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Abstract

The connections of the alternative model for mixture of experts (ME) to the normalized radial
basis function (NRBF) nets and extended normalized RBF (ENRBF) nets are established, and the
well-known expectation-maximization (EM) algorithm for maximum likelihood learning is
suggested to the two types of RBF nets. This new learning technique determines the parameters
of the input layer (including the covariance matrices or so-called receptive fields) and the
parameters of the output layer in the RBF nets globally, instead of separately training the input
layer by the K-means algorithm and the output layer by the least-squares learning as done in
most of the existing RBF learning methods. In addition, coordinated competitive learning
(CCL) and adaptive algorithms are proposed to approximate the EM algorithm for consider-
ably speeding up the learning of the original and alternative ME models as well as the NRBF
and ENRBF nets. Furthermore, the two ME models are linked to the recent proposed Bayesian
½ing—½ang (B½½) learning system and theory such that not only the architecture of ME and
RBF nets is shown to be more preferred than multilayer architecture, but also a new model
selection criterion has been obtained to determine the number of experts and basis functions.
A number of experiments are made on the prediction of foreign exchange rate and trading
investment as well as piecewise nonlinear regression and piecewise line fitting. As shown in these
experiments, the EM algorithm for NRBF nets and ENRBF nets obviously outperforms the
conventional RBF learning technique, CCL speeds up the learning considerably with only
a slight sacrifice on performance accuracy, the adaptive algorithm gives significant improve-
ments on financial predication and trading investment, as well as that the proposed criterion
can select the number of basis functions successfully. In addition, the ENRBF net and the
alternative ME model are also shown to be able to implement curve fitting and detection.
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1. Introduction

Radial basis function (RBF) network is one of the most popular models that have
been studied intensively with a lot of applications and many theoretical results
[1—3,8,14—21,36], as well as various new learning techniques developed (e.g., the
robust learning proposed by Ref. [22]. The list here is far from completed, and many
others can be found in the reference list of the papers [37,34].

For the existing learning techniques for RBF nets, there are still some major
problems. One is how to select the number of basis functions, which will affect the
performance considerably. In the paper [28], via setting up the connections between
RBF nets and kernel regression estimators, a number of interesting theoretical results
have been obtained for the upper bounds of convergence rate of the approximation
error with respect to the number of basis functions, and the upper bounds for the
pointwise convergence rate and ¸

2
convergence rate of the best consistent estimator

with respect to both the samples and the number of basis functions. However, these
theoretical results are not directly usable in practice. Rival penalized competitive
learning (RPCL) is able to automatically select the number of clusters and thus
suggested for RBF nets [35,36]. However, although it experimentally works well,
RPCL is a heuristic approach and still in lack of theoretical justification. The second
problem is that the parameters of the input layer are usually trained first by some
clustering algorithm and then the parameters of the output layer are usually trained
by the least-squares learning [16]. That is, the learning in the two layers is separated
with suboptimal results. Another problem is that the covariance matrices or so-called
receptive field parameters in the input layer are either pre-specified (e.g., ball-shaped
scalar variance) or computed after clustering, which are again not well tuned. This
also affects the performance [15,37].

This paper aims to solve these problems, through systematically summarizing and
developing the basic ideas and several preliminary results obtained by the present
author in the conference papers [24,25,28]. In Section 2, we refine the connection of
the alternative model for mixture of experts (ME) to the normalized radial basis function
(NRBF) nets and extended normalized RBF nets (ENRBF), established first in 1996
[24]. In Section 3, following the basic idea and the preliminary algorithm proposed in
[24], we describe that detailed steps on how the EM algorithm developed in [32,33] is
used for training the two types of RBF nets such that the parameters of the input layer
(including the covariance matrices) and the parameters of the output layer are learned
globally [24]. Moreover, coordinated competitive learning and adaptive algorithms
[24,25] are also adopted and further improved to approximate the EM algorithm for
considerably speeding up the learning in the original and alternative ME models as
well as the NRBF and ENRBF nets. In Section 4, a systematic elaboration and some
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further extensions on the previous results in [24,25,28] have been made such that the
two ME models are further linked to the recent proposed Bayesian ½ing—½ang
learning system and theory such that not only the architecture of ME and RBF net are
shown to be more preferred than multilayer architecture, but also new model selection
criteria have been obtained to determine the number of experts and basis functions.
Furthermore, in Section 5 a number of experiments are made on prediction of foreign
exchange rate, trading investment, piecewise nonlinear regressions, piecewise curve
fitting and detection, which demonstrate that the proposed algorithms and criterion
work well. Finally, we conclude in Section 6.

2. Mixtures experts, the EM algorithm and RBF net learning

2.1. Alternative ME model and the EM algorithm

The original mixtures of experts model is based on the following conditional
mixture [9,11]:

p(zDx,H)"
k
+
j/1

p( jDx,l)p(zDx,h
j
), p( jDx,l)"ebj(x,l) k

+
j/1

ebj(x,l),

(1)
p(zDx, h

j
)"(2p)~dz@2DC

j
D~1@2expM!1

2
[z!f

j
(x,w

j
)]TC~1

j
[z!f

j
(x,w

j
)]N,

where d
z

is the dimension of z, C
j

is the d
z
]d

z
covariance matrix, and f

j
(x,w

j
) is

a vector of the dimension d
z
which is the output of the jth expert net. Each expert is

represented by h
j
"Mw

j
, C

j
N. Moreover, p( jDx,l),j"1,2, k, are the output of the

so-called softmax gating net. Finally, we denote H"Ml, Mh
j
Nk
j/1

N.
The parameter H is estimated by maximum likelihood (ML) learning

¸"+N
i/1

ln p(z
i
Dx

i
,H), which can be made by the EM algorithm [11,12]. It is an

iterative procedure as follows:

The EM Algorithm – Original
E-step: Fix H0-$ and compute h( jDx

i
)"p( jDx

i
, z

i
) by

h( jDx
i
)"p( jDx

i
, z

i
)"

p( jDx
i
, l0-$)p(z

i
Dx

i
, h0-$

j
)

+k
j/1

p( jDx
i
, l0-$)p(z

i
Dx

i
, h0-$

j
)
. (2)

M-step: Find a new estimate H/%8"MMh/%8
j

Nk
j/1

,l/%8N with

h/%8
j

"argmaxhjQe
j
(h

j
), Qe

j
(h

j
)"

N
+
i/1

h( jDx
i
)ln p(z

i
Dx

i
, h

j
), j"1,2, k;

(3)

l/%8"argmaxlQ(l), Q(l)"
N
+
i/1

k
+
j/1

h( jDx
i
)ln p(jDx,l0-$).

The favorable properties of the EM algorithm have also been shown by theoretical
analyses [12,31]. One inconvenience of the original mixtures of experts architecture is
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the nonlinearity of the softmax gating network Eq. (1), which makes the maximization
with respect to l of the gating network become nonlinear and unsolvable analytically
even for the simplest generalized linear case. An algorithm called iteratively reweighted
least squares (IRLS) is proposed for the nonlinear optimization [11,12]. However,
IRLS is a Newton-type iterative algorithm and thus needs some safeguard measure
for convergence.

To overcome this disadvantage of the softmax-based gating net, the following
modified gating network is proposed in [32,33]:
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family. The most common example is the Gaussian:
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where d
x

is the dimension of x, and R
j
is the d
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]d

x
covariance matrix.

In Eq. (4), p( jDx, l) is actually the posterior probability p( jDx) that x is assigned to
the partition corresponding to the jth expert net, obtained from Bayes’ rule
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Inserting this p( jDx,l) into the model Eq. (1), we get
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EM algorithm [32,33]:
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2.2. Normalized RBF nets and the EM algorithm

The normalized RBF (NRBF) nets can be summarized by the following general
form [16,17]:
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where /(r2) is a prespecified basis function satisfying certain weak conditions. The
most common choice is the Gaussian function /(r2)"e~r2, but a number of alterna-
tives can also be used (e.g., several choices are listed in [19]). m

j
is called the center

vector and w
j

is a weight vector. R
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is a d]d positive matrix (called a covariance

matrix or the receptive field of the basis function), which defines a range for which an
input x3Rd can cause a sufficiently large output.

For the existing approaches [16,2,3], the learning on the parameters in Eq. (13) is
separated into two steps:
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As a result, the parameter vector w
j
can be determined by the least-squares method

based on the paired data set D
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i
,z
i
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. The procedure can be implemented
either in the batch way or by the adaptive least-squares algorithm.

The extended NRBF (ENRBF) net is a modification of the NRBF net Eq. (13) by
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Its learning is basically the same as the above one for the normalized RBF nets, except
that the least squares learning is a little bit more complicated for the output layer.

Next, we introduce and further refine a connection, established by the present
author first in 1996 [24]. We consider that each expert network in Eq. (1) is simply
a Gaussian
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We can easily find that it is just a NRBF net with Gaussian basis functions as / ( . ).
If Eq. (15) is further extended into a linear regression form:
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which is just an ENRBF net with Gaussian basis functions as /( . ).
By defining p(zDx, h

j
) to be another density function, similarly we obtain another

basis function.
Therefore, the EM Algorithm — Alternative can be used for training the above
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M-Step: First, update
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The above introduced algorithm can be regarded as a detailed extension of the
preliminary form of EM algorithm for RBF nets, proposed first in [24].

3. Coordinated competitive learning and adaptive algorithms

3.1. Coordinated competitive learning

For the EM algorithms given in the previous section, we need to compute a
posterior probability h( jDx

i
) which indicates the probability of assigning the mapping

task of the pair x
i
Pz

i
to the jth expert.

L. Xu/Neurocomputing 19 (1998) 223–257 229



Alternatively, by adopting the basic ideas suggested in [25], this soft assignment
can be approximated by a winner-take-all (WTA) competition according to Bayesian
decision via replacing h( jDx

i
) in the M-step of all the algorithms with the following

hard-cut indicator:
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Although some accuracy may be lost in performance (as will be shown later by
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affecting the performance too much.
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This competition consists of two coordinated parts. One is log DC
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dinated competitive learning (CC¸).
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where the competition is only among the experts and the gating net simply follows the
result of this competition.
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where g"p2
j
/c2

j
. That is, the competition is made only among whether x

i
is close to
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j
and whether the pair x
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,z
i
is close to the regression model of the jth expert. Here, we

can clearly see that how the mismatch between the data and model versus the
variances of two models affects the competition. Furthermore, we can ignore the
gating part and get Eq. (27) again.
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3.2. Adaptive algorithms

For the practical problems that samples come one by one, such as prediction of
foreign exchange rate, we need to adaptively track the temporal relationship in data.
For those learnings of parameter optimization of type (1/N)+N
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to only the current sample, we usually use stochastic approximation to modify the
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guiding the convergence analyses. In this paper, we will not go deep into theoretical
aspects. Instead, we only discuss how to get adaptive learning algorithms for training
the previous mixture of experts, NRBF and ENRBF nets.
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with g
0

being a prefixed learning rate and h( jDx
i
) or I( jDx

i
) modifying this rate

adaptively. The other is to simply omit whatever computation that corresponds
to I( jDx

i
)"0. The specific details are summarized into the following two major

points:

1. For learning the network parameters, Eq. (31) is directly used. For example, to
learn parameters ¼

j
in p(zDx,h

j
)"G(z,f

j
(x,¼

j
),C

j
), the updating is made by

w/%8
j*

"w0-$
j*

!g
j,i

Le2
j*
(x

i
)

Lw
j*

, e2
j
(x

i
)"[z

i
!f(x

i
,¼

j
)]TC~1

j
[z

i
!f(x

i
,¼

j
)]. (33)
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2. For learning the density parameters m
j
,R

j
and a

j
, the updating is made in the

form of

m/%8
j

"m0-$
j

#g
j,i

(x
i
!m0-$

j
),

R/%8
j

"(1!g
j,i

)R0-$
j

#g
j,i

(x
i
!m0-$

j
)(x

i
!m0-$

j
)T, (34)
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j

"(1!g
j,i

)n0-$
j

#g
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, a/%8
j

"n/%8
j

/
k
+
j/1

n/%8
j

.

As an example, we can turn the EM Algorithm—RBF into its adaptive variant as
follows:

The Adaptive EM Algorithm – RBF

E-Step: Fix H0-$, to get h( jDx
i
) in the same way as in the EM Algorithm—RBF or to get

I( jDx
i
) as discussed in the previous subsection, e.g., by Eq. (29). Then let g

j,i
be given by

Eq. (32).
M-Step: First, update
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j
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j

#g
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i
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j
),

(35)
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j
)(x
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Then, for a NRBF net, update
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(36)
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)(z

i
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)T;

for an ENRBF net, update
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), c/%8
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j
x
i
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j
)xT

i
.

Usually, the initialization of parameters will affect the performance of adaptive
algorithms. For the practical problems like financial data prediction, we usually
have quite limited number of sample points, thus using an adaptive algorithm alone
cannot bring any real advantage. In this case, we suggest to first use one of the
previous batch algorithms on a training set to get a solution as an initialization, and then
to use the above adaptive algorithm to keep tracing the changes of data on the testing
data via adaptation once a new data point is available. As will be shown later by the
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experimental results, this use of adaptive algorithm really works well for the problems
of strongly nonstationary signals.

4. BYY learning, mixture experts, and basis function number

A unified statistical learning approach called Bayesian ½ing—½ang (B½½) sys-
tem and theory has been developed by the present author in recent years [23—29]. It
provides new theories for unsupervised pattern recognition and cluster analysis, fac-
torial encoding, data dimension reduction, and independent component analysis, as well
as for supervised classification and regression, such that not only several existing
popular supervised and unsupervised learning approaches, (e.g., finite mixture with
the EM algorithm, K-means clustering algorithm, one hidden layer Helmholtz ma-
chine, principal component analysis plus various extensions, Informax and minimum
mutual information approaches, etc.), are unified as special cases with new insights
and results, but also a quite number of new variants and models are obtained.
Especially, it provides a new general theory for model selection and regularization,
which is easy to implement and suitable for the cases of finite number of training
samples, with solution for several hard open problems (e.g., the number of clusters in
the K-means clustering algorithms, the dimension of subspace, etc. [29,26]). Further-
more, as a whole, the BYY learning system and theory functions as a general
framework and theory for supervised learning, semi-unsupervised learning, and un-
supervised learning on parameter learning, regularization, structural scale or complex-
ity selection, architecture comparison and data smoothing.

In this section, after briefly introducing the BYY learning system and theory, we use
the theory to interpret why the architecture of mixture experts and RBF nets is more
favorable than that of multilayer nets and to obtain criteria for selecting the appropri-
ate number of experts and basis functions.

4.1. BYY learning system and theory

4.1.1. Basic BYY learning system and theory
As shown in Fig. 1, the BYY system consists of seven components. The first four

components form the core, which itself functions as a general framework for unsuper-
vised learning. The surrounding other three components are added for the purposes of
supervised learning.

First, we need to understand the basic idea of the core. As shown in [26],
unsupervised perception tasks can be summarized into the problem of estimating the
joint distribution p(x,y) of the observable pattern x in the visible space X and its
representation pattern y in an invisible space ½. In the Bayesian framework, we have
two complementary representations p(x,y)"p(yDx)p(x) and p(x,y)"p(xDy)p(y). We use
two sets of models M

1
"MM

y@x
, M

x
N and M

2
"MM

x@y
, M

y
N to implement each of the

two representations:

p
M1

(x,y)"p
My@x

(yDx)p
Mx

(x), p
M2

(x,y)"p
Mx@y

(xDy)p
My

(y). (38)
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Fig. 1. The Bayesian YING—YANG System.

We call M
x
a Yang/(visible) model, which describes p(x) in the visible domain X, and

M
y
a Ying2/(invisible) model which describes p(y) in the invisible domain ½. Also, we

call the passage M
y@x

for the flow xPy a ½ang/(male) passage since it performs the
task of transferring a pattern/(a real body) into a code/(a seed). We call a passage
M

x@y
for the flow yPx a ½ing/(female) passage since it performs the task of generating

a pattern/(a real body) from a code/(a seed). Together, we have a ½ANG machine
M

1
to implement p

M1
(x,y) and a ½ING machine M

2
to implement p

M2
(x,y). A pair of

YING—YANG machines is called a YING—YANG pair or a Bayesian YING—YANG
system. Such a formalization compliments to a famous Chinese ancient philosophy
that every entity in the universe involves the interaction between ½ING and ½ANG.

The task of specifying a Ying—Yang system is called learning in a broad sense, which
consists of the following four levels of specifications:

1. Based on the nature of a specific task, the representation domain ½ and its
complexity k are designed. For example, in this paper it is a binary vector
y"[y(1),2, y(k)]T, y(j)3M0,1N.

2. Based on the given set of training samples, some previous knowledge, assumption
and heuristics, architecture design is made on specifying the architectures
of components. First, with a given set D

x
"Mx

i
NN
i/1

from an original density
p0(x),p

Mx
(x) is fixed on some parametric (e.g., finite mixture or gaussian mixture in

particular) or nonparametric empirical density estimation of p0(x), e.g., p
Mx

(x)"
p
hx
(x) given by a kernel estimate [6]

p
hx
(x)"

1

N

N
+
i/1

K
hx
(x!x

i
), K

hx
(r)"

1

hdx
KA

r

hB, (39)

2 It should be “Yin” in the Mainland Chinese spelling system. However, I prefer to use “Ying” for the
beauty of symmetry.
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with a prefixed kernel function K ( . ) and a prefixed smoothing parameter h
x
. Next,

each p
Ma

(a),a3MxDy,yDx,yN can be designed in two ways. One is called Free. It implies
a totally unspecified density or probability function in the form p(a) without any
constraint. Thus, it is free to change such that it can be specified through other
components indirectly. The other is called parameterized architecture. It means that
p
Ma

(a), a3MxDy,yDx,yN is either a simple parametric density, e.g., a Gaussian
p
Mx @ y

(xDy)"G(x,m
x@y

, R
x@y

), or a compounded parametric density with some of its
parameters defined by a complicated function with a given parametric architecture
consisting of a number of elementary units that are organized in a given structure
[26,27]. Moreover, when p

M% @ 7
(xDy) is parametric, the rest two p

Ma
(a), a3MyDx, yN

can be either free or parametric; however when p
Mx @ y

(xDy) is free, the rest two must
be parametric to avoid the useless under-determined cases.

3. We also need to select the above complexity k, as well as other scale or complexity
parameters for a complicated architecture [26,27]. The task is called structural
scale selection or model selection.

4. After the above three levels of specifications, the unspecified part for each compon-
ent p

Ma
(a),a3MxDy,yDx,yN is a set h

a
of parameters in certain domains. Putting them

together, we get the parameter set H"Mh
x@y

,h
y@x

,h
y
N, which we called parameter

learning.

Our basic theory is that the specification of a Ying—Yang pair in the above four
levels best enhances the so-called ½ing—½ang harmony or marry, through minimizing
a harmony measure called separation functional:

F
4
(M

1
,M

2
)"F

4
(p

My@x
(yDx)p

Mx
(x), p

Mx@y
(xDy)p

My
(y))50,

(40)
F
4
(M

1
,M

2
)"0 if and only if p

My@x
(yDx)p

Mx
(x)"p

Mx@y
(xDy)p

My
(y),

which describes the harmonic degree of the Ying—Yang pair. Such a learning theory is
called Bayesian ½ing—½ang (B½½) learning theory. Three categories of separation
functionals have been suggested in [28,26]. In this paper, we only consider a special
case — the well-known Kullback divergence as follows:3

K¸(M
1
,M

2
)"P

x

+
y

p
My@x

(yDx)p
Mx

(x) ln
p
My@x

(yDx)p
Mx

(x)

p
Mx@y

(xDy)p
My

(y)
dx. (41)

In this special case, the BYY learning is called Bayesian—Kullback YING—YANG
(BKYY) learning. Being different from the large number law based modern statistical
learning principle, this BYY learning emphasizes the best relative harmony of the
finite sample based p

Mx
(x) and the structurally constrained learning system of

p
My @ x

(yDx), p
Mx @ y

(xDy) and p
My

(y), instead of considering the derivation from an absolute
truth or standard. As the number of samples becomes large, Eq. (39) will obey the
large number law and the BYY learning will be consistent to the modern statistical
learning principle.

3 In general, +
y

should be :
y
, here +

y
is used because y is a binary vector in this paper.
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4.1.2. BYY learning system and theory
Next, we consider the complete system in Fig. 1 with the last three components

joined in. One is the output action space z3Z with its distribution p
Mz

(z). The other
is the action terminal (A¹) described by a distribution p

Mz@x,y
(zDx,y) for the mapping

xPz that is modulated by the internal representation y. The another one is the
coordination terminal (C¹) described by a distribution p

My@x,z
(yDx, z), which lets the

invisible representation ½ be in coordination with the two visible spaces X,Z.
Here, with respect to the invisible space ½, the model p

ML
1
(x, z)"p

Mz@x
(zDx)p

Mx
(x)

for the joint X,Z forms a large ½ang model; while with respect to the visible output
action space Z, the model p

ML
2
(x,y)"p

M2
(x,y)"p

Mx@y
(xDy)p

My
(y) for the joint X,½

forms a large ½ing model. The action terminal p
Mz@x,y

(zDx,y) is the passage from the
large Ying space to the Yang space Z. The coordination terminal p

My@x,z
(yDx,z) is the

passage from the large Yang space to the Ying space ½. Thus, we have another
YING—YANG pair

p
ML

1
(x,y, z)"p

My@x,z
(yDz,x)p

ML
1
(z, x)"p

My@x,z
(yDx, z)p

Mz@x
(zDx)p

Mx
(x), (42)

p
ML

2
(x, y, z)"p

Mz@x,y
(zDx, y)p

ML
2
(x, y)"p

Mz@x,y
(zDx,y)p

Mx@y
(xDy)p

My
(y),

together with the old Ying—Yang pair in Eq. (38) to form an enlarged Ying—Yang system.
Therefore, in addition to specify the old Ying—Yang pair, we need also to

specify the new Ying—Yang pair. First, p
ML

1
(z,x) is specified via D

x,z
"Mx

i
,z
i
NN
i/1

such
that p

Mx
(x)"p

hx
(x) is still the same as before and p

Mz@x
(zDx)"p

hz
(zDx) for a pair

(x,z@)3D
x,z

:

p
hz
(zDx)"G

d
d
(z!z@) z is discrete,

1

hdz
z

KA
z !z@

h
z
B z is real,

d
d
(z)"G

1 for z"0,

0 for zO0.
(43)

So, only two new components p
My@x,z

(yDx,z) and p
Mz@x,y

(zDx,y) need to join the previously
discussed core for being specified through architecture design, structural scale selec-
tion, and parameter learning.

Again, our basic theory is that all the specifications should best enhance the
½ing—½ang harmony for both the Ying—Yang pairs, through minimizing
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This min
M1, M2

F
580

(M
1
,M

2
) can be implemented by an alternative minimization iter-

ative procedure:

Step 1: Fix M
2
"M0-$

2
, get M/%8

1
"argmin

M1

F
580

(M
1
, M

2
),

(45)
Step 2: Fix M

1
"M0-$

1
, getM/%8

2
"argmin

M2

F
580

(M
1
,M

2
),

which guarantees to reduce F
580

(M
1
,M

2
) until it converges to a local minimum.
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In the case that the Kullback divergence is used, it becomes

K¸
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(M
1
,M

2
)"K¸L(M

1
, M

2
)#K¸(M

1
,M
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),

(46)
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dx dz,

with K¸(M
1
,M

2
) still given by Eq. (41). It can be noticed that Eq. (46) will de-

generate into Eq. (41) when z"x which makes K¸L(M
1
, M

2
)"K¸(M

1
, M

2
) and

K¸
580

(M
1
,M

2
)"2K¸(M

1
,M

2
).

As shown in [26,27], min
M1,M2

F
580

(M
1
, M

2
) actually can provide theoretical guides

on all the aspects of specifying a Ying—Yang system, including parameter learning,
regularization, structural scale or complexity selection, architecture comparison and
data smoothing. In this paper, given a training set D

x,z
"Mx

i
, z

i
NN
i/1

, we only consider
the cases that the architecture has been already pre-designed and that the remaining
unspecified parts are the model scale k (i.e., the bits of y) and a set H

k
of all the

parameters in the Ying—Yang system with the scale k. In this case, we denote
F
580

(M
1
,M

2
) simply by F

580
(H

k
, k).

With k fixed, we determine

H*
k
"argmin

H
k

F
580

(H
k
, k), (47)

which is called parameter learning. Then, we make model scale selection by
determining

k*"min
k|K

k, K"M j: J
1
( j)"min

k

J
1
(k)N, J

1
(k)"F

580
(H*

k
, k). (48)

That is, to pick the smallest one among those values of k that makes J
1
(k) reach its

smallest value. In other words, we select the simplest structural scale when we have
multiple choices. For some problems, K contains only one element only. Sometimes,
K contains many elements. In these cases, once J

1
(k) reaches its smallest value at k*, it

usually keep this smallest value for all k'k*.
We also have an alternative way for selecting k*

k*"arg min
k

J
2
(k),

(49)

J
2
(k)"(1!c)J

1
(k)!cP

x, z

+
y

p
ML

1
(x, y, z)DH*

k
ln p

ML
2
(x, y, z)DH*

k
dx dz, 04c41,

where p
Mi

(x,y,z)DH*
k
, i"1, 2, denote the learned joint densities given in Eq. (38) with

the parameter H*
k

given by Eq. (47), where c"1, J
2
(k) is the expected complexity of

the Ying machine measured by the Yang machine, is expected to be the smallest for
the least complicated system. Usually, J

2
(k) reaches its smallest only at one value of k.

In most cases, the results of Eqs. (48) and (49) are the same. However, each way has
a different feature. For Eq. (48), J

2
(k) is more suitable for a limited number of samples,

and J
2
(k) reduces back to J

1
(k) when c"1.
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In the rest of this paper, we will only focus on the BKYY learning
min

M1, M2
K¸

580
(M

1
, M

2
).

4.2. Feedforward network vs localized architecture

As shown in Fig. 1, except that p
ML

1
(z,x), p

M1
(x) and p

M
(z) are pre-specified by

Eqs. (39) and (43), we have five components to be specified. Since each component
may have several choices, we will have a family that consists of quite a number of
variants, as discussed in [27]. However, in this paper we are only interested in a few of
them that relate to mixture of experts and RBF nets.

First, we only consider the cases that p
My@x,z

(yDx,z)"p(yDx,z) is free and the following
equality,

p
ML

1
(x,y)"p

My@x
(yDx)p

Mx
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(xDy)p

My
(y)"p
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2
(x,y), (50)

is held under some mild condition as discussed in [27]. In this case, we have that
K¸(M

1
, M

2
)"0 and min

M1,M2
K¸

580
(M

1
, M

2
) becomes equivalent to

p(yDx,z)"
p
Mz@x,y

(zDx, y)p
ML

2
(x, y)

p
M2

(x, z)
,

p
M2

(x,z)"+
y

p
Mz@x,y

(zDx,y)p
ML

2
(x,y)

"G
+

y
p
Mz@x,y

(zDx,y)p
Mx@y

(xDy)p
My

(y) for a ½ing-based system,
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(x) for a ½ang-based system;

For a ½ing-based system:
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For a ½ang-based system:
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(x) dxdz.

Such a system is called fully coordinated and fully matched BK½½ learning system
[27]. More specifically, since a parametric component is actually modeled by a
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physical device, and a free component is indirectly defined through the physical
devices for other components, we call a BYY system a ½ang-based system when
p
Mx@y

(xDy) is free and p
My@x

(yDx) is parametric, a ½ing-based system when p
Mx@y

(xDy) is
parametric and p

My@x
(yDx) is free.

We further consider two types of features in p
Mz@x,y

(zDx,y). One is the special case that
p
Mz@x,y

(zDx,y)"p
Mz@y

(zDy), with p
M2

(x,z) given in Eq. (51) becoming
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(y) for a ½ing-based system,

+
y
p
Mz@y

(zDy)p
My@x

(yDx)p
Mx

(x) for a ½ang-based system,
(52)

which links x, z via a cascade architecture xPyPz or xQyPz and thus x is
independent of z when y is known. The architecture xPyPz is usually called three-
layer feedforward net or three-layer perceptron. The other is that p

Mz@x, y
(zDx, y)O

p
Mz@y

(zDy), and p
M2

(x, z) is given by Eq. (51). In this case, each p
Mz@x,y

(zDx,y) builds a direct
link xPz itself with the link gated via the internal variable y such that a weighted
mixture p

M2
(x,z) is formed by Eq. (51) in a parallel architecture. This architecture is

usually called localized architecture, as the one in mixture of experts and RBF nets.
In the following, we discuss in depth the major features of the BKYY learning on

three-layer perceptron and localized architecture:

4.2.1. Three-layer perceptron
One main disadvantage is that p

M2
(xDz) obtained from p

M2
(x,z) given by Eq. (52)

cannot avoid the summation over all the value of y. For example, we have
p
M2

(xDz)"+
y
p
Mz@y

(zDy)p
My@x

(yDx) for a ½ang-based system. Thus, in the case that the bits
k of y is large, the computing cost is very large and impractical. The similar
summation will also occur during the learning given by Eq. (51). To make the
computation feasible, we propose a specific design called smoothed ½ang-based learn-
ing system as follows:
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where

b(x,¼
y@x

)"[b
1
(y,¼

y@x
),2,b
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(y,¼

y@x
)]

and

f(y,¼
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)"[f
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(y,¼

z@y
),2, f

m
(z,¼

z@y
)]

are nonlinear functions. s(r) is usually a sigmoid function, e.g., s(r)"1/(1#e~r) or
others with its range on [0, 1]. Moreover, s(r) can even be a monotonic increasing
function (e.g., s(r)"er) for the cases of a binary z with +dz

j/1
z
j
"1.

With this design, we have p
M2

(zDx)"p(zDE(yDx,h
y@x

)) and its regression
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where E(yDx,h
y@x

)"[k
1
(x¼

y@x
),2, k

k
(x¼

y@x
)]T. In the special case that b(x,¼

y@x
)"

¼
y@x

x and f(y¼
z@y

)"¼
z@y

y. This E(zDx) is just the output of the conventional
three-layer perceptron and there is no implementing difficulty anymore.

For the learning under this design, from Eq. (51) we have that
max

Mz@x, y,My@x
¸(M

z@x,y
,M

y@x
) becomes

maxhz@y,hy@x¸(h
z@y

,h
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), ¸(h
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,h
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)" +
(x,z)|Dx,z

ln p(zDE(yDx,h
y@x

),h
z@y

), (55)

which is exactly the conventional maximum likelihood learning for three-layer per-
ceptron that includes the least-squares learning by the well-known back-propagation
technique.

Moreover, we can also get one interesting new result. From Eq. (49), we can get
a new criterion for selection k (i.e., the number of the hidden units) as follows:

k*"arg min
k

J
2
(k), J

2
(k)"!¸(h*

z@y
,h*

y@x
)!

k
+
j/1

[k
j
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) lnk
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#(1!k
j
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)) ln(1!k

j
(x,¼*
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))], (56)

where h*
z@y

,h*
y@x

,¼*
y@x

are the results of the learning by Eq. (55) at the current fixed k.

4.2.2. Localized architecture
As discussed above, the architecture of three-layer perceptron cannot avoid the

dilemma due to the summation over all the possible values y, which causes an
impractical computing cost unless y takes only a few values. However, if y just takes
a few values, the representation ability of the network is very limited since y functions
as a bottle-neck that the entire information flow must go through. As a result, some
kind of approximation as discussed above must to be used.

However, this dilemma can be avoided by the localized architectures. We consider
a particular case that y"[y(1),2,y(k)]T with y( j)3M0,1N, +k

j/1
y( j)"1. That is, y only
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takes k values and y( j)"1 is equivalent to y taking the jth value. We make the
following design:

p
Mz@x,y

(zDx,y)"
k
+
j/1

y( j)p(zDx,h
j
), p(zDx,h

j
) is parametric,

p
My@x
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k
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y( j)p( jDx,l),
k
+
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p( jDx,l)"1, p( jDx,l) is parametric, (57)
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and also that p
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(x) given by Eq. (39) and p
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(zDx)"p
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h
x
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z
P0 and NPR.

With this design, from Eq. (51) we have that
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That is, the BKYY learning on the specific Yang-based system and Ying-based system
is exactly the maximum likelihood learning on the original ME model equation
(Eq. (1)) and the alternative ME model equations (Eqs. (4) and (8)), respectively!
Actually, the learning by minhj,lK¸L(Mh

j
Nk
j/1

,l) and minMhj,lj,ajNkj/1
K¸L(Mh

j
,l
j
,a

j
Nk
j/1

) can
be implemented by the alternative minimization iterative procedure Eq. (45), which
turns out to be exactly the EM Algorithm — Original and the EM Algorithm — Alterna-
tive given in Section 2, respectively.
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Although we still encounter the summation over all the values of y, here y only takes
k different values. Because each expert p(zDx,h

j
) has a direct link xPz itself

and y only functions as a gate that weights information flows from different ex-
perts, we can trade-off the representation complexity of y and the structural complexity
of each expert such that number of values that y should take are significantly fewer than
it should take on three layer perceptron. This is a favorable advantage of the localized
architectures of ME models and RBF nets that the forward network lacks. Moreover, as
shown in Sections 2 and 3, ME models and RBF nets can be trained with the EM
algorithm or its variants with good convergence properties [12,31]. In addition, as well
known in the literature, the good generalization can be obtained by a localized
architecture since the effect of dividing a complex tasks into a number of more regular
sub-tasks is equivalent to making some regularization on the network performance.

4.3. Selection criteria for the number of experts and basis functions

In the existing literature, there still lacks theoretical guide on how to determine the
best number k* of experts or basis functions for the original and alternative ME models
as well as RBF nets. According to their links to the BKYY learning as discussed in the
previous subsection, with the design given by Eq. (57) we can obtain such selection
criteria directly from Eqs. (48) and (49) with F

580
(H

k
,k) replaced by K¸L(Mh

j
,l
j
,a

j
Nk
j/1

)
and K¸L(Mh

j
Nk
j/1

,l) given by Eq. (58). After ignoring some irrelevant terms, we can get
the detailed forms of the criteria for different specific cases. In the following, we list
a number of major ones, in which those criteria for J

1
(k) were obtained first in 1996

[24,25] and the criteria for J
2
(k) at the special case c"1 were obtained first in

[25,28], while the following general forms of J
1
(k) are newly proposed in this paper.
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When p(zDx,h
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) is Gaussian given by Eq. (1), by noticing Tr[1
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2. ¹he selection criteria for the alternative ME model. That is, for p(zDx,h
j
) in general

case we have
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When p(zDx,h
j
) is Gaussian given by Eq. (1) and p(xDl

j
) is Gaussian given by Eq. (5),

the above criteria actually takes the following specific form:
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3. ¹he selection criteria for the RBF nets. From a*
j
"JDR*

j
D/+k

j/1
JDR*

j
D given by

Eq. (16), we can obtain directly from the above Eq. (62) that
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Taking J
2
(k) given in Eq. (62) with c"1 as an example, we can intuitively under-

stand how the above criteria work. Its first term will decrease as k increases and its
second term will increase as k increases and thus trades off the best k*. This point can
be even more clearly observed by letting C*

j
"C*, R*

j
"R* and a*

j
"1/k such that

J
2
(k)"0.5(lnDC*D#lnDR*D)#ln k, at c"1. (64)

Obviously, ln k increases as k increases, and DC*D, DR*D decreases as k increases for
a given number N of samples.

5. Experimental results

In all the experiments, the initialization of the parameters for the EM algorithms
and its variants are made randomly in their corresponding domains, e.g., R

j
is

initialized at a positive-definite matrix. A large number of experiments have been
made at different random initializations, and have turned out that the initialization
will not obviously affect the performance, which is consistent to the advantage of the
EM algorithm on initialization discussed in [31]. In contrast, for the conventional two
stage algorithm, the performance of the K-means algorithm highly depends on its
initialization [5,7]. In this section, only a few examples are demonstrated, and the best
results we got by the conventional two stage algorithm are provided in our following
comparisons.

5.1. Experiments on foreign exchange rate and stock price prediction

Experiments are made on the prediction of a foreign exchange rate and a stock price
for comparing the following algorithms:
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1. The conventional two-stage training algorithms [16,10] for NRBF and ENRBF
nets, denoted by NRBF two-stage and ENRBF two-stage, respectively;

2. The EM Algorithm—RBF, denoted by EM-NRBF and EM-ENRBF for NRBF net
and extended NRBF net respectively;

3. The EM Algorithm—RBF modified by coordinated competitive learning (CCL),
denoted by EM-NRBF (CCL) and EM-ENRBF (CCL), respectively;

4. The Adaptive EM Algorithm—RBF, denoted by Adaptive EM-NRBF and Adaptive
EM-ENRBF respectively;

A foreign exchange rate data for USD-DEM with 1112 samples (25 November
1991—30 August 1995) and a real stock price data of 380 samples from Shanghai stock
market are used. On the USD-DEM Forex data, two type of partitions of the training
set and the testing set are used. For the Type A, the training size is the first 1000
samples and the testing size is the subsequent 112 samples. For Type B, the training
size is first 100 samples and the testing size is the subsequent 1012 samples. For the
real stock price data, the first 350 samples used as the training set and the subsequent
30 samples as the testing set.

After certain experiments, our experience tells that it is the best to set the input dimens-
ion at 3, that is, we use x"[x(t!1), x(t!2), x(t!3)] as our input vector at the time t.

5.1.1. Conventional algorithm, EM algorithm and coordinated competitive learning
Several experiments are made on USD-DEM-SET Type A data. Shown in

Table 1 are the results of using five basis functions on both NRBF net and ENRBF net
for the task of using x"[x(t!1), x(t!2), x(t!3)] to predict z"x(t). The figures are
normalized mean square error (NMSE). The detailed prediction results on the testing
set are shown in Fig. 2. For NRBF net, EM-NRBF indeed improves the conventional
two stage algorithm considerably. For ENRBF net, EM-NRBF also improves, especially
shown from Fig. 2. However, the conventional algorithm performs already quite good.

We further examine whether the bad result by the two stage algorithm is due to not
enough number of basis functions used. Shown in Table 2 are the results of the
two-stage algorithm on NRBF net with different number of hidden units, which
indicates that increasing the units indeed can improve the results. So, we need to
consider a large number of basis functions. Unfortunately, as the number of basis
functions increases, the convergence speed reduces down considerably for EM-NRBF,
which makes the experiments become too time-consuming to be implemented. Thus,
we turn to compare EM-NRBF (CCL) with the two-stage algorithm. Shown in
Table 3 are the results of using 20 basis functions, with the detailed prediction results
on the testing set shown in Fig. 3. We again observe that EM-NRBF indeed improves

Table 1
The results of prediction on FOREX rate of USD-DEM-SET Type A (No. of units"5)

Algorithms NRBF two-stage EM-NRBF ENRBF two-stage EM-ENRBF

Training (NMSE) 0.553 0.894 0.143 0.152
Testing (NMSE) 2.92 0.774 0.452 0.448
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Fig. 2. The results of prediction on Forex data of USD-DEM-Set Type A (No. of units"5), corresponding
to Table 1, where the solid line is for data and the dashed line is for prediction result, and this convention is
kept the same for all the figures in this paper: (a) by NRBF two-stage, (b) by EM-NRBF, (c) by ENRBF
two-stage, (d) by EM-ENRBF.

Table 2
The results of prediction on FOREX rate of USD-DEM-SET Type A (by NRBF two-stage only)

No. of units 5 10 15 20

Training (NMSE) 0.553 0.647 0.514 0.396
Testing (NMSE) 2.92 4.29 3.85 1.70
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Table 3
The results of prediction on FOREX rate of USD-DEM-SET Type A (No. of units"20)

Algorithms Training flops ! Training (NMSE) ¹esting (NMSE)

NRBF two-stage 4.81]105 0.396 1.703
EM-NRBF (CCL) II 5.94]105 0.238 0.768
ENRBF two-stage 3.91]105 0.173 0.452
EM-ENRBF (CCL) II 3.96]106 0.151 0.445

!Here one flop is counted by MATLAB as an addition or multiplication operation.

Fig. 3. The results of prediction on Forex data of USD-DEM-Set Type A (No. of units"20), correspond-
ing to Table 3: (a) by NRBF two-stage, (b) by EM-NRBF, (c) by ENRBF two-stage, (d) by EM-ENRBF
Algorithm II.
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the two stage algorithm considerably. Here, although the two stage algorithm on
NRBF net got a better result than its result with 5 units, it is still far from that
obtained by EM-NRBF (CCL), especially as shown in Fig. 3. We can also see that the
computing cost of EM-NRBF (CCL) is almost comparable to the conventional
algorithm, which is a significant speeding up from EM-NRBF that is about one or
two magnitudes slower. Moreover, we found that further increasing the number of
basis functions will not obviously improve the results by the two stage algorithm, but
its computing cost will increase fast and become worse than EM-NRBF(CCL).

5.1.2. Adaptive algorithm for tracking temporal change
In Fig. 4, the comparison are made on Forex data of USD-DEM-SET Type B by

EM-NRBF (CCL) and Adaptive EM-NRBF. The adaptive algorithm is used to track
time series in such a way that the sample point at t is used to modify the network once
this point is known already (i.e., once the current time t is passed into t#1). As shown
in Fig. 4, the adaptive algorithm indeed can track the temporal change very well and
outperform its corresponding batch way algorithm significantly.

5.1.3. Results on stock data prediction
Shown in Fig. 5, are the comparison results on the real stock data by EM-NRBF

(CCL) and Adaptive EM-NRBF, with the other experimental setting kept the same as
in Fig. 2. Again, the adaptive algorithm can outperform its corresponding batch way
algorithm significantly.

5.2. Experiments on trading investment

We compare the batch way and adaptive algorithms for both NRBF net
and ENRBF net on the trading investment based on prediction. Forex data of

Fig. 4. The results of prediction on Forex data of USD-DEM-SET Type B (No. of units"20): (a) by
EM-NRBF (CCL), (b) by Adaptive EM-NRBF (the prediction and the real data are almost overlapped).
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Fig. 5. The results of prediction on the stock price data (No. of units"20): (a) by EM-NRBF (CCL),
(b) by Adaptive EM-NRBF.

Table 4
The results of trading investment based on the prediction on USD-DEM-SET Type A

Algorithms Net profit point Profit in US$ (in 112 days)

EM-NRBF (CCL) 1425 9262.5
Adaptive EM-NRBF (CCL) 3966 25779.0
EM-ENRBF (CCL) 2063 13406.5
Adaptive EM-ENRBF (CCL) 2916 18954.0

USD-DEM-SET Type A is used again such that we can compare the result made in
our previously results by the different approaches [4,30]. We use the simple trading
rule proposed in [4] for trading investment. We assume that a trader can hold at most
a long or short contract of foreign dollars or stock at one time. The deposit amount is
fixed to be US dollar 6500 and the transaction cost rate is 0.5% of the deposit.

The results are shown in Table 4, from which we can see that adaptive algorithms
can bring significant profit. Especially, Adaptive EM-NRBF NRBF net improves its
non-adaptive version with the profits being as large as nearly 3 times. Also, Adaptive
EM-NRBF on NRBF net gives the best result which is a considerable improvement
over the one made on ENRBF net. Moreover, the batch way algorithm on ENRBF
net got an obvious better result over that on NRBF net. However, the adaptive
algorithm on ENRBF net performs worse than NRBF net. This is because that the
adaptive process on ENRBF net is more difficult since more parameters have to be
updated appropriately. In addition, the result given in Table 4 also provides a con-
siderable improvement over the result made in [4], where only 99 days are used as
testing (actually, its result on 112 days was much worse than on 99 days). Also, the
result in [4] was compared with two conventional methods (Random walk and
AMAR model) with significant improvements already. The profit obtained here by
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Adaptive EM-NRBF is even much better, and actually has almost doubled the profit
obtained in [4].

Finally, we compare the batch way and adaptive algorithms for both NRBF net
and ENRBF net on the trading investment by using the recent proposed Supervised
Decision Network [30] which is a direct trading system without prediction. Still, the
transaction cost rate is 0.5% of the deposit. The result is given in Table 5. Again,
Adaptive EM-NRBF improves its non-adaptive version with the profits being as large
as nearly 3 times. Also, the result here is better than that given in Table 4, which is
consistent with the conclusion in [35] that the direct trading system without predic-
tion can provide more profit than predicting first and than making trading investment
based on prediction. In addition, the result given in Table 5 also considerably
improves the one given in Ref. [30] on the same data set.

5.3. Experiments on selection of radial function number

Here, we cannot directly use the previous practical data because it is hard to know
its true k*. Thus, we consider some piecewise nonlinear regression problems, with the
data generated with the known true k*.

In Fig. 6, we generate five linear segments with each having 500 samples, disturbed
by Gaussian white noises of two levels of variances, namely p2"0.01 (low noise) and
p2"0.05 (high noise) as shown in Fig. 6a and b. Fig. 6c and d correspond to Fig. 6a
and b, respectively. In all the cases, from the curves of J

1
(k) and J

2
(k) given by Eq. (63)

with c"1, the correct number k*"5 is detected at the minimums of the curves.
In Fig. 7, 15 linear segments are generated along the curves of sin(x) function, as

shown in Fig. 7a and b. Again, each segment has 500 samples, disturbed by Gaussian
white noises of two levels that are the same as in Fig. 6. The curves of J

1
(k) and J

2
(k)

given by Eq. (63) with c"1 are given in Fig. 7c and d, corresponding to Fig. 7a and b,
respectively. Still, the correct number k*"15 is detected at the minimums of the curves.

5.4. Experiments on piecewise curve fitting and detection

Another direct application of an ERBF net with the learning algorithms and the
number selection criterion proposed in this paper is to make piecewise curve fitting
and detection, which have many applications in the literature of image processing and
computer vision. A widely used technique is the so-called Hough transform (H¹) and

Table 5
The results of trading investment by Supervised Decision Network on USD-DEM-SET Type A

Algorithms Net profit point Profit in US$ (in 112 days)

EM-NRBF (CCL) 1605 10432.5
Adaptive EM-NRBF (CCL) 4237 27540.5
EM-ENRBF (CCL) 2660 17290.0
Adaptive EM-ENRBF (CCL) 3207 20845.5
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Fig. 6. The results of piecewise linear regression, with five linear segments: (a) the data disturbed by low
noise, (b) the data disturbed by high noise, (c), (d) the resulting J

1
(k) and J

2
(k) with c"1 curves for the

data in (a), (b), respectively.

its various variants. In the end of 1980s, a new Hough-like technique called random-
ized Hough transform (RH¹) has been proposed with several advantages over the
conventional HT technique [39,38,13]. However, both HT and RHT techniques do
not apply well to the cases of those “fat” lines due to strong noise disturbance. Also,
there is no theoretical guide to detect the number of lines in an image. These two
problems can be solved here.

For a binary image with each point denoted by its coordinate (x,z), we can get a set
D

x,z
"M(x

i
, z

i
)NN

i/1
as a collection of all the points on an image. Using this set to train
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Fig. 7. The results of piecewise linear regression, with 15 linear segments: (a) the data disturbed by low
noise, (b) the data disturbed by high noise, (c), (d) the resulting J

1
(k) and J

2
(k) with c"1 curves for the

data in (a), (b), respectively.

an ENRBF net with the previously proposed learning algorithms, each of the resulted
basis function with its corresponding z"¼T

j
x#c

j
will fit a line and the number of

line is detected as the number k of basis functions, which can be made by J
1
(k) and

J
2
(k) given by Eq. (63) with c"1.
Shown in Fig. 8 is an illustration on ten lines generated artificially. Each line is

disturbed by Gaussian white noises of two levels as shown in Fig. 8a and b. An ENRBF
net with Adaptive EM-ENRBF proposed in Section 3 is used. The curves of J

1
(k) and
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Fig. 8. The results of piecewise linear curve fitting, with ten linear segments: (a) the data disturbed by low
noise, (b) the data disturbed by high noise, (c), (d) the resulting J

1
(k) and J

2
(k) with c"1 curves for the

data in (a),(b), respectively.

J
2
(k) given by Eq. (63) with c"1 are shown in Fig. 8c and d, corresponding to Fig. 8a

and b, respectively. Interestingly, the correct number of lines k*"10 is detected at the
minimum of each curve again. Also, we found that each of the ten basis function fits
each line with its corresponding z"¼*T

j
x#c*

j
well, which are omitted from Fig. 8

for the clarity of the figure.
More generally, for each basis function in an ENRBF net, by replacing ¼T

j
x#c

j
with a general curve z"f

j
(x,¼

j
), we can also similarly make general multiple curve

fitting and detection. Even generally, we can use the alternative ME model proposed
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in Section 2.1 for curve fitting and detection in such cases, with each expert f
j
(x,¼

j
) for

fitting a curve and Eq. (61) for detecting the number of curves.

6. Concluding remarks

NRBF nets and ENRBF nets are shown to be special cases of the Alternative ME
model and thus can be trained by the EM algorithm for determining the parameters of
the input layer and the parameters of the output layer globally. Moreover, CCL and
adaptive techniques can be used to approximate the EM algorithm for considerably
speeding up the learning of the original and alternative ME models as well as NRBF
nets and ENRBF nets. Furthermore, three-layer perceptron, the original and alterna-
tive ME models as well as NRBF nets and ENRBF nets are all shown to be special
cases of the BYY learning system and theory. With this theory, we not only arrived at
a new criterion for selecting the number of hidden units in three-layer perceptron, but
also found that the localized architecture of the ME models and RBF nets is more
preferred than the multilayer architecture. In addition, the BYY learning theory also
provides us model selection criteria for determining the number of experts and basis
functions.

A number of experiments are made on prediction of foreign exchange rate, trading
investment, piecewise nonlinear regressions, piecewise curve fitting and detection.
From the experimental results, we get the following empirical conclusions:

1. For NRBF net, the EM algorithm improves the conventional two-stage algorithm
considerably. For ENRBF net, the EM algorithm can still improve the conven-
tional two-stage algorithm although not so considerably.

2. The EM algorithm with the CCL hardcut technique can significantly speed up
convergence while still keep a very good performance.

3. By using the adaptive algorithm to track time series, we can get significant
improvements on financial predication and trading investment.

4. For the conventional two-stage algorithm, ENRBF net is much better than NRBF
net. However, it is not the case for the EM algorithm as well as its CCL hardcut
and adaptive variants.

5. The obtained criteria can detect the number of radial basis functions correctly.
ENRBF net with the proposed algorithms and the number selection criteria can
perform line fitting and detection well.
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