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Abstract Based on the problem of detecting the num-
ber of signals, this paper provides a systematic empir-
ical investigation on model selection performances of
several classical criteria and recently developed meth-
ods (including Akaike’s information criterion (AIC),
Schwarz’s Bayesian information criterion, Bozdogan’s
consistent AIC, Hannan-Quinn information criterion,
Minka’s (MK) principal component analysis (PCA) cri-
terion, Kritchman & Nadler’s hypothesis tests (KN),
Perry & Wolfe’s minimax rank estimation thresholding
algorithm (MM), and Bayesian Ying-Yang (BYY) har-
mony learning), by varying signal-to-noise ratio (SNR)
and training sample size N . A family of model selec-
tion indifference curves is defined by the contour lines
of model selection accuracies, such that we can exam-
ine the joint effect of N and SNR rather than merely
the effect of either of SNR and N with the other fixed
as usually done in the literature. The indifference curves
visually reveal that all methods demonstrate relative ad-
vantages obviously within a region of moderate N and
SNR. Moreover, the importance of studying this region
is also confirmed by an alternative reference criterion
by maximizing the testing likelihood. It has been shown
via extensive simulations that AIC and BYY harmony
learning, as well as MK, KN, and MM, are relatively
more robust than the others against decreasing N and
SNR, and BYY is superior for a small sample size.

Keywords number of signals, array processing, factor
analysis, principal component analysis (PCA), model se-
lection criteria

1 Introduction

Detecting the number of source signals is an essential
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issue in many signal processing problems such as sen-
sor array processing, the poles retrieval of a system re-
sponse, the direction of arrival estimation by a smart
antenna system, retrieving the overlapping echoes from
radar backscatter, and so on (see e.g., Refs. [1,2]). The
observed vector can be modeled as a superposition of a
finite number of underlying Gaussian source signals with
an additive Gaussian noise [2]. The signal-number deter-
mination is also addressed as a model selection problem
[1,3] in machine learning and statistics, i.e., selecting
the latent dimensionality of a factor analysis (FA) [4]
model. Revisited in Ref. [5], FA implements principal
component analysis (PCA) as a special case under the
maximum likelihood (ML) principle.

To tackle this model selection problem, a traditional
approach is a two-stage implementation, i.e., parameter
learning is repeated on a set of candidate latent dimen-
sionalities among which one is selected by a model selec-
tion criterion. Existing classical criteria, such as Akaike’s
information criterion (AIC) [6] etc., trade off between
the likelihood-based goodness of fit and model complex-
ity, subject to noise and uncertainty in a finite number
of observations. Recently, on one hand, Minka’s criterion
(MK) [7] is a further developed Bayesian model selection
method for PCA, while Bayesian Ying-Yang (BYY) har-
mony learning [8,9] is another statistical learning frame-
work for model selection. On the other hand, based
on the recent results of sample covariance asymptotics
stemming from random matrix theory [10–12], new al-
gorithms were proposed for the related rank estimation
problem, including Kritchman & Nadler’s hypothesis
test (KN) [13] and Perry & Wolfe’s minimax rank es-
timation thresholding algorithm (MM) [14].

It is important to examine the relative strengths and
weaknesses of these model selection methods. One way
[3,15,16] is to empirically examine their model selection
performances by varying signal structure, training sam-
ple size N , etc. The other way is to formally analyze
their statistical properties such as consistency. Initial-
ized from Ref. [1] and followed by Refs. [17–22], AIC
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and minimum description length (MDL) [23] were intro-
duced to determine the number of signals with efforts
on approximating the underestimation (or overestima-
tion) probability and asymptotical consistency under an
infinite N . Moreover, recent progress in random matrix
theory demonstrates the existence of a phase transition
threshold (for the eigenvalues of the covariance), below
which the effective number of signals is reduced [10–
12,22] under the limit N, n → ∞ with n/N → c, where
n is the dimensionality of observations, and c > 0 is a
constant. In this context, MK and KN were respectively
analyzed in Refs. [13,24], while MM was shown to admit
asymptotic minimax optimality [14].

Following the track on the problem of detecting the
underlying signal number, this paper aims at a system-
atic empirical comparison on a wide scope of their per-
formances of the above methods in model selection and
testing likelihood. We examine the joint effect of training
sample size N and signal-to-noise ratio (SNR, defined as
the ratio of the smallest signal eigenvalue to the noise
eigenvalue of the population covariance matrix), rather
than the single effect of either of SNR and N with the
other fixed, which is not adequate for a systematic com-
parison.

In experiments, model selection accuracies are col-
lected under extensive configurations of N and SNR.
The contours of equal accuracies are connected to ob-
tain a family of model selection indifference curves (a
term borrowed from economics). With the help of indif-
ference curves, we are able to visually reveal a dimin-
ishing marginal effect that the amount of SNR (or N)
to trade for a unit of N (or SNR) grows if the model
selection accuracy is kept at the same level, and also
able to identify a three-region partition in the configu-
ration space. All methods perform well within the range
that N and SNR are large, but unavoidably suffer from
underestimation due to a reduction of the effective num-
ber of signals [10,12,22] within the range that N and
SNR are too small. Interestingly, the relative strengths
and weaknesses of these methods are obviously demon-
strated within a region with moderate N and SNR. This
region deserves more investigations.

Moreover, a further verification is made with help of
a reference criterion that selects a model with the max-
imum testing likelihood (TLL) as an approximation of
generalization risk. We have observed not only the re-
duction of the number of effective signals when N and
SNR are too small, but also the importance of this region
with the following features: 1) AIC and BYY, as well as
MK, KN, and MM, are more robust against decreasing
N and SNR; 2) BYY is superior in small-sample-size
area for model selection and with smaller generalization
error than TLL.

The rest of this paper is organized as follows. Section
2 formulates the problem of determining the number of

signals as estimating the hidden dimensionality of FA.
Section 3 reviews the model selection methods to be in-
vestigated. Section 4 is devoted to a systematic empirical
analysis. Section 5 concludes this paper.

2 Problem description

In several important problems, such as sensor array pro-
cessing in signal processing [1,2], a common model for
the signal vector x(t) from an array of n sensors at
time instance t is x(t) = Aφs(t) + e(t), where Aφ is
often referred to as the steering matrix with full column
rank. The m-dimensional source signal vector sequence
{s(t)} is assumed to be a stationary and ergodic Gaus-
sian random process with zero mean and positive defi-
nite covariance matrix Σs. The additive noise vector se-
quence {e(t)} is assumed to be a stationary and ergodic
Gaussian vector process, independent of the source sig-
nals, with zero mean and covariance matrix Σe = σ2

eIn,
where σ2

e is an unknown scalar and In is the n×n iden-
tity matrix. The signals and unknown parameters are
complex-valued. Associated with this model, a key prob-
lem which has received much attention in signal process-
ing literature (e.g., Refs. [1,17,18,20,21]) is to determine
the number of source signals based on an observed se-
quence x(t), t = 1, 2, . . . , N , or the rank of AφΣsA

H
φ in

the following equation:

Σx = AφΣsA
H
φ + σ2

eIn, (1)

where Σx is the population covariance matrix of the re-
ceived data, and the superscript “H” means the complex
conjugate transpose.

On the other hand, a model called Factor Analysis
(FA) in machine learning [25] and statistics [4], assumes
an n-dimensional real-valued observation x to be dis-
tributed as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = Ay + µ + e, Θm = {A, µ,Σy,Σe},
p(x|y) = G(x|Ay + µ,Σe),

p(y) = G(y|0,Σy),

p(x|Θm) =
∫

p(x|y)p(y)dy = G(x|µ,Σx),
Σy = Im (m × m identity matrix) ,

Σx = AΣyAT + Σe,

(2)

where y is an m × 1 hidden factor vector, Θm denotes
the set of the model parameters of FA with the hidden
dimensionality being m, A is an n × m factor loading
matrix with full column rank, the noise covariance ma-
trix Σe is diagonal, and G(•|µ,Σ) denotes a Gaussian
distribution with a mean vector µ and a covariance ma-
trix Σ. Following the track in signal processing, we set
FA in its special case by µ = 0,Σe = σ2

eIn, which is
equivalent to PCA [4,5] under the maximum likelihood
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principle. Then, the population covariance matrix of the
observations is

Σx = AΣyAT + σ2
eIn. (3)

The problem of determining the hidden dimensionality
of y is to estimate the rank of AΣyAT based on an i.i.d
sample set XN = {xt}N

t=1.
The two rank estimation problems by Eqs. (1) and (3)

are equivalent, because they both seek a similar decom-
position of a sample covariance matrix with a matrix
rank of AφΣsA

H
φ (or AΣyAT) being smaller than n,

i.e., m < n, though the estimated matrix Aφ in Eq. (1)
and A in Eq. (3) may not be equivalent due to certain
indeterminacies in the decompositions of Eqs. (1) and
(3).

3 Methods

Given a sample set XN = {xt}N
t=1, where the mean is

assumed to be zero, the task of FA modeling consists of
estimating the parameters Θm and selecting the num-
ber of factors m, traditionally tackled by a two-stage
procedure:

1) Compute Θ̂m = Θ̂(XN , m) for each candi-
date m. Normally, Θ̂m is an ML estimator Θ̂ML

m =
argminΘm Jnll(XN |Θm), where Jnll = − 2

N ln p(XN |Θm)
is denoted as negative log-likelihood (NLL).

2) Estimate m̂ = arg minm JCri, where m̂ gives an es-
timate of the true hidden dimensionality m∗, and JCri

is a model selection criterion (Cri), e.g.,

JCri(XN , Θ̂m) = Jnll(XN , Θ̂m) + (ρNdm)/N, (4)

dm = nm + 1 − [m(m − 1)]/2, n = dim(x), (5)

ρN =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2, for AIC [6],

ln N, for BIC/MDL [23,26],

ln N + 1, for CAIC [27],
2 ln(lnN), for HQC [28],

(6)

where dm in Eq. (5) is the number of free parameters of
the real-valued FA model, and dm = m(2n − m) + 1 for
the complex-valued FA [1]. In the sequel, we focus on
the real-valued case.

The criterion by Eq. (4) aims to trade off between
the log likelihood and the model/sample complexity. Be-
sides, the difference of the NLL of two FA models, de-
noted as DNLL, allows model selection by calculating
the log ratio of the likelihood values. The DNLL esti-
mate m̂ = argminm JDNLL(XN , Θ̂ML

m ), where JDNLL =
Jnll(XN , Θ̂ML

m ) − Jnll(XN , Θ̂ML
m−1).

Model selection aims to avoid overfitting by min-
imizing the generalization error KL(po‖p(Θ̂ML

m )) =

∫
po(x) ln[po(x)/p(x|Θ̂ML

m )] dx, where po(x) denotes the
true probability density function. Suppose X ′

N ′ is a test
set of a large size N ′ from po, then maxm ln p(X ′

N ′ |Θ̂ML
m )

and minm KL(po‖p(x|Θ̂ML
m )) are approximately equiva-

lent. We use TLL to denote the following criterion:

m̂(TLL) = argmax
m

ln p(X ′
N ′ |Θ̂ML

m ). (7)

TLL is regarded as a reference criterion which selects
the optimal ML estimate by maximizing testing log-
likelihood as an approximation of generalization risk.

For a wide scope of model selection methods, we con-
duct the performance evaluation on not only several clas-
sical criteria such as AIC [6], Bayesian information cri-
terion (BIC) [26], but also three recent approaches as
follows:

1) Kritchman & Nadler’s estimator [13] and Perry
& Wolfe’s minimax rank estimator [14], two examples
of development based on the sample covariance asymp-
totics stemming from random matrix theory [10–12];

2) Minka’s criterion [7], a further approximation for
Bayesian model selection;

3) Bayesian Ying-Yang harmony learning, developed
from another direction for model selection.

3.1 Kritchman & Nadler’s hypothesis test (KN)

Kritchman & Nadler’s algorithm [13] performs a se-
quence of hypothesis tests on the hidden dimensional-
ity, with the help of a matrix perturbation approach for
the interactions between noise and signal eigenvalues.
The KN test algorithm is based on a result that the dis-
tribution of the largest eigenvalue s1 of a d-dimensional
sample covariance matrix, computed from pure Gaussian
noise observations with the zero mean and the popula-
tion covariance being σ2Id, converges to a Tracy-Widom
distribution in the joint limit d, N → ∞ with d/N = c

fixed [29], i.e.,

Pr{s1 < σ2(μN,d + sσN,d)} → Fβ(s), (8)

where Fβ denotes the Tracy-Widom distribution1) of or-
der β, and β = 1, 2 respectively corresponds to real or
complex-valued observations. As described in Ref. [11],
for real-valued observations the following equations:
⎧
⎨

⎩

μN,d = 1
2n (

√
N − 1 +

√
d − 1)2,

σN,d = √
μN,d/N

(√
2/(N − 1) +

√
2/(d − 1)

)1/3

,
(9)

give an OP (d−2/3) rate of convergence in Eq. (8). More-
over, for the case of n-dimensional population covariance
with m signal eigenvalues, Kritchman and Nadler pro-
posed in Ref. [13] a consistent estimator σ2

KN (in the
joint limit n, N → ∞ with n/N = c) for the unknown

1) The Tracy-Widom distribution Fβ can be explicitly computed from the solution of a second order Painlevé ordinary differential
equation [29]. A Matlab code for computing Fβ is given at http://momardieng.com/mathematics.
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σ2, which amounts to solving the following m + 1 equa-
tions involving the unknowns ρ̂1, ρ̂2, . . . , ρ̂m and σ2

KN:
{

σ2
KN − 1

n−m

[∑n
j=m+1 sj +

∑m
j=1(sj − ρ̂j)

]
= 0,

ρ̂2
j − ρ̂j

[
sj + σ2

KN(1 − n−m
N )

]
+ sjσ

2
KN = 0.

(10)

Reference [13] suggested to solve Eq. (10) iteratively
starting from an initial guess

(∑n
i=m+1 si

)
/[(n−m)(1−

m/N)] for σ2
KN, where s1 � s2 � · · · � sn are

the eigenvalues of the sample covariance matrix SN =
1
N

∑N
t=1 xtx

T
t .

Based on Eq. (8) and the estimate σ2
KN obtained from

Eq. (10), the KN hypothesis test is: “H0: at least m

hidden dimensions vs H1: at most m − 1 hidden di-
mensions”. If for a chosen confidence level α,

sm > σ2
KN(m) [μN,n−m + s(α)σN,n−m] (11)

is satisfied, then H0 is accepted and m is increased by
one; otherwise, the output is m̂ = m − 1, where s(α)
is the corresponding value computed by inversion of the
Tracy-Widom distribution. Reference [13] showed that
the misidentification probability of the KN estimator
converges to the significant level α in the joint limit
n, N → ∞, n/N → c � 0. This paper uses the code from
Nadler’s web site2) to implement the KN algorithm with
α = 0.1%.

3.2 Minimax rank estimation (MM)

Based on the existence of a phase transition threshold
below which the sample eigenvalues are irrelevant to
the population eigenvalues [10–12], a decision-theoretic
method for rank estimation was proposed in Ref. [14].
Considering first the problem of differentiating between
observing no signal at all (m = 0 with the population
covariance being σ2In) and observing a single signal
(m = 1 with the largest population eigenvalue being
λ1 + σ2, λ1 > 0). When m = 0, the asymptotic null dis-
tribution of the largest sample eigenvalue s1 is the Tracy-
Widom distribution as given in Eq. (8). When m = 1,
the asymptotic alternate distribution3) is

Pr{s1 � μN,n(λ1) + xσN,n(λ1)} → Φ(x), (12)

where λ1 > σ2
√

n/N holds, Φ(·) denotes the standard
normal distribution function, and

μN,n(λ) = (λ + σ2)(1 + nσ2

Nλ ),

σN,n(λ) = (λ + σ2)
√

2
βN (1 − nσ4/(Nλ2)).

A thresholding decision rule is defined as δT (s1) = 1
if s1 > T ; δT (s1) = 0 otherwise. Based on the asymp-
totic null and alternate distributions, the risk of δT (s1)

is asymptotically as

R(λ1, δT ) →
⎧
⎨

⎩

cI

(
1 − Fβ

(
T (j)−μN,n

σN,n

))
, when λ1 = 0,

cEΦ
(

T (j)−μN,n(λ1)
σN,n(λ1)

)
, otherwise,

where cI > 0 is an “inclusion” penalty for the false-
positive decision, and cE > 0 is an “exclusion” penalty
for the false-negative decision, and

μN,n = σ2

N (
√

n +
√

N)2,

σN,n = σ2

N (
√

n +
√

N)
(

1√
n

+ 1√
N

)1/3

.

Supposing λ1 � λ0 is a priori known if m = 1, the mini-
max rank estimate algorithm chooses a threshold T to
minimize the maximum risk R(0, δT )∨R(λ0, δT ), which
implies R(0, δT ) = R(λ0, δT ), or

cI

(
1 − Fβ

(
T−μN,n

σN,n

))
= cEΦ

(
T−μN,n(λ0)

σN,n(λ0)

)
. (13)

The above thresholding approach is extended for an
arbitrary m > 0 with a sequence {cE(i)}n

i=1 of exclusion
cost, and then the MM thresholding procedure is

m̂ = arg max
1�i�n

i, s.t. sj > T (j), ∀1 � j � i, (14)

where with the corresponding exclusion cost as
∑n

�=j cE(�), T (j) is determined by Eq. (13) which im-
plies the MM thresholding algorithm is minimax-optimal
[14]. In the implementation, we compute T in Eq. (13)
numerically using bisection, set cI = cE(1) = · · · = cE(n)
with λ0 =

√
n/Nσ2+N−1/3 as in Ref. [14], and estimate

σ2 by the maximum likelihood estimator.

3.3 Minka’s criterion (MK) for PCA

Bayesian model selection requires computing the
marginal likelihood, which involves a difficult integral
over a high dimensional parameter space. One way is
to approximate the marginal likelihood by Laplace’s
method, a simplification of which is the BIC approxima-
tion [26]. Recently, Minka [7] proposed a new Laplace
approximation to the marginal likelihood p(XN |m) =
∫

p(XN |Θ)p(Θ)dΘ for FA in Eq. (2), where Σy = Im

and Σe = σ2
eIn, and the prior p(Θ) for the parameter

Θ = {A, σ2
e} is adopted as

p(A, σ2
e) ∝ |AAT + σ2

eI|−α+2
2 e−

α
2 Tr[(AAT+σ2

eI)−1],

where α is a hyperparameter, and for a noninformative
prior, α should be small.

2) The KN estimate package is downloaded from http://www.wisdom.weizmann.ac.il/∼nadler/, where the inversion of the Tracy-

Widom distribution is approximated by a simple formula (refer to the package for details).
3) Please refer to Theorem 2 of Ref. [14] for details.
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For a very small α and a reasonably large sample size
N , the approximation formula is simplified as

p(XN |m) ≈ 2−m
∏m

i=1

[

Γ
(

n − i + 1
2

)

π−n−i+1
2

]

·
(∏m

i=1
si

)−N
2

(σ̂2
e)−

N(n−m)
2 (2π)

dm−1
2 N−m

2

·
[∏m

i=1

∏n

j=i+1
(ŝ−1

j − ŝ−1
i )(si − sj)N

]− 1
2

,

(15)

where ŝi = si if i � m; otherwise ŝi = σ̂2
e with

σ̂2
e = 1

n−m

∑n
j=m+1 sj . The hidden dimensionality is es-

timated as m̂ = arg minm{− ln p(XN |m)}.

3.4 Bayesian Ying-Yang (BYY) harmony learning

First proposed in Ref. [8] and systematically developed
over a decade, BYY harmony learning theory is a general
statistical learning framework that provides not only a
set of new model selection criteria but also a class of
automatic model selection algorithms, under a best har-
mony principle, which is to maximize the following har-
mony functional:

H(p‖q) =
∫

p(R|X)p(X) ln[q(X |R)q(R)] dXdR

=
∫

p(Θ|X)H(p‖q,Θ) dΘ, (16)

H(p‖q,Θ) =
∫

p(Y |X,Θ)p(X) ln[q(X |Y,Θ)
·q(Y |Θ)] dY dX + ln q(Θ),

where the data X is regarded as generated from its in-
ner representation R = {Y,Θ}, with Y and Θ being
latent variables and parameters respectively. The two
types of Bayesian decompositions, i.e., p(R|X)p(X) and
q(X |R)q(R), are called Yang machine and Ying ma-
chine respectively. As interpreted in Ref. [30], maximiz-
ing H(p‖q) leads to not only a best Ying-Yang match-
ing (may not really reach) q(X |R)q(R) = p(R|X)p(X)
which turns H(p‖q) into a negative entropy, but also a
least model complexity by further maximizing this neg-
ative entropy. The embedded Ying-Yang matching is in
a sense of best harmony not maximum likelihood.

We adopt a two-stage iterative procedure given in Ref.
[9] to implement BYY harmony learning on FA, as in
the third row of Table 1. It needs to be noted that the
BYY harmony learning is featured by not only its model
selection criterion for FA but also its learning with au-
tomatic model selection, that is, determining m auto-
matically during estimating A, Σy and σ2

e . Usually, fur-
ther improvements will be achieved if we implement the
BYY harmony learning with automatic model selection.
Readers are referred to Sect. 3.2 in Ref. [30]. Here we
only consider a two-stage implementation for comparing
with typical model selection criteria that are all made in
a two-stage implementation.

Table 1 BYY harmony learning on FA

criterion

Ying q(Θm) = 1, q(X|Y, Θm) =
Q

t G(xt|Ayt, σ
2
eIn),

q(Y |Θm) =
Q

t G(yt|0,Σy)

Yang p(Y |X,Θm) =
Q

t G(yt|fWxt,Σy|x), p(X) = δ(X − XN )

H m̂ = arg maxm{H(p‖q, Θ̂H
m) − 1

2
dm},

Θ̂H
m = arg maxΘm H(p‖q,Θm),

H(p‖q, Θm) =
P

t ln G(xt|0,Σx) − N ln
q

(2πe)m|Σy|x|
− 1

2
Tr[ΔTΣ−1

y|xΔSN ]

where XN = {xt}N
t=1, Δ = fW − W , W = ΣyAΣ−1

x ,

Σx = AΣyAT + σ2
eIn, Σy|x = Σ−1

y + AT(σ−2
e In)A,

ATA = Im, Σy is relaxed to be diagonal, fW is free

It should be noted that the criterion in Table 1 is ac-
tually equivalent to Eq. (18) in Ref. [30] but written in
an alternative expression that shares the same format of
Eq. (4). Putting the equations of Σx and Σy|x in the last
row of Table 1 into the third row, it follows that

JBYY = −H(p‖q,Θm) + 1
2dm

= 1
2

{
ln |σ2

eIn| + ln |Σy| + m + dm + m ln(2πe)
}

,

by noticing that the third trace-term in the third row of
Table 1 eventually tends to zero as

p(Y |X,Θ) → q(X |Y,Θ)q(Y |Θ)
∫

q(X |Y,Θ)q(Y |Θ)dY

during learning. This JBYY is identical to Eq. (18) in
Ref. [30] by letting h = 0 without considering data
smoothing.

Additionally, it should be also noted that in Table 1 A

and Σy are reparameterized differently from that in Eq.
(2). Though the two parameterizations have no differ-
ence on the likelihood function, but it results in a better
model selection ability than the one by Eq. (2) under
BYY. Details are referred to Ref. [31].

Moreover, readers are referred to Sect. 2.2 in Ref. [32]
for further improvements via a co-dimensional matrix
pair nature for both an improved model selection cri-
terion, e.g., Eq. (29) in Ref. [32], and automatic model
selection.

4 Empirical analysis

4.1 A method for empirical study

Most existing experimental investigations merely study
how the model selection performance varies as either
of SNR and sample size N changes. We propose a new
method for empirical analysis in order to systematically
compare the model selection performances of all above
methods and to demonstrate how SNR (defined as the
ratio of the smallest signal eigenvalue of the population
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covariance matrix to the noise eigenvalue) and N jointly
affect the performance.

Making experiments on data sets generated by varying
SNR and N simultaneously, empirical model selection
accuracies measured by each criterion (cri) are visual-
ized as a function of both SNR and N , namely,

fcri(SNR, N) ∈ [0, 1], (17)

which increases as SNR or N grows. For an effective vi-
sualization, we plot contour lines of such functions in 2D
figures as shown in Figs. 1(a) and 1(b). Actually, the con-

tour lines define a family of model selection indifference
curves, which is a term borrowed from economics. Simi-
larly as in economics, the indifference curve implies a di-
minishing marginal effect. When we move down (up) an
indifference curve, the amount of SNR (or N) is needed
to compensate for a unit loss of N (or SNR). According
to the values of the contours, the configuration space of
SNR and N can be divided into three regions as sketched
in Fig. 1(c), namely, a very good performance region
for all methods, a very bad performance region for all
methods, and a diversity region where different methods

Fig. 1 (a) An example of contour map; (b) an adjusted version of (a), where 1.2, . . . , 16 ∈ Vγo are equally spaced in
horizontal-axis, and 25, . . . , 800 ∈ VN are equally spaced in vertical-axis; (c) a rough three-region partition (for Scenario I)

Fig. 2 Adjusted contour maps of successful-selection (S-selection) rates of AIC and BYY over the three scenarios. (We also
define an “average” criterion (AvgC) that averages the successful-selection rates among all the model selection methods. Three
thick blue contour lines of AvgC are added, i.e., dashed line (30%), dashed-dotted line (60%) and solid line (90%). Moreover,
we put a red asterisk (*) in (τ, N, γo) to indicate that the corresponding criterion or method gets the highest rate. Among all
three scenarios, the 30% and 60% contour lines of AIC and BYY are far closer to the bottom-left than those of AvgC, which
means that BYY and AIC are very robust as the experimental conditions deteriorate.)
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demonstrate the relative strengths and weaknesses ob-
viously. This three-region partition indicates that it suf-
fices to make a comparison within the diversity region
whose importance is further verified by the reference cri-
terion TLL in Eq. (7).

4.2 Investigation on model selection performance

Experiments are conducted on synthetic data which en-
able us to verify the estimated hidden dimensionality
with a known true one, and to study a parameter es-
timate in comparison with a true one by the testing
likelihood. Synthetic data are generated according to
the FA model with the population covariance matrix
Σx = UΛUT + σ2

eIn, where UTU = Im∗ , m∗ denotes

the true underlying hidden dimensionality, Λ is a diago-
nal matrix with λ1 � λ2 � · · · � λm∗ > 0 as its diagonal
elements, and σ2

e is the noise variance as in Eq. (3).
A configuration is featured by a triple (τ, N, γo), where

τ is the scenario number defined in Table 2, N is the
training sample size, and γo is the SNR mathematically
given by γo = λm∗/σ2

e + 1. For each configuration in
Table 2, 103 independent trials are implemented. For
every trial, a synthetic data set XN is randomly gen-
erated according to (τ, N, γo). The two-stage procedure
is implemented on XN for every candidate integer m in
[1, 2m∗ − 1]. The contour maps of the successful model
selection rates by Eq. (17) are shown in Figs. 2, 3, and 4
with respect to adjusted axes for a more detailed view.

The model selection indifference curves, given by the
contour lines of successful-selection rates, visualize the

Fig. 3 Adjusted contour maps of successful-selection rates of BIC, CAIC, and HQC across the three scenarios. (Refer
to the caption of Fig. 2 for notation details. According to the positions of 30% and 60% contour lines, BIC and CAIC are
inferior to AvgC, while HQC slightly outperforms AvgC.)
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joint effect of SNR and N on the performance. The per-
formance degrades along the bulge toward the lower left
of the map with small SNR and N . With the help of the
indifference curves, we observe:

Table 2 Configurations of different scenarios (For each sce-
nario, there are |VN | × |Vγo | configurations, where VN =
{25, 50, 75, 100, 200, 400, 800}, Vγo = {1.2, 1.5, 2, 2.5, 3, 3.5, 4, 8, 16},
and U is randomly generated and normalized to be UTU = Im,
and λi ∼ [1, 10] means λi is uniformly drawn from the interval
[1, 10] so that the signal eigenvalues can vary a little but not
much.)

Scenario (τ) settings of each scenario

∀N ∈ VN , ∀γo ∈ Vγo

I: n = 15, m∗ = 5, λi = 1,∀i {(I, N, γo)}
II(a): n = 15, m∗ = 5, λi ∼ [1, 10] {(II(a), N, γo)}
II(b): n = 30, m∗ = 10, λi = 1, ∀i {(II(b), N, γo)}

1) The negative slope of the indifference curves as in
Fig. 1(a) implies that as N (or γo) becomes larger, the
model selection accuracy increases at a decreasing rate,
i.e., the additions to the successful-selections are suc-
cessively smaller. Thus, this confirms the diminishing
marginal effect introduced in Sect. 4.1. It is a joint ef-
fect of SNR and training sample size on model selection
performance.

2) From Fig. 1(b), the configuration space (SNR × N)
can be partitioned into three regions as sketched in Fig.
1(c), i.e., region-A for the cases of relatively large SNR
and N , region-B for the moderate cases, and region-C

for the cases of very small SNR and N . The successful-
selection rates of most criteria are comparably high in
region-A, and degenerate to a very low or even zero in
region-C due to severe underestimation which may at-
tribute to the reduction of effective number of underlying

Fig. 4 Adjusted contour maps of successful-selection rates of MK, KN, and MM across the three scenarios. (Refer to the
caption of Fig. 2 for notations details. According to the positions of 30% and 60% contour lines, MK and MM are slightly
better than AvgC, while KN is comparable to AvgC.)
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signals [10–12]. This reduction is also demonstrated in
Figs. 5(a)–5(d) from the perspective of the testing log-
likelihood4) . m̂(TLL) by Eq. (7) to select the optimal
ML estimate is significantly smaller than the true one
in region-C. According to Figs. 2 to 5, we observe that
in region-B, BYY and AIC are more robust against de-
creasing N and SNR, while in region-A most methods
are comparably good except AIC. As a whole, BYY is
superior in general; DNLL is almost always the worst.

3) For each scenario at region-B,C, AIC, HQC, KN,
MK, MM, and BYY are relatively more robust than the
others. BYY is generally superior in the small-sample-
size area as sketched in Fig. 1(c), while KN, MK, and
MM are robust for a small SNR with a sample size
not too small. Across scenarios, the performances of all
methods (except DNLL) improves as we move from Sce-
nario I to II(a) with stronger signals, and decrease from

Scenario I to II(b) with higher dimensionalities.
In addition, the contour maps are averaged along one

axis and then projected along the other, helping to ex-
plore the marginalized effect of either of SNR and N . The
results in Fig. 6 show that BYY, MK, MM, and KN are
better than HQC, BIC, and CAIC. AIC is robust when
N and SNR are small but suffers from about 20% wrong
selection as N and SNR become large. Moreover, the
projected N -axis demonstrates the diversity of the per-
formances more obviously than the projected SNR-axis
does.

5 Concluding remarks

The relative strengths and weaknesses of several model
selection methods have been investigated systematically

Fig. 5 (a) Ratio and m̂(TLL), when N = 25; (b) ratio and m̂(TLL), N = 50; (c) ratio and m̂(TLL), N = 75; (d) ratio
and m̂(TLL), N = 100 (The vertical axis in the upper part presents the ratio ln p(X′

N′ |Θ̂)/ ln p(X′
N′ |Θo) of the estimated

parameter Θ̂ to that of the true parameter Θo of Scenario I obtained from a synthetic testing set X′
N′ (with N ′ = 104),

where X′
N′ is generated from the same FA that generates the training set. The Θ̂ is repeatedly estimated on 100 training

sets from the same FA with the true parameter Θo, and the mean of the resulting ratios is reported. In experiments, the
candidate scales are in {1, 2, . . . , 9}, and true scale m∗ = 5, and ln p(X′

N′ |Θ̂) � ln p(X′
N′ |Θo) < 0 which implies a ratio closer

to 1.0 indicates a smaller generalization error.)

4) The MK, MM, and KN are omitted because they do not estimate the parameters directly, while the ML estimate Θ̂ML
m̂ can be

used to get the testing log-likelihood instead with m̂ estimated by MK, MM, or KN.
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Fig. 6 Curves of average successful-selection (Avg-(S)) rates by
averaging the contour maps along one axis and then projecting
along the other

in terms of determining the hidden dimensionality of
FA. Different from the existing empirical analysis, we
have studied the joint effect of training sample size N

and SNR on model selection performance. By connect-
ing the contour of equal model selection accuracies, the
obtained model selection indifference curves visually re-
veal the following:

1) A diminishing marginal effect that the amount of
SNR (or N) is needed to compensate for the unit loss
of N (or SNR) if the same model selection accuracy is
maintained;

2) A three-region partition in the configuration space,
i.e., all methods perform well within the range of large N

and SNR, but unavoidably suffer from underestimation
within the range of too small N and SNR due to a sig-
nificant reduction of effective number of signals, whereas
the performances of all methods demonstrate obviously
different within the region with moderate N and SNR.

In addition, the comparison has been made in terms of
testing likelihoods with an alternative reference criterion
TLL (testing log-likelihood) which selects the optimal
ML estimate. TLL further confirms the importance of
studying the region of diversity. In this region, AIC and
BYY are more robust against decreasing N and SNR,
while BYY’s estimate is recommended according to its
robust model selection performance.
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