting up the model
(6)-(8), we can usext, zt and zt−1 to get ŷt. The pre-
dicted x̂t+1 can be obtained byAŷt+1 where ŷt+1 is ap-
proximately given byBŷt + Hzt.

To explore the relative merit of modelling both short-term
as well as long-term dynamics, we would compare the per-
formance of the macroeconomics modulated independent
state-space model with that of the TFA model. It is worth-
noting that the TFA model is a degenerated variant of the

Table 2: Partial results oft-test on the residualet for 30
HSI constituents. Only correlation coefficients the first two
stocks with respect to 30 constituents are shown. Results of
the other 28 stocks are omitted due to space constraint.

Stock # ρ t-stat. p-value

Stock #1
1 1.0000 - -
2 -0.0704 1.6055 0.1090
3 0.0710 1.6188 0.1061
4 -0.0120 0.2728 0.7851
5 -0.0111 0.2533 0.8001
6 0.0587 1.3340 0.1828
7 -0.0143 0.3249 0.7454
8 0.0417 0.9509 0.3421
9 -0.0074 0.1667 0.8677

10 0.0255 0.5795 0.5625
11 0.0491 1.1161 0.2649
12 0.0076 0.1730 0.8627
13 -0.0270 0.6123 0.5406
14 0.0023 0.0512 0.9592
15 -0.0316 0.7180 0.4731
16 -0.0318 0.7228 0.4701
17 -0.0244 0.5546 0.5794
18 -0.0836 1.9053 0.0573
19 -0.0687 1.5667 0.1178
20 0.0090 0.2047 0.8379
21 0.0641 1.4618 0.1444
22 -0.0472 1.0754 0.2827
23 -0.0480 1.0932 0.2748
24 0.1017 2.3317 0.0201
25 0.1057 2.4055 0.0165
26 0.0205 0.4666 0.6410
27 -0.0451 1.0257 0.3055
28 0.0817 1.8625 0.0631
29 0.0457 1.0407 0.2985
30 0.0299 0.6799 0.4969

macroeconomics modulated independent state-space model
and could be obtained by settingH = 0 in (6), thus ignoring
the feedback ofzt−1 onyt.

We demonstrate the results using the HSI and a represen-
tative stock, the Hong Kong and Shanghai Banking Corpo-
ration (HSBC) Holding. The HSBC holding is a constituent
stock of the HSI and was ranked the first in market capital-
ization during the period. We use the first 400 data points
for training and the remaining 120 data points for test. Both
training and test are carried out in an adaptive fashion.

To illustrate stock index prediction, results by the TFA
model and the macroeconomics modulated independent
state-space model are shown in Figure 1 and 2 respectively.

Similarly, results for stock price prediction by the TFA
model and the macroeconomics modulated independent
state-space model are shown in Figure 3 and 4 respectively.

The performance of each model can be compared quanti-
tatively by their respective root mean square errors (RMSE)
between the predicted priceŝpt and the desired pricespt.
As shown in Table 4, the macroeconomics modulated inde-
pendent state-space approach consistently outperforms the
TFA approach by having smaller RMSE for the HSI index
and HSBC Holding. The results may be attributable to merit
of modelling both short-term and long-term dynamics by the



Table 2:Continued.

Stock # ρ t-stat. p-value

Stock #2
1 -0.0704 1.6055 0.1090
2 1.0000 - -
3 0.0219 0.4988 0.6181
4 0.0981 2.2356 0.0258
5 0.0163 0.3699 0.7116
6 -0.0398 0.9031 0.3669
7 0.0079 0.1781 0.8587
8 0.0338 0.7689 0.4423
9 -0.0178 0.4049 0.6857

10 0.0600 1.3648 0.1729
11 -0.0533 1.2140 0.2253
12 0.0152 0.3460 0.7295
13 0.0381 0.8662 0.3868
14 -0.0319 0.7277 0.4671
15 -0.0229 0.5216 0.6022
16 -0.0134 0.3052 0.7603
17 0.0324 0.7391 0.4602
18 -0.0453 1.0321 0.3025
19 0.0212 0.4833 0.6291
20 0.0217 0.4946 0.6211
21 0.0054 0.1226 0.9025
22 -0.0602 1.3709 0.1710
23 0.0143 0.3249 0.7454
24 -0.0111 0.2521 0.8011
25 -0.0053 0.1200 0.9045
26 0.0180 0.4076 0.6837
27 0.1005 2.2973 0.0220
28 0.0830 1.8976 0.0583
29 -0.1061 2.4262 0.0156
30 -0.0493 1.1231 0.2619

Table 3: Results oft-test on the residualεt for 30 HSI con-
stituents.

Stock # corr. t-stat. p-value
ρ12 -0.0205 0.4652 0.6420
ρ13 -0.0052 0.1188 0.9055
ρ23 0.0498 1.1326 0.2579

macroeconomics modulated independent state-space model.

Table 4: Root mean square error (RMSE) for the two ap-
proaches

Model Type HSI HSBC
the TFA model 267.9210 1.5168
the macroeconomics modulated
independent state-space model 218.8671 1.4745

6 Conclusion

In this paper, we empirically explore the macroeconomics
modulated independent state-space model in two main as-
pects. First, we carry out white noise test to ensure model
specification adequacy. Second, its performance in stock
price and index forecasting is compared with that of the TFA
model to illustrate the relative merit of simultaneously mod-
elling both the short-term and long-term dynamics.
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Figure 1: Predicted prices of HSI by the TFA model
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Figure 2: Predicted prices of HSI by the macroeconomics
modulated independent state-space model
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