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Abstract. In this paper a barrier function method is proposed for approximating a solution of the
nonconvex quadratic programming problem with box constraints. The method attempts to produce
a solution of good quality by following a path as the barrier parameter decreases from a sufficiently
large positive number. For a given value of the barrier parameter, the method searches for a min-
imum point of the barrier function in a descent direction, which has a desired property that the box
constraints are always satisfied automatically if the step length is a number between zero and one.
When all the diagonal entries of the objective function are negative, the method converges to at least
a local minimum point of the problem if it yields a local minimum point of the barrier function for

a sequence of decreasing values of the barrier parameter with zero limit. Numerical results show
that the method always generates a global or near global minimum point as the barrier parameter
decreases at a sufficiently slow pace.
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1. Introduction

The nonconvex quadratic programming problem with box constraints is to min-
imize a nonconvex quadratic function subject to box constraints. It is an NP-hard
problem (Murty and Kabadi, 1987) and has many diverse applications (Pardalos
and Rosen, 1987). A special case of the problem is the quadratic zero-one pro-
gramming problem. In order for a solution of the quadratic zero-one program-
ming problem, many exact algorithms have been developed, such as ones given in
Barahona et al. (1989), Carter (1984), Gulati et al. (1984), Hammer and Simeone
(1987), Hansen (1979), Pardalos (1991), Pardalos and Jha (1992), Pardalos and
Rogers (1990), etc. Most of these algorithms are of the branch-and-bound type or
use some type of linearization techniques. In addition a differentiable exact penalty
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function for the general quadratic programming problem can be found in Grippo
and Lucidi (1991). We refer to Floudas and Visweswaran (1995) for an excellent
survey of quadratic optimization.

Due to its computational complexity, the nonconvex quadratic programming
problem with box constraints is, in general, difficult to solve to optimality. Sev-
eral approximation algorithms have been proposed, such as ones given in Poljak
and Wolkowicz (1995), Vavasis (1992), Ye (1991), etc. A recent survey of al-
gorithms for the nonconvex quadratic programming problem with box constraints
can be found in De Angles et al. (1997). For some NP-hard combinatorial op-
timization problems, numerical results show that deterministic annealing seems
effective (Yuille and Kosowsky, 1994). The approach is a heuristic continuation
method, which attempts to find the global minimum of the effective energy at high
temperature and track it as the temperature decreases. There is no guarantee that
the minimum at high temperature can always be tracked to the minimum at low
temperature, but the experimental results are encouraging (Durbin and Willshaw,
1987; Peterson, 1990). The nonconvex quadratic programming problem with box
constraints is an NP-hard problem. The deterministic annealing approach may
provide an alternative solution procedure for the problem.

In this paper we adapt the idea of deterministic annealing for approximating a
solution of the nonconvex quadratic programming problem with box constraints. A
barrier function method is proposed, which attempts to produce a solution of good
quality by following a path as the barrier parameter decreases from a sufficiently
large positive number satisfying that the barrier function is strictly convex. For a
given value of the barrier parameter, the method searches for a minimum point of
the barrier function in a descent direction, which has a desired property that the box
constraints are always satisfied automatically if the step length is a number between
zero and one. When all the diagonal entries of the objective function are negative,
the method converges to at least a local minimum point of the problem if it yields
a local minimum point of the barrier function for a sequence of decreasing values
of the barrier parameter with zero limit. Numerical results show that the method
always generates a global or near global minimum point as the barrier parameter
decreases at a sufficiently slow pace.

The rest of this paper is organized as follows. We describe the barrier function
and derive some properties in Section 2. We introduce the method in Section 3. We
present some numerical results in Section 4 to show that the method is effective
and efficient. We conclude the paper with some remarks in Section 5.

2. Barrier Function
The problem we intend to solve is as follows: Find a minimum point of

min f(x) = %xTQx +c'x
(2.1)
subjecttol; < x; <wu;, i=1,2,---,n,
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where
qi1 912 -+ 49
0= ‘].21 q?z q‘Zn
qn1l 4n2 " Ynn
is symmetric and indefinite or negative semidefinite, and u;,i = 1,2, --- , n.
Let! = (g, , L))", u=(ug,---,u,) ", and

B={x|l<x<u}.

We assume thdt andu;,i =1, 2, --- , n, are finite. ThemB is bounded.
To approximate a solution of (2.1), we introduce a barrier term,

(i =) In(x; = 1) + (uy — x) In(u; — x;), (2.2)

to incorporatel; < x; < u; into the objective function, and obtain a barrier
function,

e(x,B) = f(X)+ B (i — ) INCxi = 1) + (u; — x) In(w; — x;)),  (2.3)

i=1

whereg is the barrier parameter that behaves as temperature in the deterministic
annealing approach and varies from a positive number to zero. The initial value of

B should be sufficiently large so thatx, 8) is strictly convex ovef < x < u. Ob-

serve that the barrier term (2.2) comes from the entropy function (Fang, Rajasekera
and Tsao, 1997), and is well definedvat= /; andx; = u; since

|im+(x,~ —1;) In(xi —I) = lim (u; — x;) In(ui —x;) =0.

xi—>1; xi—u;

When!/; = 0 andu; = 1, the barrier term (2.2) appears implicitly as a term of the
energy function defined in Hopfield (1984).

Instead of solving (2.1) directly, let us consider a scheme, which obtains a
solution of (2.1) from the solution of

Qlilr;]e(x, B)

at the limit of 8 | 0. Frome(x, 8), we obtain

de(x, B) _ af (x) +/Bln xi — 1 ‘
ox; ox; Ui — Xj
Observe that
de(x, B) de(x, B) .

lim = —ooand Ilim

x,-—)li+ a-xi Xi—u; Xi

+00
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The Hessian matrix of(x, 8) atx with [ < x < u is given by
VZe(x,f) = Q0+ B(X — L) '+ U - X)™,

where X is the diagonal matrix formed by the componentscpf. the diagonal
matrix formed by the components éf and U the diagonal matrix formed by
the components af. When g is sufficiently large, clearlyV?e(x, ) is positive
definite for anyx with / < x < u. Therefore,e(x, 8) is strictly convex over
I < x < uwheng is sufficiently large.

SinceV f(x) = Qx + ¢ is bounded orB, one can readily derive the following
result.

LEMMA 1. For any giveng > 0, if x* is a minimum point of

min e(x, B8)
I<x<u

then
[ < x* < u.

Proof. Suppose that some componentdf sayx’, equald;. Lete be a positive

number arbitrarily close to zero. We defipe= (y;,---, y*)T by
X if j i,
y; =
xf+e if j =i,
j=1---,n. Then, where is sufficiently small,

de(y*.B) _ df(} ) +B1In xz el

0x; - X; *—e

:df(>)+ﬂ|n

— <0

smce‘r’f(lV ) is bounded. Thus, adding to thih component of* an arbitrarily small
posmve number one can obtain a pointBérbitrarily close toy*, at whiche(x, 8)

is less thare(y*, 8). Becausez(x, 8) is continuous ornB, e(y*, B) is arbitrarily
close toe(x*, B) if € is arbitrarily close to zero. Therefore, there exists a point of
B arbitrarily close tox*, at whiche(x, g8) is less thare(x*, 8). This contradicts
thatx* is a minimum point, which implies that no componentwfequals lower
bound. Similarly, one can show that no componentoéquals upper bound. The
lemma follows. 0

This lemma indicates that if* is a minimum point of

min e(x, )
I<x<u

then

Vie(x*, p) =0
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whereV,e(x, B) = (2428 ... | Jel ﬁ))T
LetBi,k=1,2,--- ‘bea sequence of positive numbers such that

and lim_ o B = 0. Letx* be a global minimum point of (2.1) and
x(B) = argmin{e(x, Bi) | x € B},
k=12, -
THEOREM 1. Fork=1,2,---,
Fx(B) = fx(Brv1),
and
k'Lngo F&x(B) = f(x5).
Proof. Let
p(x) = Xn:((xl- — ) InCx; — 1) + (u; — x;) In(u; — x;)).
i=1

Then, for anyx € B,

Z(ul l)In

l' <plx) < Z(ui —lpyIn(u; —1;).
i=1

Let

n

b(x) = p(x) = Y (i — 1) In =

i=1

Then,b(x) > 0 for anyx € B. Let

V(x, B) = f(x) + Bb(x).
Then,

e, ) =y (x. )+ By (w —1)In =

Thus,
x(Br) = argmin{yr (x, Bi) | x € B}.

By the definitions ofc(8;) andx(B11), we have

F@x(Bi)) + Beb(x(Br)) < f (x(Brs1)) + Beb(x (Brs1))
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and

Jx(Br+1)) + Braab(x(Br+1)) < f(x(Br)) + Braab(x(Br)).
Then,

(B — Br+1)b(x(B) < (Br — Brr1)b(x (Br+1))-
Thus,

b(x(Br)) < b(x(Br+1)

sincef; > Biy1. Therefore,

F@x(Bi) = f(x(Brs))-

For anyk, we can write

F&) < (B < fFx(B) + Beb(x(Br)) = ¥ (x(Br), Br)-

Note that for any > 0, there existg € B such that

f) < fGH) +e

It follows that for anyk,

FOX) 4+ €+ Bb(x) = f(x)+ Beb(x) = Y (x(Br), Br)-
Then,

Jim ¢ (e(Bo), B < FT) + e
From (2.4), we obtain
Jim ¢ (B0, B = f&D).
Thus,
Jim ¥ (B, B = f&D).
Observe that lim., o, Bib(x(Br)) = 0. Therefore,
Jim f(x(B) = £ (D).

This completes the proof of the theorem.

(2.4)

O

This theorem indicates that every limit point ofg;), k = 1,2, ---, is a global

minimum point of (2.1).
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THEOREM 2. When every diagonal entry @ is negative, (2.1) has a vertex
global minimum point.

Proof. Let x(B,), j = 1, 2,---, be a convergent subsequencex(f;), k =
1,2,---. Assume that lim., , x(f,) = v*. From Theorem 1, we obtaifi(v*) =
f(x*). Inthe following we show that* is a vertex ofB. Sincex (g;;) is a minimum
point of min.c e(x, B, ), hence, the Hessian matrix efx, ;) atx(f;),

Q4 B, (X(B,) — L)'+ U = XB,) ™D,

is positive semidefinite, wherk (g, ) is the diagonal matrix formed by the com-
ponents ofc(By;). Thus, for any with 1 < i < n,

0 < @)"Qu' + B, ()T (X(Br,) — L)t + (U — X(Bi,) !
(2.5)

—_— . l l
=qii + ﬂkj(xi(ﬂkj)—l,' + u,-—x,'(ﬂkj))’

whereu' is theith unit vector ofR". Fromg;; < 0 and (2.5), we derive that as
Jj — 09, x;(Bx;) must approach eithér or u; becauses,; goes to zero. Therefore,
v* is a vertex ofB. The theorem follows. O

THEOREM 3. Fork =1, 2, -- -, letx* be a local minimum point of

lgge(x, Br)-
Assume thaDv + ¢ # 0 at any limit pointv of x*, k = 1, 2, - - - . If all the diagonal
entries ofQ are negative, every limit point af, k = 1, 2, - - -, is a local minimum
point of (2.1).
Proof. Sincex*, k = 1,2, ---, are contained in the bounded 9t we can
extract a convergent subsequence. tet ¢ = 1,2, ---, be a convergent sub-
sequence ofX, k = 1,2 -... Assume that linpLs oo xka = v. Let Xy, be the

diagonal matrix formed by the componentsxéf. Sincex* is a local minimum
point of min<, <, e(x, B, ), hence, the Hessian matrix efx, py,) atxke,

Q + B, (X, — L)+ (U — X)),
is positive semidefinite. Thus, for anywith 1 <i < n,

0< W) Qu + B, ()T ((Xy, — L)+ (U — Xi, )" Hud!
(2.6)

_ 1 1
= qii + ﬁkq(ﬁ + p— )s
whereu' is theith unit vector ofR". Fromg;; < 0 and (2.6), we obtain that as

q — 09, xf" must approach eithéror u; becauses,, goes to zero. Therefore,is
an extreme point oB.
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Sincex*s is a local minimum point of

min e(x, B, ),

I<x<u

from the first-order necessary optimality condition, we obtain

Xk _ I xho _ l» Xk '
n
ka‘i—{—c:—ﬂkq In =2 ,In =2 k,---,ln—k” )
Uy — x,’ Uy — Xy U, — X,
Hence,
k‘[ k‘] k‘[
. X — l]_ Xy — 12 X, —1
lim —pB (In =2 ,In =2 oo, InZ—T = Qu+c#£0.
q—>00 4 kq kq kq
uy — xq Uy — X, U, — Xn
(2.7
Let x be an arbitrary interior point aB. Then,
“ X
kT ¢ ok k A
(r =2 )T(QxM +0) = =) By, (i —x") In ~—.
i=1 Uy —Xx;

Note thatv is an extreme point oB. Considerv; = [;. We havex; — v; > 0 and
Iimqﬁooxf" = [;. Thus, wherny is sufficiently large,

X
Br, (xi —vi)In ’—kl < 0.
q
u; — )Cl-
Considerv; = u;. We havex; —v; < 0 and lim,_, xf" = u;. Thus, whery is
sufficiently large,
k‘i
x0T =1
Br, (xi —vi)In ’—kl < 0.

u —x;’

From (2.7), we obtain that at least one of

kl]
. =1
lim B In ——
g—oo 1 u; — xiq
i=12---,n,isnot equal to zero. Therefore, at least one of
kq 7
(x; —v;) lim Br, In '—kl
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i=12--.,n,is negative, and all of them are not positive. Hence,
(x—v)T(Qu+c) =Ilim,_o(x —xk)T(Qx* +¢)

i by | Xy
= — Zi:l Imq—>oo ﬂkq (xi - xi ) n " xkq
T

ki

. x.q—i
== (i — v limy o B, In u-l—xff"
> 0.
We have obtained that for any interior pomnbf B,
O<(x—v) (Qu+o). (2.8)

Observe that

f) = f) =xT0x+c"x—vTQv—cv

=@x—-v)(Quv+o)+3(x—v) Q(x —v).
Then, wherk is sufficiently close ta, from (2.8), we obtain that

f&x)—f) >0

since%(x —v)TQ(x — v) goes to zero two times as fast@s— v) ' (Qv + ¢) if x
approaches. This implies tha is a local minimum point of (2.1). The theorem
follows. O

This theorem means that at least a local minimum point of (2.1) can be obtained if
we are able to generate a local minimum point of the barrier function for a sequence
of decreasing values of the barrier parameter with zero limit.

In the following we demonstrate through a two-dimensional example that the
barrier term may help us obtain a global or near global optimal solution.

EXAMPLE 1. Consider

. 1 —8375 2834 X1 X1
min f(x) = 5(x1, x2) < 2834 _4828 X + (17.72,15.22) %
st0<x1 <1 0<xy<1,

(2.9)

which is generated randomly. From Figure 2, one can see that (2.9) has four local
minimum points, which ar€l, 1), (1,0), (0, 1), and (0, 0). The unique global
minimum point i1, 0). Using (2.3), we obtain

_ 1 —8375 2834 X1 X1
e(x, B) = 5(x1, xz)( 2834 _4828 X + (17.72,15.22) X

+B(x1 INxy 4+ (1 —x1)IN(A — x1) + x2Inx2 + (1 — x2) IN(1 — x7)).
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Figure 5. The surface oé(x, 5) over[0 < x1 <1, 0 < xp < 1]

Figures 2-5 are the surfaces efx, ) with 8 = 50, 8 = 25, g = 15, and
B = 5, respectively. Whep equals25 and 15, one can see from Figures 3 and 4
thate(x, B) has only one local minimum point, which is near the global minimum
point (1, 0).

This example show that(x, 8) deforms from a strictly convex function to the
objective function ag decreases from a sufficiently large positive number to zero
and that there seemingly exists an intervaBafuch that each local minimum point
of e(x, B) is in aneighborhood of a global or near global minimum point whés
in the interval. Effectiveness of the barrier function method depends on existence
of such an interval.

3. The Method

For any giveng > 0, consider the first-order necessary optimality condition,

de(x. p)

0, (3.10)
8xi

i=12---,n. From (3.10), we obtain

J
u; +1; exp(%g—g‘))

1+ exp(%—agif)) ’
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i =1,---,n. For convenience of the following discussions, let
i li i
4y = i T
1+ y(x)
i=1---,nand

d(x) = (di(x), - ,d, (X)),
where

13f(x)

1(X) = expl—

¥i(x) xmﬂ ox,

The following lemma shows that for any givgn> 0, when/ < x < u, d(x) — x
is a descent direction ef(x, B).

).

LEMMA 2. Assumé <x <u.Fori=1,.--,n,
whend; (x) — x; > 0,

de(x, B)
8xi

<0,

whend; (x) — x; < 0,

de(x, B)
Bx,-

and wherd; (x) — x; =0,

de(x. p)
8xi o

Whend (x) — x # 0,

> 0,

0.

Vee(x, B) T (d(x) —x) <O.

Proof.
1. Consided; (x) — x; < 0. We have
u; + iy (x) '
1+ yi(x) i
Thus we obtain
i — 1
1<y —4% (3.11)

Taking the natural logarithm to both sides of (3.11), we get

1 i — L
<_8f(x)+|n x; —1

0 .
B Ox; Uy — X

(3.12)
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Multiplying 8 > 0 to both sides of (3.12), we obtain

0< af (x) +BIn xi —1; _ 36(35,,3).
X; Ui — X; 0x;
Therefore, whew,; (x) — x; < 0,
de(x, B) -0
8xi
2. Considew; (x) — x; > 0. We have
u; +liyi(x) '
1+ yi(x) a
Thus we obtain
i~ li
1> () ——L (3.13)
u; — Xj
Taking the natural logarithm to both sides of (3.13), we get
1 i —
AN (3.14)
B x; Ui — X
Multiplying 8 > 0 to both sides of (3.14), we obtain
0> af (x) +AIn xi —1; _ 36(%5).
X; u; — X; ox;
Therefore, whew,; (x) — x; > 0,
de(x, p) < 0.
Bx,-
3. Consided; (x) — x; = 0. We have
ui+liyi(x)
1+ yi(x)
Thus we obtain
i~ li
1=y X5 (3.15)
u; — X;
Taking the natural logarithm to both sides of (3.15), we get
1 i —
0= 2 Xzl (3.16)
B Ox; Uy — X
Multiplying 8 > 0 to both sides of (3.16), we obtain
0= af (x) +Bln xi —1; _ 36(%5).
8xi u; — Xj 3xl-
Therefore, whew,; (x) — x; = 0,
0
e(x, f) _ 0.

8xi
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Observe that
", delx,
Ve, /)T dx) —x) =) (ax,ﬂ i) — 0.
i=1 !
The lemma follows. O

Note that for anyx with ! < x < u, d(x) —x = 0if and only if V,e(x, 8) = 0.
We remark that/(x) — x has a desired property that when searching for a point in
d(x) — x, the box constraints are always satisfied automatically if the step length
is a number between zero and one.

Based on the descent directiaf(x) — x, we have developed a method for
approximating a solution of the problem (2.1). The idea of the method is as follows:

LetB,, ¢ = 1,2,---, be any given sequence of positive numbers such that
1> P2 > --- andlim,_, . B, = 0. The value off; should be sufficiently large
so thate(x, B1) is strictly convex ovel < x < u. Letx? be an arbitrary interior
point of B. Forg =1, 2, - - -, starting atx?~%, we employ/(x) — x as the descent
direction to search for an interior point? € B satisfyingd (x9) — x4 = 0.

The method can be stated as follows.

Step 0: Le® be a number in0, 1), which should be close to one. Choadeo be
an arbitrary point satisfying < x° < u, and g to be an arbitrary positive
number satisfying that(x, B) is strictly convex ovef < x < u. Letk =0
and go to Step 1.

Step 1: Compute

w; + Ly (xF)
14y (xk) -

i=1,---,n.Goto Step 2.

d;(x*) =

Step 2: If|d(x*) —x*| is less than some given tolerance, either the method termin-
ates wherg is small enough (e.g., a vertex minimum point can be recovered
from x* if (2.1) has a vertex solution), or le# = 68 and go to Step 1.
Otherwise, do as follows: Compute

= x4 pd () — X, (3.17)
wherep, is a number in0, 1] satisfying

e(x**1 B) = min e(x* + u(d(x") — x%), B).
nel0,1]

Letk = k+ 1and go to Step 1.

Note that an exact solution of

MQ?éf}]e(xk + u(d(x*) — x5, B)



180 C. DANG AND L. XU

is not required in the implementation of the method, and an approximate solution
will do. One can find several ways to determijmgin Minoux (1986). We remark
that the method is insensitive to the starting paifisince the barrier function is
strictly convex at the beginning of the method. The following theorem shows that
when g is a given positive value, the method converges to a stationary point of

e(x, B).
THEOREM 4. For a giveng > 0, every limit point ofc*, k = 1, 2, - - -, generated
by the iterative procedure (3.17) is a stationary point¢f, 3).

Proof. Recall thaty; (x) = exp(%%). Let

yimin = miny;(x) andy," = maxy; (x).
X€B xeB

Since2) is continuous orB, we obtain that 0< ™" < oo and 0< Y™ < oo.
Consider
s+ tw

h(w) = 14+ w

with s > ¢. We have
t—s

h =———- <0
W)= Tz =

Thus,h is a decreasing function af. Lettingw = y;(x), we get

u; —l—liyi(x) i u; —I—l,-w

GO =T T 1vw

’

which has the same form asw). Therefore, for any € B,

ui + L™ ui + liy™
zi<—yn;m(<di(X)<—yn§m i
1+y, 1+
Let
. . u; + Ly ui + i yimin
X" = minfp, =) andu™™ = maxp, =),

Becausd; < x° < u;, we have; < xM" andx™ < u;. Let
xmin — (xjr.nin’ . xmin)'l' andxmax — (xrlnax’ . ’x’;nax)"l"

> n

Usingx**1 = x* 4+ ui(d(x%) — x¥) and 0< i < 1, one can easily obtain thaf,
k=12, satisfy

[ < x™MN < xh < xMX <y,
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Thus, according to Lemma 2,(x*) — x* is a descent direction af(x, 8) when
d(x*) — x* £ 0.

LetX = {x | x™" < x < x™}andQ = {x € X | V.e(x, B) = 0}. For any
x € X, let

w* e [0,1], e(x + u*(d(x) — x), B)
Ax) = {x + u*(dx) —x)
= min, o1 e(x + u(d(x) — x), B)

In the following we prove tha# (x) is closed at every point € X\.

Letx be an arbitrary point oK\ Q. Letx? € X\Q,q = 1,2, ---, be a sequence
convergent tor, andy? € A(x?),q = 1,2,---, a sequence convergent foTo
prove thatA (x) is closed, we only need to shawe A(x). SinceV,e(x?, B) # 0
andV,e(x, B) # 0, we obtain from Lemma 2 that(x?) — x? # 0 andd (x) — x #
0. Observe that/(x) is continuous. Thusf(x?) converges tal(x) asqg — oo.
Sincey? € A(x?), hence, there is some numhej € [0, 1] satisfying

Y= x1 + pg (d(x?) — x?).
Fromd(x?) — x9 # 0 we obtain that

N
¢ d @) — x4

and agy — oo,

i
“ ld@@) — %l

with i* € [0, 1]. Therefore,

j=X+ g dEF) —%).
Furthermore, since? € A(x?), we have

e(y?, B) < e(x? + p(d(x?) —x7), B)
foranyu € [0, 1]. It implies that

e(y, B) <elx +pldix) —x), )

for anyu € [0, 1], which proves that
e(y, ) = min e(x + u(d(x) — x), B).
nel0,1]

According to the definition ofA (x), it follows thaty € A(x).

Since X is bounded and* € X, k = 1,2,---, we can extract a convergent
subsequence from the sequeneg, k = 1,2,---. Letxk, j = 1,2,---, be a
convergent subsequence of the sequenkgk = 1,2,---. Let x* be the limit
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point of the subsequence. We sheive < in the following. Clearly, ag — oo,
e(x*, B) converges te(x*, B) sincee(x, B) is continuous orB ande(x**1, B) <
e(x¥,B), k = 0,1,---. Consider the sequence’i*1, j = 1,2 .-.. Note that
xkitt = xki 4 Mk, (d(x*i)y — x*iyand

e(xMtL By = min e(x" + u(d(xM) — xY), B).
nel0,1]

According to the definition ofd(x), we havex*i+1 e A(x%). Sincexti*!, j =

1,2, ..., are bounded, we can extract a convergent subsequence from the sequence,
xkitlj=1,2 ... Letxb*l, j € K, be a convergent subsequence extracted from
the sequences® 1, j = 1,2 --.. Let x* be the limit point of the subsequence,
xki+l j e K. Suppose that* ¢ Q. SinceA(x*) is closed, we have” € A(x*).

Thus,

e(x”, B) < e(x*, B),

which contradicts that(x*, 8) converges as — oo. Thereforex* € Q. The
theorem follows. O

4. Numerical Results

In this section we use the method to approximate solutions of a number of non-
convex quadratic programming problems with box constraints. The method is pro-
grammed in MATLAB. To determing; in the method, we employ the Armijo-
type rule, which can be stated as follows:

Let § andv be any two given numbers iD, 1). Choosem, to be the smallest
nonnegative integer satisfying

e(x* + v (d(x*) — x%), B) < e(x, B) + v S (d(x*) — x*) TV, e(xk, B).

Let uy, = v,
In our implementation of the methodl,= 0.6 andv = 0.4. Numerical results
are as follows.

EXAMPLE 2. Find a global minimum point of

min f(x) =c'x — %xTAATx
(4.18)
subjecttoO< x; <1, i=1,---,n,

whereA is ann x m matrix with entries being random numbers[ial, 1] and ¢
is a vector with components being random numbeifs-ity 1]. Initially, 8 = 200,
and is decreased by a factér= 0.95 when||d(x*) — x*||, < 0.01L The method
terminates whem < 0.1. A vertex solution is given by = round(x*). Starting
at an arbitrary pointx°® satisfyingd < x° < 1,i = 1,--- , n, the method always
generates a global minimum point for our tests generated randomly.
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lzF — z*||2 [ No. of Iterations | JJz¥ — 2|2 | No. of Iterations
6.0340E-3 181 7.4854E-3 166
9.1815E-3 191 9.4808E-3 178
6.8765E-3 197 6.5753E-3 185
9.2087E-3 193 5.8108E-3 174
7.3018E-3 186 7.1863E-3 177

Figure 6. Numerical results

l<* — 2z*||2 | No. of Iterations [ |[z* — z*||; | No. of Iterations

6.2459E-3 17 5.8474E-3 187
6.1861E-3 199 6.9777E-3 185
9.1458E-3 208 8.5286E-3 167
6.2287E-3 176 6.4298E-3 178
7.3265E-3 166 5.5457E-3 162

Figure 7. Numerical results

Forn = 20andm = 25, ten randomly generated problems have been solved.
Numerical results are given in Figure 6.

Forn = 20andm = 30, ten randomly generated problems have been solved.
Numerical results are given in Figure 7.

EXAMPLE 3. Find a global minimum point of

min f(x) =c'x + 3x' Qx

(4.19)
subjectto—1<x; <1, i=1---,n,
where Q is a symmetric matrix and = —(Q — ul)z* with © being the smal-
lest eigenvalue oD andz* = (1, —1,---,1, —1)". The way of generating this

problem is given in Pardalos (1991). It is easy to see #ias a global minimum
point of (4.19). Initially, 3 = 100, and is decreased by a factér = 0.95 when
ld(x*)—x*|» < 0.01 The method terminates whén< 5. Starting at an arbitrary
point x° satisfyingd < x? < 1,i = 1,---, n, the method always generates the
global minimum point for our tests generated randomly.

When the entries of the upper triangular part@fare numbers taken randomly
from [—5, 5], numerical results are given in Figure 8.

n | |la* — z*||2 [ No. of Iterations | n | la¥ — z*||; [ No. of Iterations
100 | 3.2193E-3 285 200 | 2.9778E-3 249
300 | 6.3524E-4 249 400 | 1.3012E-3 225
500 | 2.2677E-3 218 600 | 2.7916E-4 206
700 | 2.3449E-3 204 800 | 1.1183E-3 197
900 { 1.0648E-3 193 1000 | 1.0889E-3 190

Figure 8. Numerical results
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n | lz¥F = z*]|2 | No. of Iterations | n | |[zF — 2*]|, | No. of Iterations
100 | 1.5037E-3 142 200 | 2.2577E-3 117
300 | 2.1031E-3 93 400 | 2.6111E-3 79
500 | 1.2193E-3 64 600 | 1.1041E-3 61
700 | 1.0389E-3 54 800 | 5.1412E-4 44
900 | 4.3362E-3 38 1000 | 2.7580E-3 33
Figure 9. Numerical results
n | [|z% — 2*||2 | No. of Iterations | n | |[z* — 2*||; | No. of Iterations
50 | 3.8401E-3 868 100 | 3.7658E-3 1536
150 | 3.0655E-3 6099 200 | 1.4486E-3 8016
250 | 2.5742E-3 3879 300 | 2.8251E-3 7850

Figure 10. Numerical results

When the entries of the upper triangular part@fare numbers taken randomly
from[—15, 15], numerical results are given in Figure 9.

EXAMPLE 4. Find a global minimum point of

min f(0) == =D Yy x — 5 Xy x +22 . xix;

(4.20)
subjecttoO<x; <1, i=1,---,n,
wheren is an even positive integer. This problem is given in Pardalos (1991) and
has an exponential number of local minimum points. The unique global minimum
pointisz* = (1,---,1,0,---,0) T, which has:/2 components of one. This prob-
lem has been considered as a benchmark problem for testing effectiveness and
efficiency of algorithms for quadratic zero-one programming problems. We have
used the method to solve (4.20) upite= 300. Initially, 8 = 100, and is decreased
by a factord = 0.95when|d(x*) — x*||, < 0.0L The method terminates when
B < 0.1. Starting at an arbitrary point? satisfyingd < x> < 1,i = 1,--- ,n,the
method always generates the global minimum point. Numerical results are given
in Figure 10.

EXAMPLE 5. LetG = (V, E) be an undirected graph, whefé = {1, 2, - - - , n}
is the node set off and E is the edge set afi. Let (i, j) denote an edge between
nodei and nodej. Let

dil 42 -+ dpa

dpz1 dz2 -+ 4p2
Ag =

apl dp2 -+ Qpp
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represent the adjacency matrix 6f whereq;; = 0fori =1,--- ,n, and
1if(i,j)€E,
Clij =
0 otherwise,

foranyi # j. Observe that a graph is completely determined by its adjacency
matrix Ag. ) ) .
A complement graph @, denoted byG, is the graphG = (V, E) with

E={G j) |G, j) ¢Eandi # j}.

Let
a1l aip -+ apl
dp1 dz2 --+ ay2
Ag = .
énl C_an énn
represent the adjacency matrix 6f wherea;; = Ofori = 1,--- ,n, anda;; =

1—q;; foranyi # j.
Let S be a subset oF. A subgraph of5 with the node sef, denoted byG (S),
is the graphG(S) = (S, E(S)) with

E(S)={G,j)| G, j) e Eandi,je S}

A graph G is complete if(i, j) € E for anyi # j. A clique ofG is a subset
C of V such thatG(C) is complete. A maximum clique 6fis a clique that has
the maximum cardinality. The maximum clique problem seeks for a clique of the
maximum cardinality.

It can be found in Pardalos and Rodgers (1992) that finding a maximum clique
of agraphG = (V, E) is equivalent to solving

min f(x) =x'QOx
(4.21)
subjectto O0< x < 1,

whereQ = Az — I with I being the identity matrix. Observe that the problem has
a vertex global minimum point since all the diagonal entrie®afre negative. The
method has been used to find a maximum clique of a géaph (V, E), whose
adjacency matrixd; is randomly generated with the following procedure:

Let p be a numberin0,1). Fori =1,--- ,n,andj =i +1,---,n, choose
a numbera € (0, 1) according to the uniform probability distribution, and let
a;j =1anda;; = 1lifa < p,anda;; =0anda;; =0if o > p.

Initially, 8 = 100, and is decreased by a factér= 0.95when||d (x*) —x*||» <
0.005 The method terminates whgn < 0.1. Let z* = round(x*). A clique is
given by{i | z; = 1}. Starting at an arbitrary point® satisfying0 < x° < 1,



186

The Barrier Function Method

C. DANG AND L. XU

n | ||lz*¥ — 2*||2 | No. of Iterations | n [ ||z* — z*||; | No. of Iterations
20 | 1.7055E-3 356 40 | 1.6980E-3 528
60 | 1.9405E-3 577 80 | 1.8260E-3 730
100 | 1.9966E-3 721 120 | 2.0028E-3 828

The Branch and B

ound Algorithm

n | No. of Iterations | n | No. of Iterations

20 131 40 2439
60 18252 80 123335
100 420805 120 2196651

Figure 11. Numerical results

The Barrier Function Method

n | |lz¥ — z*||5 | No. of iterations [ n [ ||z — 2*||; [ No. of Iterations
20 | 2.2014E-3 367 40 | 2.0519E-3 458
60 | 1.9995E-3 542 80 | 9.4121E4 620
100 | 1.0053E-3 693 120 | 1.5981E-3 791

The Branch and

Bound Algorithm

n | No. of Iterations | n | No. of Iterations

20 199 40 4677
60 75446 80 910336
100 8846769 120 38171597

Figure 12. Numerical results

i =1,---,n, the method always generates a maximum or near maximum clique
for our tests generated randomly.

Whenp = 0.7, the method has successfully found a maximum clique fer
20, 40, 60, 80, 100, 120. To verify the cliques generated by the method are the
maximum cliques, we have used the branch and bound algorithm proposed in
Carraghan and Pardalos (1990) to solve the same problems. Numerical results
are given in Figure 11.

Whenp = 0.8, the method has successfully found a maximum clique fer
20, 40, 60, 80, 100, 120. To verify the cliques generated by the method are the
maximum cliques, we have used the branch and bound algorithm proposed in
Carraghan and Pardalos (1990) to solve the same problems. Numerical results
are given in Figure 12.

From these numerical results, one can see that the method seems effective and
efficient. Although these numerical results show that the method always generates
a global or near global minimum point, it is difficult to theoretically prove that the
method converges to a global or near global minimum point even when the barrier
parameter decreases at a sufficiently slow pace.
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5. Conclusions

In this paper we have developed a barrier function method for approximating a
solution of the nonconvex quadratic programming problem with box constraints.
The preliminary numerical results show that the method seems effective and effi-
cient. We have also presented a two-dimensional example to show that the barrier
term may help us obtain a global or near global optimal solution. Although all the
preliminary numerical results show that the method always finds a global or near
global minimum point when the barrier parameter decreases at a sufficiently slow
pace, it is difficult to theoretically prove that the method always generates a global
or near global optimal solution. We remark that combining the barrier function
method and a branch-and-bound algorithm may provide an efficient approach to
solving the maximum clique problem.
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