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Abstract. Two intelligent abilities and three inverse problems are re-
elaborated from a probability theory based two pathway perspective,
with challenges of statistical learning and efforts towards the challenges
overviewed. Then, a detailed introduction is provided on the Bayesian
Ying-Yang (BYY) harmony learning. Proposed firstly in (Xu,1995) and
systematically developed in the past decade, this approach consists of a
two pathway featured BYY system as a general framework for unifying
a number of typical learning models, and a best Ying-Yang harmony
principle as a general theory for parameter learning and model selection.
The BYY harmony learning leads to not only a criterion that outper-
forms typical model selection criteria in a two-phase implementation, but
also model selection made automatically during parameter learning for
several typical learning tasks, with computing cost saved significantly.
In addition to introducing the fundamentals, several typical learning ap-
proaches are also systematically compared and re-elaborated from the
BYY harmony learning perspective. Moreover, a further brief is made
on the features and applications of a particular family called Gaussian
manifold based BYY systems.

1 Introduction

1.1 Two intelligent abilities and three inverse problems

An intelligent system, which could be an individual or a collection of men, ani-
mals, robots, agents, and other intelligent bodies, survives in its world with needs
of two types of intelligent abilities. As illustrated by Fig.1, implemented by a
top-down or outbound pathway, Type-I consists of abilities of discovering the
knowledge about its world, including not only understanding ability to explain
its world but also motoring ability to track the changes in its world. The knowl-
edge is obtained either from pieces of uncertain evidences (or called samples)
about the world or from certain existing authorized sources (e.g., textbooks)
that were obtained from samples in past. Therefore, Type-I abilities are actually
obtained via processes that we usually call learning, during which an intelligent
system gradually senses its world from samples and modifies itself to adapt the
world. This learning task aims at common features or regularities among an
ensemble of uncertain evidences (or called samples) from the world.
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Fig. 1. Two types of intelligent ability and how to get the abilities

On the other hand, implemented by a bottom-up or inbound pathway, Type-
II consists of problem solving skills, ranging from perceiving events that are en-
countered to producing signals that activate the outbound pathway. These skills
can be roughly classified into two categories. One is made via evidence combina-
tion, inference, optimization, based on a priori knowledge of Type-I. The other is
developing a fast implementing device (or called problem solver) for those often
encountered events that usually need a rapid response. Specifically, the problem
solver is developed via learning from samples either based on the existing Type-I
knowledge or in help of a teacher who teaches a desired response as each sample
comes (e.g., in supervised pattern recognition, function approximation, control
system, . . . , etc). This learning task is featured by aiming at the dependence of
input-response type per one or several samples encountered.
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Fig. 2. Three levels of inverse problems

Insights on how two types of of intelligent abilities can be further observed
from three levels of inverse problems, illustrated in Fig.2. Provided with an ob-
servation x that can be regarded as either generated from an inner representation
y or a consequence from a cause y via a given mapping G : y → x, the Type-II
ability makes an inverse inference x → y, as shown in Fig.2(a). When G : y → x
is one-to-one, its inverse one-to-one mapping F : x → y is analytically solvable.
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Generally, it is not so simple due to uncertainties. One type of uncertainties is in-
curred externally by observation noises, which can be described by a distribution
q(x|y, θx|y) for a probabilistic mapping y → x. The other type origins internally
from a mapping G : y → x of many-to-one or infinite many to one, which can be
considered by q(x|y, θx|y) plus a distribution q(y|θy) for every reasonable cause
or inner representation y, as shown in Fig.2(b). Actually, q(x|y, θx|y) and q(y|θy)
jointly act as the knowledge of Type I, based on which a Type-II ability is ob-
tained via combination, inference, optimization as illustrated at the left-bottom
in Fig.1. Specifically, there are four typical ways to handle it, as listed in the 1st
column of Tab. 1.

The first choice is Bayesian inference (BI) that provides a distribution p(y|x)
for a probabilistic inverse map x → y via combining evidences from q(x|y, θx|y)
and q(y|θy) in a normalized way, which involves an integral with a computational
complexity that is usually too high to be practical. The difficulty is tackled by
seeking a most probable mapping x → y in a sense of the largest probability
p(y|x), called the maximum Bayes (MB) or MAximum Posteriori (MAP). It
further degenerates into y∗ = arg maxy q(x|y, θx|y) when there is no knowledge
about q(y|θy). In some cases, making maximization may also be computationally
expensive. Instead, the last choice is to Learn a Parametric Distribution (LPD)
p(y|x, θy|x) by which an inverse mapping x → y can be fast implemented. To get
this p(y|x, θy|x), we need its structure pre-specified and then learn the parameter
set θy|x from samples either based on q(x|y, θx|y) and q(y|θy) or in help of a
teacher who teaches a desired response to each sample. Actually, this LPD is a
special case of the following second type of inverse problems.

Table 1 Typical methods for three levels of inverse problems.

The second level of inverse problems considers the situations that q(x|y, θx|y)
and q(y|θy) are unknown but provided with their parametric structures. As
illustrated in Fig.2(c), the scenario becomes that we have a set of samples
XN = {xt}N

t=1 from a map Θ → XN , and the task is getting an inverse map-
ping XN → Θ, usually referred by the term estimation or parameter learn-
ing for Θ. This Θ consists of θx|y, θy, as well as θy|x (if the above LPD is
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considered together). There could be different directions to pursuit an inverse
mapping XN → Θ. One most widely studied one is that similar to Fig.2(b),
with uncertainties considered by two distributions q(XN |Θ) and q(Θ). Usually,
q(XN |Θ) is described by q(XN |Θ) =

∫
q(XN |YN , θx|y)q(YN |θy)dYN . When the

samples in XN are independently and identically distributed (i.i.d.), we have
q(XN |Θ) =

∏N
t=1 q(xt|Θ) with q(xt|Θ) given by the choice BI of the 1st column

in Tab. 1.
Based on q(XN |Θ) and q(Θ), again there are four ways for getting an inverse

mapping XN → Θ, as shown in the 2nd column of Table 1. The simplest and most
widely studied one is the maximum likelihood (ML) learning maxΘ q(XN |Θ).
With a priori distribution q(Θ) in consideration, we are lead to the choice MB
of the 2nd column in Table 1, i.e., maxΘ[q(XN |Θ)q(Θ)], on which extensive
studies have been made under different names [25, 32, 42], and are collectively
referred in term of Bayesian school. The challenge is how to get an appropriate
q(Θ), which needs a priori knowledge that we may not have. Related efforts
also include those made under Tikhonov regularization [40, 26] or regularization
approaches. Conceptually, we may also consider the BI choice in the 2nd column
of Table 1 for a probabilistic inverse mapping by a distribution p(Θ|XN ), while
it encounters an integral over Θ.

The number of hidden unit
X=[x0,x1,…,xd]

Y=[y0,y1,…,yk]  

   eAyx +=

Fig. 3. A combination of a series of individual simple structures

Being too difficult to compute except some special cases, this integral over
Θ is encountered not just as above but also in the 3rd column of Table 1.
An alternative is using a particularly designed parametric structure in place
of p(Θ|XN ), i.e., the choice LPD in the 2nd column of Table 1. Moreover, even
in implementing the ML learning, we have to handle either a summation or
a numerical integral over y for getting q(x|Θ) (see the choice BI of the 1st
column in Table 1), which also involves a huge computing cost except special
cases. Instead, the choice LPD in the 1st column of Table 1 is considered via
a particularly designed parametric structure p(y|x, θy|x). Studies on learning
either or both of p(y|x, θy|x) and p(Θ|XN ) jointly with the parameter learning
for Θ have been made in the Helmholtz free energy based learning [15, 11], BYY
Kullback learning [64], and BYY harmony learning [64, 47]. Detailed discussions
are referred to Sec.3.2.

Until now, we assume that the parametric structures of q(x|y, θx|y) and
q(y|θy), as well as of p(y|x, θy|x) are provided in advance. In fact, we do not
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know how to pre-specify these structures. Usually, we consider a family of infinite
many structures {Sk(Θk)} via combining a set of individual simple structures
(or simply called units) via a simple combination scheme, as shown in Fig.3. Ev-
ery unit can be simply one point, one dimension in a linear space, or one simple
computing unit. The types of the basic units and the combination scheme jointly
act as a seed or meta structure ℵ that grows into a family {Sk(Θk)} with each
Sk sharing a same configuration but in different scales, each of which is labeled
by a scale parameter k in term of one integer or a set of integers. That is, each
specific k corresponds to one candidate model with a specific complexity. We
can enumerate each candidate via enumerating 1 k.
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or rorfitting er
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Fig. 4. Model selection : fitting performance vs generalization performance

As shown in Fig.2(d), the third level of inverse problems considers selecting
an appropriate k∗ based on XN = {xt}N

t=1 only, usually referred as model se-
lection. We can not simply use the best likelihood value as a measure to guide
this selection. As illustrated in Fig.4(a), J(k) = −maxΘ lnq(XN |Θ) will keep
decreasing as k increases and reaches zero at a value kN that is usually much
larger than the appropriate one, as long as the size N is finite. Though a Sk(Θk)
with k∗ ≺ k can get a low value J(k) and thus XN got well described, it has
a poor generalization performance (i.e., performing poorly on new samples with
the same regularity underlying XN ). This is also called over-fitting problem.

Until now, we assume that the parametric structures of q(x|y, θx|y) and
q(y|θy), as well as of p(y|x, θy|x) are provided in advance. Actually, we do not
know how to pre-specify these structures. Usually, we consider a family of infinite
many structures {Sk(Θk)} via combining a set of individual simple structures
(or simply called units) via a simple combination scheme, as shown in Fig.3.
Every unit can be simply one point, one dimension in a linear space, or one sim-
ple computing unit. The types of the basic units and the combination scheme
jointly act as a seed or meta structure ℵ that grows into a family {Sk(Θk)} with
each Sk in a same configuration but in different scales, each of which is labeled
by a scale parameter k in term of one integer or a set of integers. That is, each

1 We say that k1 proceeds k2 or k1 ≺ k2 if Sk1 is a part (or called a substructure) of
Sk2 . When k consists of only one integer, k1 ≺ k2 becomes simply k1 < k2.
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specific k corresponds to one candidate model with a specific complexity. We
can enumerate each candidate via enumerating 2 k.

1.2 Efforts towards challenges

In the past 30 or 40 years, several learning principles or theories have been
proposed and studied for an appropriate J(k), roughly along three directions.

Those measures summarized in Table 1 are featured by the most probable
principle based on probability theory. The efforts of the first direction can be
summarized under this principle. As discussed above, the ML choice of the 2nd
column in Table 1 can not serve as J(k). Studies on the BI choice of the 2nd
column, i.e., J(k) = −maxΘ[q(XN |Θ)q(Θ)], have been made under the name of
minimum message length (MML)[42]. It can provide an improved performance
over J(k) = −maxΘ q(XN |Θ) but is sensitive to whether an appropriate q(Θ)
is pre-specified, which is difficult. Studies on the BI choice of the 3rd column in
Table 1 have also been conducted widely in the literature. Usually assuming that
q(k) is equal for every k, we are lead to the ML (marginal likelihood) choice of
the 3rd column, i.e., J(k) = − ln q(XN |Sk), by which the effect of q(Θ) has been
integrated out. However, the integral over Θ is difficult to compute and thus is
approximately tackled by turning it into the following format:

J(k) = −max
Θ

ln q(XN |Θ) + ∆(k), (1)

where the term ∆(k) is resulted from a rough approximation such that it is
computable. Differences on q(Θ) and on methods for approximating the integral
result in different specific forms. Typical efforts include those under the names
of Bayesian Information Criterion [34, 23], Bayes Factors [21], the evidence or
the marginal likelihood [22], etc. The Akaike Information Criterion (AIC) can
also be obtained as a special case though it was orginally derived from a different
perspective [1, 2].

The second direction follows the well known principle of Ockham Razor, i.e.,
seeking a most economic model that represents XN . It is implemented via mimiz-
ing a two part coding length. One is for encoding the residuals or errors incurred
by the model in representing XN , which actually corresponds to the first term
in eq.(1). The other is for encoding the model itself, which actually corresponds
to the second term in eq.(1). Different specific forms maybe obtained due to
differences on what measure is used for the length and on how to evaluate the
measure, which is usually difficult, especially for the second part coding. Studies
have been made under the names of minimum message length (MML)[42], min-
imum description length (MDL) [29], best information transfer, etc. After this
or that type of approximation, the resulted criteria turn out closely related to
or even same as those obtained along the above first direction.

Another direction is towards estimating the generalization performance di-
rectly. One typical approach is called cross-validation (CV). XN is randomly
2 We say that k1 proceeds k2 or k1 ≺ k2 if Sk1 is a part (or called a substructure) of

Sk2 . When k consists of only one integer, k1 ≺ k2 becomes simply k1 < k2.
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and evenly divided into Di, i = 1, · · · ,m parts, each Di is used to measure the
performance of Sk with its Θk determined from the rest samples in XN after
taking Di away. Then we use the average performance measures of m times as
an estimation of J(k) [39, 30]. One other approach is using the VC dimension
based learning theory [41] to estimate a bound of generalization performance via
theoretical analysis. A rough bound can be obtained for some special cases, e.g.,
a Gaussian mixture [44]. Generally, such a bound is difficult to get because it is
very difficult to estimate the VC dimension of a learning model.

Even with a J(k) available, evaluating its optimal values involves a discrete
optimization nested with a series of implementations of parameter learning for
a best Θ∗

k at each k. The task usually incurs a huge computing cost, while many
practical applications demand that learning is made adaptively upon each sam-
ple comes. Moreover, the parameter learning performance deteriorates rapidly
as k increases, which makes the value of J(k) evaluated unreliably. Efforts have
been made on tackling this challenge along two directions. One is featured by
incremental algorithms that attempts to incorporate as much as possible what
learned as k increases step by step, focusing on learning newly added parame-
ters. Such an incremental implementation can save computing costs in certain
extent. However, parameter learning has to be made by enumerating the values
of k, and computing costs are still very high. Also, it usually leads to suboptimal
performance because not only those newly added parameters but also the old pa-
rameter set Θk have to be re-learned. Another type of efforts has been made on
a widely encountered category of structures that consists of individual substruc-
tures, e.g., a Gaussian mixture that consists of several Gaussian components. A
local error criterion is used to check whether a new sample x belongs to each
substructure. If x is regarded as not belonging to anyone of substructures, an
additional substructure is added to accommodate this new x. This incremental
implementation is much faster. However, the local evaluating nature makes it
very easy to be trapped into a poor performance, except for some special cases
that XN = {xt}N

t=1 come from substructures that are well separated.

The other direction consists of learning algorithms that start with k at a
large value and decrease k step by step, with extra parameters discarded and
the remaining parameter updated. These algorithms are further classified into
two types. One is featured by decreasing k step by step, based on evaluating
the value of J(k) at each k. The other is called automatic model selection,
with extra structural parts removed automatically during parameter learning.
One early effort is Rival Penalized Competitive Learning (RPCL) [65] for a
structure that consists of k individual substructures. With k initially given a
value larger enough, a coming sample x is allocated to one of the k substructures
via competition, and the winner adapts this sample by a little bit, while the
rival (i.e., the second winner) is de-learned a little bit to reduce a duplicated
allocation. This rival penalized mechanism will discard those extra substructures,
making model selection automatically during learning. Various extensions have
been made in the past one decade and half. Readers are referred to a recent
encyclopedia paper [48].



55

1.3 Two-pathway approaches and the scope of this paper

RPCL learning was heuristically proposed in lack of theoretical guide. Pro-
posed firstly in [64] and systematically developed in the past decade [47, 49],
the Bayesian Ying-Yang (BYY) harmony learning acts as a general statistical
theory that guides various learning tasks with model selection achieved automat-
ically during parameter learning, which is featured by using a Bayesian Ying-
Yang (BYY) system to model an intelligent system and three level of inverse
problems shown in Fig.1 and Fig.2.

The two-pathway idea has been adopted in the literature of modelling a
perception system for decades. One early example is the adaptive resonance
theory developed in the 1970s [14], featured by a resonance between bottom-
up input and top-down expectation in help of a mechanism motivated from a
cognitive science view. Efforts have been further made on multi-layer net featured
two-pathway approaches, e.g., under the least mean square error based auto-
association [6], the LMSER self-organization [66]. However, these early studies
were neither motivated nor targeted at a probability theory based perspective
as shown in Fig.2.

In addition to those approaches discussed in Table 1, studies on a probabilistic
two-path way perspective include the BYY learning, the Helmholtz free energy
based learning or Helmholtz machine [15, 11], variational approximation methods
[20, 19]. Motivated differently, these approaches share certain common features
and also have different properties. Firstly proposed in 1995 [64, 56, 50, 51, 47] and
developed in the past decade, BYY learning not only acts as a general framework
for a unified perspective on these approaches as well as the approaches in Table
1, but also provides a new theory for model selection on a finite size of samples,
both on deriving a criterion that outperforms typical model selection criteria in
a two-phase implementation, and on developing learning algorithms for several
typical learning tasks with an appropriate model scale obtained automatically
during parameter learning while with computing cost saved significantly.

In the rest of this paper, Section 2 introduces the fundamentals of Bayesian
Ying Yang system and best harmony learning theory, the implementable struc-
tures for Yang machine and the distributed log-quadratic inner structures for
Ying machine. In Section 3, relations and differences of a number of existing typ-
ical learning approaches are rather systematically compared and re-elaborated
from the perspective of BYY learning under the principles of best harmony ver-
sus best matching. Finally, a further introduction is made on a particular family
of BYY systems featured with Gaussian manifolds as components.

2 Bayesian Ying-Yang Learning

2.1 Bayesian Ying-Yang System and Best Harmony Learning

As shown in Fig.5, a unified scenario of Fig.2 is considered by regarding that
the observation set X = {x} are generated via a top-down path from its inner
representation R = {Y, Θ}. Given a system architecture, the parameter set Θ
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collectively represents the underlying structure of X, while one element y ∈ Y is
the corresponding inner representation of one element x ∈ X. A mapping R → X
and an inverse mapping X → R are jointly considered via the joint distribution
of X and R in two types of Bayesian decomposition shown at the right-bottom
of Fig.5. In a compliment to the famous ancient Ying-Yang philosophy, the de-
composition of p(X,R) coincides the Yang concept with a visible domain p(X)
for a Yang space and a forward pathway by p(R|X) as a Yang pathway. Thus,
p(X,R) is called Yang machine. Similarly, q(X,R) is called Ying machine with
an invisible domain q(R) for a Ying space and a backward pathway by q(X|R)
as a Ying pathway. Such a Ying-Yang pair is called Bayesian Ying-Yang (BYY)
system.

YANG Machine

YING Machine

)X|Θ(p)Θ,X|Y(p
)X|R(p =

}Υ,{R Θ=
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Fig. 5. Bayesian Ying-Yang System

As shown in Fig.5, the system is further divided into two layers. The front
layer is actually the one shown in Fig.2(b), with a parametric Ying-Yang pair at
the left-bottom of Fig.5, which consists of four components with each associated
with a subset of parameters Θ = {Θp, Θq}, where Θp = {θy|x, θx} and Θq =
{θy, θx|y}. This Θ is accommodated on the back layer with a priori structure
q(Θ|Ξq) to back up the front layer, the back layer may be modulated by a meta
knowledge from a meta layer q(Ξ). Correspondingly, an inference on Θ is given
by p(Θ|X, Ξp) that integrates information from both the front layer and the
meta layer. Putting together, we have

q(X,R) = q(X|Y, θx|y)q(Y|θy)q(Θ|Ξq),
p(X,R) = p(Θ|X, Ξp)p(Y|X, θy|x)p(X|θx). (2)
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The external input is only a set of samples XN = {xt}N
t=1 of X = {x}, based

on which we form an estimate of p(X|θx) either directly or with a unknown sclar
parameter θx = h, as shown in Tab.2. Based on this very limited knowledge, the
goal of building up the entire system is too ambitious to pursuit. We need to
further specify certain structures of p(X,R) and q(X,R). Summarized in Tab
2 are typical scenarios of both p(X,R) and q(X,R), and further details will be
introduced in the subsequent two subsections.

Similar to the discussions made at the end of Sec.1.1, the Ying Yang system
is also featured by a given meta structure ℵ that grows into a family {Sk(Θk)}
with each Sk sharing a same configuration but in different scales of k. The
meta structure ℵ consists ℵq,ℵp for the Ying machine and the Yang machine
respectively, from which we get the structures of q(X,Y|Θq) and p(X,Y|Θp) in
different scales. Though it is difficult to precisely define, the scale k of an entire
system is featured by the scale or complexity for representing R, which is roughly
regarded as consisting of the scale kY for representing Y and the number nf of
free parameters in Θ.

As shown in Tab.2, different structures of the Ying machine q(X,Y|Θq)
are considered to accommodate the world knowledge and different types of
dependences encountered in various learning tasks. First, an expression for-
mat is needed for each inner representation Y. It has four typical choices as
shown in Tab.2. The general case is the last one, i.e., Y = {Yv,L} with
Yv = {yv}, L = {`}. Each ` takes a finite number of integers to denote one
of several labels for tasks of pattern classification, choice decision, and cluster-
ing analyses, etc, while each yv is a vector that acts as an inner coding or cause
for observations. Moreover, q(Yv|θy) describes the structure dependence among
a set of values that Yv may take. Second, q(X|Yv, θx|y) describes the knowledge
about the dependence relation from inner representation to observation. Third,
in addition to these structures, the knowledge is also represented by Θ jointly,
which is confined by a background knowledge via a priori structure q(Θ|Ξ) with
a unknown parameter set Ξq. Some choices are shown in Tab.2.

As to the Yang machine p(X,Y|Θp), we already have the above discussed
input p(X|θx). Similar to the case of Fig.2(b), the structures of p(Y|X, θy|x) =
p(Yv|X, L, θy|x)p(L|X, θy|x) not only make a fast implementation of a desired
problem solving but also act as an inverse role of the Ying machine q(X,Y|Θq).
If we are also provided with the structure of p(Θ|X, Ξp), what still remains
unknown consists of k and Ξ = {Ξq, Ξp}. An analogy of this Ying Yang system
to the ancient Ying-Yang philosophy motivates to determine the unknowns under
a best harmony principle, which is mathematically implemented by maximizing
the following harmony measure

max
{k,Ξ}

H(p‖q,k, Ξ), H(p‖q,k, Ξ) =
∫

p(R|X)p(X) ln [q(X|R)q(R)]dXdR

=
∫

p(Θ|X, Ξ)Hf (X, Θ,k, Ξ)dΘ,

Hf (X, Θ,k, Ξ) =
∑
L

p(L|X, θy|x)Hf (X, L,Θ,k, Ξ), (3)

Hf (X, L,Θ,k, Ξ) =
∫

p(Yv|X, L, θy|x)p(X|θx)×
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Table 2 Typical scenarios of q(X,R) = q(X|Y, θx|y)q(Y|θy)q(Θ|Ξq) and
p(X,R) = p(Θ|X, Ξp)p(Y|X, θy|x)p(X|θx)
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× ln [q(X|Yv, L, θx|y)q(Yv|L, θy)q(L|θL)q(Θ|Ξq)]dYv.

On one hand, maximizing H(p‖q) forces q(X|R)q(R) to match p(R|X)p(X). Due
to the constraints on the given Ying and Yang structures, a perfect matching
p(R|X)p(X) = q(X|R)q(R) may not be really reached but still be approached
as possible as it can. At this equality, H(p‖q) becomes the negative entropy that
describes the complexity of system. Further maximizing H(p‖q) with k, Ξ is
actually minimizing the complexity of system, which provides a model selection
ability on k. Such an ability can also be observed from other perspectives, with
details referred to [52, 49].

The first difficulty we encounter is where to get the structure of p(Θ|X, Ξp)
that specifies a probabilistic inverse mapping XN → Θ shown in Fig.2(c). One
possibility is the BI choice in the second column of Tab.1 or written as the choice
B for p(Θ|X, Ξp) in Tab.2. As previously discussed, it usually involves a difficult
computation for not only an integral over Θ but also an integral over Y . To
avoid this difficulty, we usually consider the choice A and choice C in Tab.2.

First, we consider Choice A, i.e., a p(Θ|X, Ξp) free of structure. Maximizing
H(p‖q) with respect to such a p(Θ|X, Ξp) leads to

p(Θ|X, Ξp) = δ(Θ −Θ∗), Θ∗ = max
Θ

Hf (X, Θ,k, Ξ). (4)

That is, the problem becomes seeking a best harmony between the front layer
Ying-Yang pair. But it also incurs a problem. With p(X|θx) given empirically
from XN , the mapping to Θ∗ from XN of random samples is probabilistic. How-
ever, δ(Θ−Θ∗) can not take this uncertainty in consideration. Actually, Θ∗(XN )
by eq.(4) only takes over the information of the first order statistics from the Ying
machine. In other words, maximizing H(p‖q) with respect to a free p(Θ|X, Ξp)
can only make a best Ying Yang harmony in term of the first order statistics.

This uncertainty is considered by p(Θ|X, Ξp) in the Choice B or Choice C
such that a best Ying Yang harmony in term of not only the first order statistics
but also the statistics of the second order or higher. To be detailed in the next
subsection, the approximation will make H(p‖q,k, Ξ) in eq.(3) approximately
turned into the following format:

H(p‖q,k, Ξ) = Hf (XN , Θ∗,k, Ξ) + ∆(Θ∗,k, Ξ), (5)

where Θ∗ and Hf (XN , Θ,k, Ξ) are given in eq.(4), and ∆(Θ∗,k, Ξ) either in-
volves no integral over Θ or an integral over a subset of Θ that is analytically
solvable. If the meta parmeters Ξ is given, we can directly maximize the above
H(p‖q,k, Ξ) to select k. If the meta parameters Ξ is unknown, we need to make
maxΞ H(p‖q,k, Ξ) too. Actually, getting Θ∗ by eq.(4) depends on Ξ. In other
words, the process of seeking an approriate Ξ∗ is coupled with finding Θ∗. In
general, we can estimate Ξ∗ and Θ∗ jointly by iterating the following two steps:

Θ step : Θ(t+1) = Θ(t) + η∇ΘHf (XN , Θ,k, Ξ(t))Θ=Θ(t) , (6)

or Θ(t+1) = arg max
Θ

Hf (XN , Θ,k, Ξ(t)) if it is analytically solvable,
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Ξ step : Ξ(t+1) = Ξ(t) + η∇Ξ at Ξ(t) [Hf (XN , Θ(t+1),k, Ξ) + ∆(Θ(t+1),k, Ξ)],

which starts with an initialization Θ(0) and Ξ(0) and reaches a convergence.
In a summary, the best Ying Yang harmony by maximizing H(p‖q,k, Ξ) is

made via the following two stage implementation :

Stage I : get Ξ∗, Θ∗ by eq.(6) for ∀k ∈ K, K is a set of values of k; (7)
Stage II : k∗ = arg min

k∈K
J(k), J(k) = −Hf (XN , Θ∗,k, Ξ∗) + ∆(Θ∗,k, Ξ∗).

As mentioned previously, the scale k of a BYY system is contributed from two
parts. One is featured by kY for representing Y and the rest is featured by
the number nf of free parameters in Θ. The degrees of difficulty for estimating
the two parts are quite different. When q(Y|θy) is in a so called scale reducible
structure, an appropriate kY will be determined automatically during parame-
ter learning on Ξ∗ and Θ∗ by eq.(6), with k initialized at one big enough value.
The details are referred to Sec.2.3. Interestingly, the model selection problem
in many typical learning tasks [49, 52] can be reformulated into a BYY system
for selecting merely this kY part. This favorable feature makes both parame-
ter learning for Ξ∗, Θ∗ and model selection for kY implemented simultaneously
by only implementing eq.(6), which can significantly reduce the computational
cost that is needed in a two stage implementation by eq.(7). However, the per-
formance of this automatic model selection will deteriorate as the sample size
N reduces. In such a case, we can implement both the stages in eq.(7) with a
computational cost similar to those conventional two stage implementations of
typical model selection criteria. Still, eq.(7) will provide an improvement over
those typical criteria since the contribution by kY has been addressed more ac-
curately, though the contribution featured by the number nf of free parameters
in Θ is roughly estimated in a way similar to those typical criteria.

2.2 Yang machine: Implementable scenarios

With p(X|θx) given empirically from XN , i.e., Choice A in Tab. 2, it follows from
eq.(3) that we further have

Hf (XN , Θ,k, Ξ) =
∑
L

p(L|XN , θy|x)Hf (XN , L,Θ,k, Ξ),

Hf (XN , L,Θ,k, Ξ) =
∫

p(Yv|XN , L, θy|x)L(XN , L,Y, Θq)dYv − Z(Θ|Ξq),
L(XN , L,Yv, Θq) = ln [q(XN |Yv, L, θx|y)q(Yv|L, θy)q(L|θL)],
Z(Θ|Ξq) = − ln q(Θ|Ξq), Θq = {θx|y, θy, θL}. (8)

There still remains an integral over Yv, which is handled differently according
to the choices of p(Yv|X, L, θy|x) in Tab.2, whenever there is no confusion, yv is
denoted by y for simplicity. For the Choice A, maximizing H(p‖q) with respect
to a p(Yv|X, L, θy|x) free of structure leads to

p(Yv|X, L, θy|x) = δ(Yv −Y∗
vL(Θq)), Y∗

vL(Θq) = max
Yv

L(XN , L,Yv, Θq),
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Hf (XN , L,Θ,k, Ξ) = L(XN , L,Y∗
vL(Θq), Θq)− Z(Θ|Ξq). (9)

The computational difficulty incurred by the integral over Yv has been avoided.
But it also incurs two problems. First, the above Y∗

vL(Θq) may not have a differ-
entiable expression with respect to Θq, or even no analytical expression. Thus, a
gradient based algorithm for maxΘ H(p‖q, Θ) can not take the relation Y∗

vL(Θq)
in consideration, which makes learning fragile to local optimal performance. Sec-
ond, the mapping from a set XN of random samples to the inner representations
is probabilistic while δ(Yv−Y∗

vL(Θq)) can not take this uncertainty in consider-
ation, since it only takes over the information of the first order statistics from the
Ying machine. Similar to the discussion after eq.(4), considered in eq.(9) is a best
Ying Yang harmony only in term of the first order statistics. It is improved by
p(Yv|X, L, θy|x) in the Choice C of Tab.2 such that a best Ying Yang harmony
in the front layer via approximately considering the second order statistics.

Considering a Taylor expansion of Q(ξ) around ξ∗ = maxξ Q(ξ) up to the
second order and noticing ∇ξQ(ξ) = 0 at ξ = ξ∗, we approximately have∫

p(ξ)Q(ξ)dξ ≈ Q(ξ∗) +
1
2
Tr[ΣHQ(ξ∗)], Σ =

∫
p(ξ)(ξ − ξ∗)(ξ − ξ∗)T dξ, (10)

where the Hessian matrix HQ(ξ) = ∂2Q(ξ)/∂ξ∂ξT is negative definite in a neigh-
borhood of ξ∗. Moreover, q(ξ) = e−Q(ξ)/

∫
e−Q(ξ)dξ defines a distribution. If we

use G(ξ|µ,Σ) to approximate q(ξ), the solution is µ = ξ∗, Σ = H−1
Q (ξ∗) [45].

With Yv as ξ and L(XN , L,Yv, Θq) as Q(ξ), it follows from eq.(8) and eq.(10)
that we approximately have

Hf (XN , L,Θ,k, Ξ) ≈ L(XN , L,Y∗
vL(Θq), Θq)− 0.5dkY

(L,Θq)− Z(Θ),
dkY

(L,Θ) = Tr[ΣL(Y∗
vL, Θ)HL(Yv, Θq)]Yv=Y∗

vL
(Θq),

HL(Yv, Θq) = −∂2L(XN , L,Yv, Θq)
∂Yv∂YT

v

,

ΣL(Y∗
vL, θy|x) =

∫
[Yv −Y∗

vL(Θq)][Yv −Y∗
vL(Θq)]T p(Yv|XN , L, θy|x)dYv.

Following the discussion after eq.(10), see the Choice C in Tab.2, we consider

p(Yv|XN , L, θy|x) = G(Yv|µ(XN , φµ,L), Σ(XN , φΣ,L)). (11)

Let µ(XN , φµ,L) = Y∗
vL(Θq) and Σ(XN , φΣ,L) = H−1

L (Y∗
vL(Θq), Θq), we have

ΣL(Y∗
vL, θy|x) = H−1

L (Y∗
v(Θq), Θq), dkY

(Θ) = Tr[IY ] = dY , (12)

where dY is the dimension of Yv. Comparing with eq.(9), we can find that
the only difference is this integer dY . This term is useful in Stage II of eq.(7)
for making model selection on k. However, the two problems mentioned after
eq.(9) largely remain. Alternatively, we let Σ(XN , φΣ,L) = H−1

L (Y∗
v(Θq), Θq)

but leave µ(XN , φµ,L) to be a parametric function (e.g., a linear function or
nonlinear function) with a unknown set φµ,L. Let Yv−Y∗

vL = Yv−µ(XN , φµ,L)+
µ(XN , φµ,L)−Y∗

vL, we have

Σ(Y∗
vL, θy|x) = H−1

L (Y∗
vL, Θq) + e(Y∗

vL, Θ)eT (Y∗
vL, Θ),
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dkY
(L,Θ) = dY + eT (Y∗

vL, Θ)HL(Y∗
vL, Θq)e(Y∗

vL, Θ),
Y∗

vL = Y∗
vL(Θq), e(Y∗

vL, Θ) = µ(XN , φµ,L)−Y∗
vL. (13)

In addition to dY , the second term in dkY
(L,Θ) takes uncertainties in consid-

eration. This term is updated via Θq and will gradually disappear as learning
converges and e(Y∗

vL, Θ) tends to 0. Even without an analytical expression for
Y∗

v(Θq), we can get a value Y∗
vL via maxΘ H(p‖q, Θ) and then update Θ with

the above dkY
(L,Θ) in effect by certain extent. If Y∗

vL(Θq) is obtained in a dif-
ferentiable expression, a further improvement can be obtained via further taking
∇Θq

Y∗
vL(Θq) in consideration through the chain rule.

When Yv consists of vectors in binary variables. The above approach does
not apply because we can not use eq.(10). In these cases, the integral over Yv

becomes summation, which can be computed but usually with a high computa-
tional complexity. Still, we can consider p(Yv|XN , L, θy|x) in a parametric struc-
ture to facilitate the computation. An example is listed in Tab.2 and details will
be further discussed in Sec.2.3.

We continue to proceed beyond the case of eq.(4) by considering p(Θ|X ) in
the Choice C of Tab.2 for a best Ying Yang harmony with not only Θ∗(XN ) but
also its corresponding second order statistics in consideration. With p(X|θx)
given empirically from XN , i.e., Choice A in Tab. 2, from eq.(3) we have∫

p(Θ|XN , Ξ)Hf (XN , Θ,k, Ξ)dΘ. Regarding Θ as ξ and Hf (XN , Θ,k, Ξ) as Q(ξ),
it follows again from eq.(10) that we approximately get eq.(5), that is

H(p‖q,k, Ξ) = Hf (XN , Θ∗,k, Ξ) + ∆(Θ∗,k, Ξ), Θ∗ = max
Θ

Hf (XN , Θ,k, Ξ),

∆(Θ∗,k, Ξ) = −0.5dk, dk = Tr[Σ(Θ∗)HH(Θ∗)], (14)

Σ(Θ∗) =
∫

(Θ −Θ∗)(Θ −Θ∗)T p(Θ|XN )dΘ, HH(Θ) = −∂2Hf (XN , Θ,k, Ξ)
∂Θ∂ΘT

.

Further let p(Θ|XN ) = G(Θ|Θ∗,H−1
H (Θ∗)), we get that dk = Tr[I] is the num-

ber nf of free parameters in Θ [46, 47, 51]. It follows from eq.(14) that both
Θ∗ and HH(Θ∗) depend XN , Ξ. Let p(Θ|XN ) = G(Θ|µ(XN , Ξ),H−1

H (Θ∗)) with
µ(XN , Ξ) in a parametric function of XN , Ξ, similar to eq.(13) we also get

∆(Θ∗,k, Ξ) = −0.5dk,
dk = nf + (µ(XN , Ξ)−Θ∗)T HH(Θ∗)(µ(XN , Ξ)−Θ∗). (15)

Revising the direction of thinking, put p(Θ|XN ) = G(Θ|µ(XN , Ξ),H−1
H (Θ∗))

into eq.(3) we can also consider

H(p‖q,k, Ξ) =
∫

G(Θ|µ(XN , Ξ),H−1
H (Θ∗))H−

f (XN , Θ,k, Ξ)dΘ + ∆(Θ∗,k, Ξ),
∆(Θ∗,k, Ξ) =

∫
G(Θ|µ(XN , Ξ),H−1

H (Θ∗)) ln q(Θ|Ξq)dΘ,

H−
f (XN , Θ,k, Ξ) =

∑
L

∫
p(L|XN , θy|x)p(Yv|XN , L, θy|x)L(XN , L,Yv, Θq)dYv,

where L(XN , L,Yv, Θq) is still given by eq.(8). There may be two ways to handle
the integral in the first term. One is considering several typical structures on
which the integral can be handled, with details referred to Sec.2.3. The other
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way is similar to eq.(10). Considering a Taylor expansion of Q(ξ) around µ up
to the second order, we approximately have∫

G(ξ|µ,Σ)Q(ξ)dξ ≈ Q(ξ)ξ=µ +
1
2
Tr[Σ∂2Q(ξ)/∂ξ∂ξT ]ξ=µ. (16)

With G(Θ|µ(XN , Ξ),H−1
H (Θ∗)) as ξ and H−

f (XN , Θ,k, Ξ) as Q(ξ), we get∫
G(Θ|µ(XN , Ξ),H−1

H (Θ∗))H−
f (Θ,k, Ξ)dΘ = H−

f (XN , µ(XN , Ξ),k, Ξ)

+
1
2
Tr[H−1

H (Θ∗){∂2H−
f (Θ,k, Ξ)/∂Θ∂ΘT }]Θ=µ(XN ,Ξ). (17)

For the second term of H(p‖q,k, Ξ), i.e., ∆(Θ∗,k, Ξ), we may handle it by either
observing the specific structure of q(Θ|Ξq) or using eq.(16). By the latter, we
reach H(p‖q,k, Ξ) in eq.(14) again but with

∆(Θ∗,k, Ξ) = −0.5dk, dk = Tr[H−1
H (Θ∗)HH(µ(XN , Ξ))], (18)

which becomes dk = nf when µ(XN , Ξ) reaches Θ∗.
Generally, it is difficult to consider p(Θ|X ) given by a Bayesian structure,

i.e., the Choices B in Tab.2. In some cases, we may divide the set Θ into two
parts Θ′ and Θ′′ and assume that p(Θ|X ) = p(Θ′|X )p(Θ′|X ) and q(Θ|Ξq) =
q(Θ′|Ξ ′

q)q(Θ
′′|Ξ ′′

q ). For one part Θ′′, we may handle
∫

p(Θ′′|X ) ln q(Θ′′|Ξq)dΘ′′

analytically. Then, the remining parts are handled as before.
The last but not least, we further proceed to the case that p(X|θx) = ph(X)

is given by Choice B in Tab. 2, with an extra unknown input h in consideration.
Let X to be replaced by X, h and notice that only X relates to h, we have

p(X, h) = p(X|h)p(h), p(X|h) = ph(X), p(R|X, h) = p(R|X),
q(X, h|R) = q(h|X,R)q(X|R), q(h|X,R) = q(h|X), (19)

with q(R) remains unchanged. Put it into eq.(3), we have

H(p‖q,k, Ξ) =
∫

p(h)p(Θ|X, Ξ)Hf (X, Θ, h,k, Ξ)dΘdXdh (20)

Maximizing H(p‖q,k, Ξ) with p(h) free of constraint leads to

p(h) = δ(h− h∗), h∗ = arg max
h

Hh(p‖q,k, Ξ),

Hh(p‖q,k, Ξ) =
∫

p(Θ|X, Ξ)Hf (X, Θ, h,k, Ξ)dΘ. (21)

Equivalently, h∗ is also given by h∗ = arg maxh Hf (X, Θ, h,k, Ξ). Moreover, it
further follows from eq.(16) that we have

Hf (X, Θ, h,k, Ξ) = Hf (XN , Θ,k, Ξ) + 0.5h2Tr[Σ(XN )]− Z(h),

Z(h) = − ln q(h|XN ), Σ(X) =
∂2

∑
L p(L|XN , θy|x) ln q(X|Yv, L, θx|y)

∂X∂XT
.

An example of q(h|XN ) is obtained from ph(X) by eq.(29) in the next subsection.
Therefore, we can modify the two stage implementation by eq.(6) and eq.(7)

with all the appearances of Θ replaced by {Θ, h} and Hf (XN , Θ,k, Ξ) by Hf (XN ,
Θ, h,k, Ξ). Recalling the discussion after eq.(7), the performance of automatic
model selection on kY by eq.(6) will deteriorate as the sample size N reduces.
With an approriate h∗ learned together with Θ∗, a considerable improvement
can be obtained to reduce this deterioration, as verified by experiments [35].



64

2.3 Ying machine : distributed log-quadratic inner structures

We proceed to typical scenarios of q(X,R). To accommodate the world knowl-
edge and the dependences underlying XN appropriately, there are several issues
to be considered, consisting of inner representation with a wide coverage of typi-
cal learning tasks, computational feasibility, scalability of complicated problems,
and structural scale reducibility that does not impede automatic model selection.

Table 3 Typical structures of q(y) = q(y|θy) and
q(x|y) = q(x|y, θx|y) = G(x|µy, Σy)

For many learning tasks, these issues are collectively considered in a class of
structures for Ying machine, namely distributed log-quadratic inner structures.
As already discussed in Sec.2.1, we consider a distributed inner representation
Y = {Yv,L}, i.e., vector based inner representations Yv = {yv} are distribu-
tively and collaboratively described in a collection L = {`} with the help of
q(XN |Yv,L, θx|y) and q(Yv|θy) in the following log-quadratic structures :

L(XN ,L,Y, Θq) = ln [q(XN |Yv,L, θx|y)q(Yv|L, θy)q(L)]
= Tr[ΦXN

(Θq
L)YvYT

v + ΨXN
(Θq

L)Yv + φXN
(Θq

L)] + ln q(L), (22)

where ΦXN
(Θq

L), ΨXN
(Θq

L), φXN
(Θq

L) are in given expressions. Eq.(8) becomes

Hf (XN , Θ,k, Ξ) =
∑
L

p(L|XN , θy|x) ln q(L) +
∑
L

p(L|XN , θy|x)Tr[φXN
(Θq

L)]+
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L

p(L|XN , θy|x)Tr[ΨXN
(Θq

L)µ(XN , θy|x) + ΦXN
(Θq

L)ΓL(XN , θy|x)]− Z(Θ),

µ(XN , θy|x) =
∫
Yvp(Yv|XN ,L, θy|x)dYv,

ΓL(XN , θy|x) =
∫
YvYT

v p(Yv|XN ,L, θy|x)dYv. (23)

Table 4 Typical parametric structures of p(y|x, θy|x)

As a result, the integral over Yv for Hf (XN , Θ,k, Ξ) has been turned into the
integrals for getting the first order and second order statistics of p(Yv|XN ,L, θy|x).
Let p(Yv|XN ,L, θy|x) = G(Yv|Y∗

vL(Θq),H−1
L (Y∗

vL(Θq)), we have µ(XN , θy|x) =
Y∗

vL(Θq) and ΓL(XN , θy|x) = H−1
L (Y∗

vL(Θq) +Y∗
vL(Θq)Y∗T

vL(Θq) and thus it re-
turns back to the situation same as that in eq.(11) and eq.(12). From eq.(11)
with Σ(XN , φΣ,L) = H−1

L (Y∗
vL(Θq), Θq), we also have

µ(XN , θy|x) = µ(XN , φµ,L),
ΓL(XN , θy|x) = H−1

L (Y∗(Θq), Θq) + µ(XN , φµ,L)µT (XN , φµ,L), (24)
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and thus encounter a situation equivalent to that by eq.(11) and eq.(13).
Beyond those cases based on eq.(10), eq.(23) is also applicable to the cases

that Yv consists of binary or discrete variables. It is applicable to any struc-
tures in the log-quadratic form by eq.(22) or in this form approximately. Be-
yond eq.(11), we consider p(Yv|XN ,L, θy|x) in a structure that the integrals for
µ(XN , θy|x) and ΓL(XN , θy|x) in eq.(23) can be solved analytically or computed
efficiently. Moreover, instead of specifying the entire p(Yv|XN ,L, θy|x), we can
merely design µ(XN , θy|x) and ΓL(XN , θy|x) in certain pre-specified parametric
functions that are analytically computable.

The above discussions apply to the general scenarios that there maybe also
temporal or even graphical dependence among that elements of X = {x}. Corre-
spondingly, we consider certain structure among the elements of Y = {yv, `} to
accommodate this dependence. E.g., further details about temporal dependences
are referred to [59, 50]. To get further insights, here we focus on the cases that
the elements of X = {x} are independently and identically distributed (i.i.d.),
and thus the elements of Y = {yv, `} are i.i.d. That is, we consider

q(Y|θy) =
∏

q(yv, `|θy), q(yv, `|θy) = q(yv|`, θy,`)q(`),

p(Y|X, θy|x) =
∏

p(yv, `|x, θy|x), q(X|Y, θx|y) =
∏

q(x|yv, `, θx|y), (25)

with p(yv, `|x, θy|x) = p(yv|x, `, θy|x,`)p(`|x, θ`|x).
Shown in Tab. 3 and Tab.4 are several typical structures, covering several

typical learning tasks [49]. All of them satisfy the format by eq.(23), except the
case (d) for q(y|θy). Even for this exceptional case as well as other structures
that fail to satisfy the format by eq.(23), we can still approximately use a Taylor
expansion of ln [q(x|y, θx|y)q(y|θy)] or ln q(y(j)|`) with respect to y up to the
second order. Readers are also referred to [53, 46, 47] for various other choices.

In the i.i.d. cases by eq.(25) and with the structures given in Tabs. 3 & 4, we
can get a further insight on eq.(23) via a more detailed expression. Considering
q(y|θy) at its Case (1) & Case (2) in Tab.3(b), we write eq.(23) into

Hf (XN , Θ,k, Ξ) =
∑

t

∑
`

p(`|xt, θy|x)[ln α` + φ(xt, Θ
`
q)]− Z(Θ) + (26)∑

t

∑
`

p(`|xt, θy|x)Tr{Ψ(xt, Θ
`
q)µ`(xt) + Φ(xt, Θ

`
q)[Γ`(xt) + µ`(xt)µT

` (xt)]},

µ`(x) =
∫

yp(y|x, `)dy, Γ`(x) =
∫

(y − µ`(x))(y − µ`(x))T p(y|x, `)dy,

The analytical expressions for µ`(x) and Γ`(x), as well as the corresponding
φ(xt, Θ

`
q), Ψ(xt, Θ

`
q), and Φ(xt, Θ

`
q) are given in Tab.5.

Moreover, p(`|xt, θy|x) is given by Tab.4(a) with ζ`(x) in the choice (3) of
Tab.4(c), which is a simplification of p(L|XN , θy|x) in the choice B of Tab.2.
Also, we can get the simplified counterpart of the choice C of Tab.2 as follows

p(`|xt, θy|x) = e−o`(xt)/

k∑
j=1

e−oj(xt), o`(x) = β`x
T H`x + bT

` x + c`,
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H` = ∂2 ln
∫

q(x|yv, `, θx|y)q(yv|`, θy)dyv/∂x∂xT . (27)

Furthermore, we are ready to elaborate the issue of structural scale re-
ducibility, mentioned several times previously but without a further interpre-
tation yet. As discussed after eq.(3), maximizing H(p‖q,k, Ξ) will push k as
least as possible. Similarly, maxΘ,h Hf (XN , Θ, h,k, Ξ) will push the entropy
of q(XN |Yv,L, θx|y) q(Yv|L, θy)q(L) as least as possible. One part of this en-
tropy is contributed from the representation scale kY of Y = {Yv,L}. In-
terestingly, each integer of kY is associated with one or several parameters
in Θq, and the least complexity nature will push these parameters towards
0 if the corresponding integer represents a redundant scale part. We say that
q(XN |Yv,L, θx|y)q(Yv|L, θy)q(L) has scale reducibility if there is no constraint
to impede or block these parameters to be pushed towards 0.

Table 5 Major terms of Hf (XN , Θ,k, Ξ) with p(y|x, `) in Tab. 4, q(x|y, θx|y)
and q(y|θy) at Case (1) & Case (2) in Tab. 3

For the structures in eq.(25), kY consists of k and {m`}k
`=1. We observe

that pushing one q(`) = α` towards zero is equivalent to reducing the scale
k to k − 1, with all the corresponding structures discarded in effect. More-
over, pushing the variance of q(y(j)|`) towards 0 means that those of the j-
th dimension can be discarded. We say that q(`) is scale reducible if no con-
straint prevents q(`) to become 0 for every `, and that q(yv|`, θy,`) is scale
reducible if no constraint prevents q(y(j)|`, θy,`) to become zero for every j, `.
Thus, q(y|θy) is scale reducible when both q(`) and q(yv|`, θy,`) are scale re-
ducible. If there are extra parts of structure was allocated in a scale reducible
q(y|θy), maxΘ,h Hf (XN , Θ, h,k, Ξ) will drive those extra parameters towards
zero. i.e., automatic model selection on kY is made during parameter learning
on Ξ∗, Θ∗ by eq.(6). Taking Hf (XN , Θ,k, Ξ) in eq.(26) as an example, maximiz-
ing the term

∑
t

∑
` p(`|xt, θy|x) ln α` of Hf (XN , Θ,k, Ξ) becomes equivalently
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maximizing N
∑

` α` lnα` with α` =
∑

t p(`|xt, θy|x)/N , which tends to push α`

towards zero when it is extra.
The last, we consider the details of q(Θ|Ξ) in Tab.2. The simplest case is the

choice 1, i.e., ignoring its role simply by letting Z(Θ) = − ln q(Θ) = 0. Moreover,
we may further divided each Θξ into independent groups q(Θξ) =

∏
j q(Θ(j)

ξ ),

and let q(Θ(j)
ξ ) in the following choices [25, 21, 32]:

(1) The simplest way is to consider the so called improper priori, e.g., a
uniform improper priori

q(Θ(j)
ξ ) ∝ constant, (28)

for real a parameter. For a scalar γ > 0, we consider q(γ) by a Jeffrey improper
priori q(γ) ∝ 1/γ. When Σ is a d × d covariance matrix, a Jeffreys improper
priori is q(Σ) ∝ 1/|Σ|0.5(d+1).

(2) For different parameters, we consider different specific distribution. For
examples, a gamma distribution for a scalar γ > 0, an inverted Wishart distri-
bution for Σ of a d× d covariance matrix, a Beta/Dirichlet distribution for the
proportional parameters {α`}, and a uniform improper priori by eq.(28) or a
Gaussian distribution for real parameters in a vector or matrix.

(3) Another general way for getting an improper priori is the choice 3 in
Tab.2, which was developed in [46, 47, 51]. Here we explain its rationale. Given a
density p(u|θ), we have

∫
p(u|θ)du = 1 that does not depend on θ for an infinite

size of samples. This is no longer true for s =
∑N

t=1 p(ut|θ) by considering a
finite sample size of samples {ut}N

t=1. This s actually varies with θ and imposes
an implicit distribution θ. Considering a priori q(θ) ∝ 1

s can balance off this
unnecessary bias. E.g., for h in eq.(19) we have

q(h) ∝ [
N∑

t=1

N∑
τ=1

G(xt|xτ , h2I)/N ]−1. (29)

Other examples are referred to [46, 47, 51], e.g., eqn.(11) for q(Θ) in [47].

3 Best Harmony vs Best Matching: Relations to Others

3.1 Special cases: relations to existing approaches

It is interesting to further observe how the best harmony learning degenerates as
a BYY system degenerates to a conventional model q(X|Θ). We consider R =
{Θ} without an inner representation part Y, which leads us back to Fig.2(c),
and simplifies H(p‖q) = H(p‖q,k, Ξ) in eq.(3) into

H(p‖q) =
∫

p(Θ|X)p(X) ln [q(X|Θ)q(Θ)]dXdΘ. (30)

For a p(Θ|X) free of structure and p(X) of the choice (A) in Tab.2, maximizing
H(p‖q) with respect to p(Θ|X) leads to the MB type Bayesian learning in Tab.1,
i.e., maxΘ ln [q(XN |Θ)q(Θ)], while J(k) in eq.(7) becomes

k∗ = arg min
k

J(k), J(k) = −max
Θ

ln [q(XN |Θ)q(Θ)] + 0.5dk, (31)
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which is a Bayesian learning based extension of AIC. For a non-informative q(Θ),
it further degenerates to exactly AIC [1, 2]. Moreover, for a general case with
p(X, h) by eq.(19), it follows from eq.(22) that eq.(30) is extended into

H(p‖q) =
∫

p(h)p(Θ|XN )Hh(p‖q, Θ)dΘ ≈ max
Θ,h

Hh(p‖q, Θ)− 0.5dk,

Hh(p‖q, Θ) = ln [q(XN |Θ)q(Θ)] + 0.5h2Tr[Σ(XN )]− Z(h),
Z(h) = − ln q(h|XN ), Σ(X) = ∂2 ln q(X|Θ)/∂X∂XT . (32)

With p(Θ|X) in a given structure, the BYY harmony learning is different
from the conventional Bayesian learning. E.g., we consider p(Θ|X) with the BI
structure in Tab.1 and rewrite eq.(30) into

H(p‖q) =
∫

p(Θ|X)p(X) ln p(Θ|X)dXΘ +
∫

p(X) ln q(X|S)dX. (33)

Particularly, for p(X) of the choice (A) in Tab.2, it further becomes

H(p‖q) =
∫

p(Θ|XN ) ln p(Θ|XN )dΘ + ln q(XN |S). (34)

The maximization of its second term is exactly the MI (marginal likelihood)
choice in Tab.1. As already discussed in Section 1, it has been previously studied
under various names [34, 23, 21, 22]. The first term in eq.(34) is the negative
entropy of p(Θ|XN ) and its maximization is seeking an inverse inference XN → Θ
with a least uncertainty. More generally, it follows from eq.(3) that we get an
extension of eq.(34) as follows:

H(p‖q) =
∫

p(R|XN ) ln p(R|XN )dR + ln q(XN |S),
p(R|X ) = q(X|R)q(R)/q(X|S), q(X|S) =

∫
q(X|R)q(R)dR. (35)

Even generally, we also let S to be included in the inner representation R, and
get a further generalization of eq.(30) as follows:

H(p‖q) =
∑
S

p(S|X)p(X) ln [q(X|S)q(S)]. (36)

When p(S|X) is free of structure, maximizing H(p‖q) with respect to p(S|X)
leads to maxS ln [q(XN |S)q(S)] for model selection, i.e., the BI choice in Tab.1.
In the special case that q(S) is equal for each candidate S, it further degenerates
to maxS ln q(XN |S), i.e., the ML choice in Tab.1. Also, a generalized counterpart
of eq.(34) becomes

H(p‖q) =
∑
S

p(S|XN ) ln p(S|XN ) + ln q(XN ), q(XN ) =
∑
S

q(XN |S)q(S).

3.2 Best Harmony versus Best Matching

For a BYY system, in addition to making the best harmony learning by eq.(3),
an alternative has also been proposed and studied in [64] under the name of
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Bayesian Kullback Ying Yang (BKYY) learning that performs the following best
matching principle:

minKL(p‖q), KL(p‖q) =
∫

p(R|X)p(X) ln
p(R|X)p(X)
q(X|R)q(R)

dXdR (37)

=
∫

p(Θ|X){
∫

p(Y|X, θy|x)p(X) ln
p(Θ|X)p(Y|X, θy|x)p(X)
q(X|Y, θx|y)q(Y|θy)q(Θ)

dXdY}dΘ,

which reaches to the best matching KL(p‖q) = 0 at p(R|X)p(X) = q(X|R)q(R).
As a BYY system degenerates to a conventional model q(X|Θ), the above

eq.(37) is simplified into the following counterpart of eq.(30):

minKL(p‖q), KL(p‖q) =
∫

p(Θ|X)p(X) ln
p(Θ|X)p(X)
q(X|Θ)q(Θ)

dXdΘ. (38)

When p(Θ|X) is free of structure, minimizing KL(p‖q) with respect to p(Θ|X)
leads to p(Θ|X) = q(X|Θ)q(Θ)/q(X|S) and q(X|S) =

∫
q(X|Θ)q(Θ)µ(dΘ). As

a result, eq.(38) becomes

minKL(p‖q), KL(p‖q) =
∫

p(X) ln [p(X)/q(X|S)]dX, (39)

where p(X) is an input irrelevant to q(X|S) and q(Θ). For p(X) of the choice
(A) in Tab.2, eq.(39) further becomes equivalent to the MI (marginal likelihood)
choice in Tab.1. For a general case with p(X, h) by eq.(19), eq.(39) provides its
data smoothing version with not only Θ but also h learned.

Alternatively we may also consider minq(Θ) KL(p‖q) when q(Θ) is free of
constraint, which leads to q(Θ) = p(Θ|X) and

minKL(p‖q), KL(p‖q) =
∫

p(Θ|X)p(X) ln [p(X)/q(X|Θ)]dXdΘ. (40)

When p(X) is an input irrelevant to q(X|Θ), it is equivalent to

max
∫

p(Θ|X)p(X) ln q(X|Θ)dXdΘ, (41)

which further becomes max
∫

p(Θ|XN ) ln q(XN |Θ)dΘ for p(X) of the choice (A)
in Tab.2. Its maximization with a structural free p(Θ|X) leads to the classical
ML learning again. Moreover, in help of eq.(10), we are again lead to eq.(31),
i.e., the ML learning based AIC [1, 2].

Next, we return to eq.(37) with its inner representation Y in consideration.
When p(Y|X, θy|x) is free, minp(Y|X,θy|x) KL(p‖q) leads to eq.(38) again with

p(Y|X, θy|x) = q(X|Y, θx|y)q(Y|θy)/q(X|Θ),
q(X|Θ) =

∫
q(X|Y, θx|y)q(Y|θy)dY. (42)

In other words, we can integrate over the effect of inner representation Y to get
q(X|Θ) and then handle it by eq.(38).

On the other hand, minq(Θ) KL(p‖q) with a free q(Θ) results in q(Θ) =
p(Θ|X) and also

minKL(p‖q) =
∫

p(Θ|X)KL(p‖q, Θ)dΘ ≥ min
f

KL(p‖q, Θ).
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KL(p‖q, Θ) =
∫

p(Y|X, θy|x)p(X) ln
p(Y|X, θy|x)p(X)

q(X|Y, θx|y)q(Y|θy)
dXdY. (43)

This minf KL(p‖q, Θ) was originally proposed in 1995 under the name Bayesian
Kullback Ying Yang (BKYY) learning [64]. From minp(Y|X,θy|x) KL(p‖q, Θ), we
are lead to the above discussed eq.(42) and eq.(41) again.

The difference between the best Ying Yang matching by eq.(37) and the
best Ying Yang harmony learning by eq.(3) can be better understood from the
following relation:

KL(p‖q) =
∫

p(R|X)p(X) ln [p(R|X)p(X)]dXdR−H(p‖q). (44)

In addition to maximizing H(p‖q), minimizing KL(p‖q) also includes minimiz-
ing the first term that is the negative entropy of the Yang representation, which
cancels out the least complexity nature that was discussed after eq.(3). There-
fore, the best Ying Yang harmony learning by eq.(3) considerably outperforms
the best Ying Yang matching learning by eq.(37) for learning tasks that need
model selection, as already verified by a number of experimental comparisons
and applications [35].

3.3 BKYY learning, Helmholtz machine, and variational approach

Aiming at avoiding the integral q(X|Θ) =
∫

q(X|Y, θx|y)q(Y|θy)dY for the ML
learning, maximizing the likelihood function is suggested to be replaced by max-
imizing one of its lower bound via the Helmholtz free energy or called variational
free energy [11, 24], by which maxΘ q(X|Θ) is replaced by maximizing

F = −
∫

p(Y|XN , θy|x) ln [p(Y|XN , θy|x)/q(XN |Y, Θ)q(Y|θy)]dY

= −
∫

p(Y|XN , θy|x) ln
p(Y|XN , θy|x)
q(Y|XN , Θ)

dY + ln q(XN |Θ) ≤ ln q(XN |Θ),

q(Y|XN , Θ) = q(XN |Y, θx|y)q(Y|θy)/q(XN |Θ). (45)

Instead of computing q(XN |Θ) and q(Y|XN , Θ), a parametric model is con-
sidered for p(Y|XN , θy|x), and learning is made for determining the unknown
parameters θy|x together with Θ via maximizing F .

In fact, maximizing F by eq.(45) is equivalent to minf KL(p‖q, Θ) by eq.(43)
with p(X) in the choice (A) of Tab.2. In other words, the two approaches co-
incide in this situation, though they were motivated from two different per-
spectives. Maximizing F by eq.(45) directly aims at approximating the ML
learning on q(XN |Θ), with an approximation gap to trade off computational
efficiency via a pre-specified parametric p(Y|XN , θy|x). This gap disappears if
p(Y|XN , θy|x) is able to reach the posteriori q(Y|XN , Θ). Instead, minimizing
KL(p‖q, Θ) by eq.(43) is not motivated from a purpose of approximating the
ML learning though it was also shown in [64] that minp(Y|X,θy|x) KL(p‖q, Θ)
for a p(Y|X, θy|x) free of constraint makes minf KL(p‖q, Θ) become the ML
learning with p(X) in the choice (A) of Tab.2. The motivation is determining
all the unknowns in the Ying-Yang pair to make the pair best matched. Beyond
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becoming equivalent to the ML learning and approximating the ML learning,
studies on minf KL(p‖q, Θ) by eq.(43) covers not only extensions to the general
case with p(X, h) by eq.(19), but also the problems of minimizing KL(p‖q, Θ)
with respect to a free q(X|Y, θx|y), which leads to

min
∫

p(Y|Θp) ln
p(Y|Θp)
q(Y|θy)

µ(dY), p(Y|Θp) =
∫

p(Y|X, θy|x)p(X)µ(dX). (46)

If q(Y|θy) is independent among its components and p(Y|X, θy|x) has a post-
linear structure, eq.(46) becomes equivalent to the minimum mutual information
(MMI) base ICA learning [3]. The details are referred to [64, 56, 51, 52].

In the past decade, extensive studies have also been made under the name
of variational approximation methods [20, 19], which further put the basic idea
of the Helmholtz free energy [11, 24] in a general framework of approximation
methods rooting from techniques in the calculus of variations and with a wide
variety of uses [33]. The key idea is turning a complex problem into a simpler
one, featured by a decoupling of the degrees of freedom in the original problem.
This decoupling is achieved via an expansion of the problem to include additional
parameters (called variational parameters), in help of convex duality [31]. The
variational approximation method revisits the Helmholtz free energy approach
under the formulation of probability theory, in a sense that p(Y|XN , θy|x) is
used as an additional parameter to turn the problem of the integral q(X|Θ) =∫

q(X|Y, θx|y)q(Y|θy)dY into eq.(45).

3.4 A relationship map

A summary of the BYY learning related approaches is provided in Fig.6 under
the principles of best harmony versus best matching, as well as their relations
to typical learning approaches.

The common part of all the approaches is the shadowed center area, featured
by using a probabilistic model to best match a data set XN via determining three
levels of its unknowns. The first two levels are the ML learning for unknown
parameter learning and model selection shown in the ML row of Tab.1, which
has been widely studied from various perspective as previously discussed in Sec.
1 [34, 23, 21, 22]. The third level is evaluating or selecting an appropriate meta
structure ℵ via q(XN |ℵ), i.e., the second term in eq.(37), for which few studies
have been made yet but deserve to explore.

Outbound from this shadowed center we have two directions. One is to the
left-side. Priori probabilities are taken in consideration for determining three
levels of its unknowns. The first two levels are the MB choices for parameter
learning and model selection in Tab.1. As discussed in Sec. 1, studies have made
under the name of Bayesian learning or Bayesian approach [25, 32], as well as
MML [42]. The third level is again evaluating an appropriate meta structure ℵ
via q(XN |ℵ)q(ℵ) with a priori q(ℵ) in consideration. Moving forward even left,
we are lead to those areas of the best Ying Yang harmony learning by eq.(3),
which includes but goes beyond the areas of the ML and MB approaches, as
already discussed in Sec.3.1.
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Fig. 6. Best harmony, Best matching, and Typical learning approaches

The second direction goes the right-side, the domain of the best Ying Yang
matching by eq.(37). Out of the shadowed center, we enter the common area
shared with the approach of variational free energy or the Helmholtz machine
[11, 24]. Moving right still, we proceed beyond and lead to a number of other
cases, as already discussed in Sec.3.2.

In addition to the mathematical relation by eq.(44), the difference between
the best Ying Yang matching and the best Ying Yang harmony can also be un-
derstood from a best information transfer perspective and a projection geometry
perspective. The details are referred to Section II(C) and Section III of [51], re-
spectively. Other discussions on relations and differences are further referred to
several recent papers [47, 46, 49].

4 Gaussian Manifold Based Systems, Typical
Applications, and Concluding Remarks

One common structural feature shared by those structures in Tab.3 & Tab.4 is
that each of them actually describes samples in the space of x via a number of
Gaussian manifolds in certain organization. Shown in Tab.6 are three examples of
mixtures of Gaussian manifolds, by combining q(x|y) = q(x|y, θx|y) = G(x|A`y+
µ`, Σ`) with three different types of q(y) = q(y|θy). Taking the LFA case as an
example, it follows from eq.(11), eq.(12), and eq.(13) that we have

Hf (XN , Θ,k, Ξ) =
∑

t

H
(t)
f (XN , Θ, h,k, Ξ) + ln q(Θ|Ξ) + ln q(h|XN ),
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H
(t)
f (XN , Θ, h,k, Ξ) =

∑
`

p(`|xt) ln [G(x|A`y(xt) + µ`, Σ`)G(y(xt)|0, Λ`)α`]

−0.5
∑

`

p(`|xt){m` + [y(xt)− y ∗ (xt)]T [Λ−1
` + AT

` Σ−1
` A`][y(xt)− y ∗ (xt)]},

−0.5h2
∑

`

p(`|xt)Tr[Σ−1
` ], Θ = {AT

` A` = I, µ`, Σ`, Λ`, α`,W`, w`, b`, c`}k
`=1,

y(x) = W`x + w`, y∗(x) = [Λ−1
` + AT

` Σ−1
` A`]−1AT

` Σ−1
` (x− µ`), (47)

p(`|xt, θy|x) =
e−o`(xt)∑k

j=1 e−oj(xt)
, o`(x) = β`x

T [Σ` + A`Λ`A
T
` ]−1x + bT

` x + c`.

where p(`|xt, θy|x) is given by eq.(27) with H` = Σ` + A`Λ`A
T
` , and q(h|XN ) is

given by eq.(29). From the above Hf (XN , Θ,k, Ξ), we can develop a gradient
based adaptive algorithm to implement learning by eq.(6). Moreover, we can also
get J(k) for Stage II in eq.(7)(e.g., see eqn.(86) in [46]).

Table 6 Gaussian mixture (GM), Binary factor analysis (BFA), and Local
factor analysis (LFA)

Using Gaussian manifold based systems, computational feasibility is guaran-
teed by the fact that the integral over y is analytically solvable, scalability of
complicated problems is obtained via increasing the number of Gaussian man-
ifolds in consideration, and coverage of typical learning tasks is achieved via
different ways that organize Gaussian manifolds. Moreover, the scale kY of Gaus-
sian manifold based systems is simply featured by the variance of a Gaussian
variable in Y and the probability of a discrete variable in Y , which ensures scale
reducibility of q(Y|θy). Due to these natures, Gaussian manifold based systems
have been applied to various tasks. Several examples are listed below:

– Cluster analysis, Gaussian mixture, and mixture of shape-structures (includ-
ing lines, planes, curves, surfaces, and even complicated shapes) [63, 60, 57,
56, 55, 46].

– Factor analysis (FA) and local FA, including PCA, subspace analysis and
local subspaces, etc [57, 36, 35, 18, 17].

– Independent subspace analysis, including independence components analysis
(ICA), binary factor analysis (BFA), nonGaussian factor analysis (NFA), and
LMSER, as well as three layer net [56, 54, 51, 53, 4].
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– Independent state space analysis, including temporal factor analysis (TFA),
independent hidden Markov model (HMM), temporal LMSER, and variants
[61, 59, 56, 50].

– Combination of multiple inference, including multiple classifier combination,
RBF nets, mixture of experts, etc [62, 60, 46].

Proposed firstly in 1995 [64], the BYY harmony learning has been systemat-
ically developed in the past decade. Studies have demonstrated the feasibility of
using BYY system as a general framework for unifying a number of typical learn-
ing models and a promising direction of adopting best Ying-Yang harmony as a
general theory for parameter learning and model selection. The BYY harmony
learning leads to not only a criterion that outperforms existing typical model
selection criteria in a two-phase implementation, but also automatic model se-
lection during parameter learning with computing cost saved significantly. Read-
ers are referred to [47, 46, 49] for a tutorial and recent systematic overviews and
also to some earlier papers for a similar purpose [58, 51, 52]. Moreover, readers
are referred to [61, 59, 50, 56] for the studies on the BYY harmony learning with
temporal dependences taken in consideration.
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