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Abstract—A critical issue of large-scale multimedia retrieval
is how to develop an effective framework for ranking the search
results. This problem is particularly challenging for content-based
video retrieval due to some issues such as short text queries,
insufficient sample learning, fusion of multimodal contents, and
large-scale learning with huge media data. In this paper, we
propose a novel multimodal and multilevel (MMML) ranking
framework to attack the challenging ranking problem of con-
tent-based video retrieval. We represent the video retrieval task
by graphs and suggest a graph based semi-supervised ranking
(SSR) scheme, which can learn with small samples effectively and
integrate multimodal resources for ranking smoothly. To make
the semi-supervised ranking solution practical for large-scale
retrieval tasks, we propose a multilevel ranking framework that
unifies several different ranking approaches in a cascade fashion.
We have conducted empirical evaluations of our proposed so-
lution for automatic search tasks on the benchmark testbed of
TRECVID2005. The promising empirical results show that our
ranking solutions are effective and very competitive with the
state-of-the-art solutions in the TRECVID evaluations.

Index Terms—Content-based video retrieval, graph representa-
tion, multilevel ranking, multimodal fusion, multimedia retrieval,
semi-supervised ranking, support vector machines.

I. INTRODUCTION

WITH the rapid growth of digital devices, internet infra-
structures, and web technologies, video data nowadays

can be easily captured, stored, uploaded, and shared over the
Web. Although general search engines have been well devel-
oped, searching video content over the Web is still a challenging
task. Typically, most Web search engines index only the meta-
data of videos and search through a text-based approach. How-
ever, without the understanding of media content, general search
engines have limited capacity of retrieving relevant video infor-
mation effectively. Thus, there is much scope to improve the
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retrieval performance of traditional meta-data based search en-
gines through exploiting media content. Content-based video
retrieval (CBVR) is becoming a promising direction for devel-
oping better video search engines in future [1], [2].

In fact, content-based image/video retrieval is not new for
researchers in the multimedia community. In the past decade,
content-based image retrieval (CBIR) has been actively studied
in signal processing, pattern recognition, and multimedia com-
munities [3]. In recent years, there has been a rapid growth
of research attention to content-based video retrieval. Since
2001, the TREC Video Retrieval (TRECVID) evaluation
testbed has been set up for conducting benchmark evaluations
of video search tasks [4]. Typically, a content-based video
search engine can be built upon a traditional text-based search
engine using the extracted video texts, such as speech recogni-
tion transcripts, closed captions, and video Optical Character
Recognition (OCR) text.

Although such video search engines inherit the mature tech-
niques of traditional search engines, some natures of video data
make the video search tasks much more difficult than traditional
search tasks of text documents. For example, text documents
usually contain little noise, while text transcripts of video data
are often pretty noisy, as they are usually obtained from auto-
matic speech recognition and text OCR processing. Therefore,
it is often inadequate to apply text-based search engine solutions
straightforwardly for video retrieval tasks.

In contrast to text data with traditional text search tasks, video
data contain more other resources, such as low-level visual con-
tent, audio, and high-level visual concepts. A lot of recent re-
search efforts in multimedia retrieval areas have shown that the
fusion of information from multiple modalities, including texts
and low-level visual content as well as high-level semantic con-
cepts, helps to improve the retrieval performance of traditional
text-based approaches in video search tasks [5]–[7]. These ap-
proaches often improve the text-only method by leveraging mul-
tiple visual query examples for exploiting both textual and vi-
sual information effectively.

Despite recent promising improvements, content-based
retrieval on large-scale video data is still a very challenging
task. There are still a lot of open challenging problems. Among
them, one of the most challenging issues is how to develop
an efficient ranking scheme of combining resources from
multiple modalities to rank searching results effectively toward
large-scale retrieval tasks. To this end, we propose a multi-
modal and multilevel (MMML) ranking framework intended to
maximize the effectiveness of retrieval performance and reduce
the computational cost of ranking for large-scale video retrieval
tasks. We have implemented our solution and evaluated it on
the TRECVID benchmark dataset. Our approach, which does
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not engage any high-level concept detectors, achieved very
promising results, comparing with the best results reported in
the TRECVID evaluations. This shows our framework could
be a promising solution for building future content-based video
search engines on large-scale video data.

The rest of this paper is organized as follows. Section II
discusses some state-of-the-art work related to content-based
video retrieval in recent years. Section III reviews the problems
and challenging issues in content-based video retrieval and
gives the motivation of our proposed solution. Section IV
presents our multimodal and multilevel ranking framework
and the methodologies employed in our solution. Section V
discusses the testbed for experimental evaluations and the tech-
niques we employ for feature representation. Section VI shows
empirical evaluations of our solutions and implementations
on video search tasks in the TRECVID testbed. Section VII
discusses some future directions to improve the performance of
our current solution. Section VIII sets out our conclusions.

II. RELATED WORK

In this section, we review some existing work related to
video search techniques in content-based video retrieval. From
the the early 1990s, some institutes have already launched
projects linked to digital video libraries for accessing video
content intelligently. Some earlier pioneering works include
CMU Informedia Digital Video Library projects [1], [8], Co-
lumbia VideoQ project of object-oriented search engine [9],
and the iVIEW project of Multilingual Digital Video Library at
CUHK [2], etc. At that time, research efforts focused more on
video processing, such as automatic speech recognition, shot
boundary detection, video story segmentation, video object de-
tection, and video summarization, etc. Recently, video retrieval
becomes more and more popular along with the surge of Web
search engines and the rapid growth of huge volume video
data. A variety of video retrieval techniques have been studied
in multimedia community recently. We briefly describe some
popular ranking approaches for video retrieval, especially for
those work related to our proposed learning techniques.

Some early work of applying machine learning techniques for
video retrieval may be the (negative) pseudo-relevance feedback
methods, which studied SVM techniques to learn ranking func-
tions on visual information to improve traditional text-based re-
trieval approaches [10], [11]. IBM researchers [12] also studied
some variants of SVM techniques together with NN for ranking
video shots in TRECVID video search tasks [12]. Both of them
reported better results than traditional nearest neighbor search
methods thanks to the state-of-the-art performance of discrimi-
native learning techniques. Some other variants of large margin
methods have also been studied such as the ranking logistic re-
gression [13]. Most of these work did not explicitly explore the
unlabeled data during the learning tasks. Therefore, we catego-
rize these approaches as “supervised ranking,” which usually
adopt supervised learning techniques.

Recently, researchers have been aware of the importance of
unlabeled data for video retrieval tasks. Some recent methods
suggested solutions of combining supervised learning and un-
supervised learning methods [14], [15]. One limitation of these
unsupervised ranking approaches is the high computation cost

of the clustering steps, which is critical to large-scale video
retrieval tasks. Different from previous work, we suggest the
graph based semi-supervised ranking method, and solve its scal-
ability problem through a multilevel ranking scheme. In con-
trast to other previous approaches, our multimodal and multi-
level solution is able to learn the ranking functions on both la-
beled and unlabeled data more naturally, and integrate multi-
modal contents for the ranking tasks more effectively. Finally,
we are aware that there was some graph-based solutions for mul-
timedia annotation, such as the mexed media graph approach
with a linear graph propagation technique [16]. But we argue
that a linear solution may be too limited in learning with chal-
lenging video retrieval tasks.

III. PROBLEMS AND MOTIVATIONS

In this section, we formally discuss the problem of content-
based video retrieval and address several open challenging is-
sues. We then indicate the motivations and philosophy of our
approach for solving these problems.

In general, a content-based video retrieval problem can be de-
fined as an information retrieval task of searching relevant video
shots from a collection of videos with respect to a query topic,
which is formed by some text description and/or a set of visual
query samples. For instance, Fig. 1 shows a query example in
the TRECVID 2005 benchmark evaluation, which contains a
short text sentence and a set of nine image samples. Typically,
the collection of video data considered in a video retrieval task
has only raw video clips without explicit text information. The
implicit text information of the video clips usually can be cap-
tured through a preprocessing step. This often involves auto-
matic speech recognition and video OCR processing. However,
the quality of the extracted text data is often rather poor due
to the long-standing difficulty of pattern recognition on natural
images and videos. Even the texts extracted from good quality
videos, such as well-structured new videos, can be pretty poor in
practice [4]. The nature of content-based video retrieval makes
the video retrieval task much more challenging than a traditional
information retrieval task. Some of these challenges include the
following aspects.

1) Text description of a query topic may be quite short. This
poses a challenge for searching video shots by text over the
noisy text transcripts extracted from video corpora.

2) Only a small number of positive visual examples will be
provided. Collecting many labeled visual examples from
users would be expensive in practice.

3) There are a variety of resources from multiple modalities,
including text transcripts from video corpora, low-level vi-
sual content, and audio content, etc. The combination of
various resources is still an open issue.

4) The volume of video collections can be very huge. It is
critical to developing a ranking scheme with both excellent
retrieval performance and scalability performance toward
large-scale applications.

To attack the above challenges, in this paper, we propose a
multimodal and multilevel ranking framework for tackling these
issues in a unified solution, which can significantly boost the
effectiveness of retrieval tasks whilst importantly reducing the
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Fig. 1. Example of a query topic in the TRECVID search task.

computational cost. The main ideas of our solution for tackling
these challenges can be summarized as follows.

1) To handle the short query, we alleviate this problem in the
text based retrieval stage by engaging pseudo-relevance
feedback (PRF) techniques.

2) To solve the small sample learning problem, we suggest the
semi-supervised ranking (SSR) method by applying semi-
supervised learning techniques, in which we engage the
“pseudo” negative examples for the learning task.

3) To combine resources from multiple modalities, we repre-
sent a video retrieval task by graphs and learn multimodal
functions by fusing multimodal resources smoothly over
the graphs.

4) To make the SSR scheme practical for large-scale video
retrieval, we propose a multilevel ranking framework of
integrating several learning methods in a cascade fashion,
which significantly reduces the computational cost mean-
while keeps excellent retrieval performance.

IV. MULTIMODAL AND MULTILEVEL RANKING FRAMEWORK

A. Overview of Our Framework

In this section, we present our novel multimodal and multi-
level ranking framework and the methodology of our solution.
First of all, we show how to represent video structures by
graphs, to which a variety of graph based learning techniques
can be applied to solve the video ranking problem. Based
on the graph representation, we propose a high-level ranking
architecture, which implements our multimodal and multilevel
ranking framework. We then describe how to learn an effective
function for ranking search results by investigating a graph
based semi-supervised learning technique. In order to fuse
multimodal resources properly, we extend the semi-supervised
ranking scheme for learning multimodal ranking function,
which can combine other resources over graphs smoothly
under a probabilistic view of graph based learning. Finally, we
suggest a multilevel ranking scheme of comprising multiple
ranking methods of different learning capability and computa-
tional cost, which intends to maximize the effectiveness of the
learning scheme and improve the computational efficiency of
the ranking procedure.

B. Graph Based Representation for Video Retrieval

Video data contain rich resources from multiple modalities,
including text transcripts from speech recognition and low-level
visual content. In general, a video clip consists of an audio
channel and a visual channel. From the audio channel, text infor-
mation can be extracted through speech recognition processing.
High-level semantic events may also be detected from the audio

channel. A video sequence in the visual channel can be regarded
a series of image frames presented in a time sequence order.
Typically, such a video sequence can be represented by a hi-
erarchical structure: video, video stories, and video shots. A
video shot is often represented by one (or more) representative
frame(s), termed key frames, which are selected from the most
important frames in a video shot. A video story is a video scene
describing a complete semantic story, which is formed by a se-
ries of continuous video shots. In a video retrieval task, a video
shot corresponding to some particular representative frame(s) is
usually regarded as the basic unit to be ranked and retrieved.

Given the above video structure, we can represent a video re-
trieval task by graphs, which can be interpreted in probability
from a random walk viewpoint [17]. Fig. 2 gives an example
to illustrate the idea. Fig. 2(a) shows a set of video stories con-
taining both textual and visual contents for retrieval; Fig. 2(b)
describes the corresponding graph with respect to a given query
topic “Q”. In the figure, the “T” node represents the text content
of the video story, while the “S” node represents the visual con-
tent of the video shot. In this figure, we assume that the shots
within a same video story share the same textual contents. This
assumption can be properly extended to other situations. Note
that links between “S” nodes are not plotted in the figure and
only one visual query node “ ” is given for simplicity.

Based on the graph representation, given a query topic, the re-
trieval task can be regarded as the problem of finding the target
shots, i.e., “S” nodes in the figure, with maximal probabilities
of being hit by the starting query node in a random walk view-
point. Specifically, a starting query node “Q,” considering two
modalities, has two routes for hitting the targets of “S” nodes.
One is to go through the path of the “ ” node; the other is to
go through the path of the “ ” node. We will show that this
graph based representation is beneficial to multimodal fusion of
video ranking in a subsequent section.

C. Semi-Supervised Ranking Over Graphs

In this part, we formally present a semi-supervised ranking
(SSR) solution based on the above graph representation. Let us
first describe the basic idea of our approach. First of all, for
a given query topic, we can build a graph with respect to
the query topic. As a result, the video ranking task can be for-
mulated into a graph based learning problem of looking for a
smooth ranking function over the graph. The value of the func-
tion on each node can be regarded as the relevance score of the
node with respect to the query. Further, a smooth ranking func-
tion enjoys a probabilistic interpretation from a random walk
perspective [17]. Let us consider a particle starting from a query
node in a random walk behavior. The value of function on a
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Fig. 2. Example illustrating graph representation of video retrieval. (a) List of three video stories; (b) Graph representation of a video retrieval task.

searching node can be regarded as the probability of the particle
hits this node from the query. Now the video ranking problem
becomes how to learn the smooth ranking function over graphs.
Since we can treat the query nodes as the labeled nodes and
the searching nodes as the unlabeled nodes, the graph based
ranking problem can be turned into an equivalent semi-super-
vised learning problem over graphs. In this paper, we investigate
a graph based semi-supervised learning method in [18] to solve
our video ranking problem, which has been shown effective
for image retrieval applications [19]. Note that other emerging
semi-supervised learning techniques [20], [21] can also be in-
vestigated to solve the ranking problem in our proposed frame-
work.

Let us first consider a graph with single modality, i.e., the
visual modality. For a video retrieval task, assume that there are
a set of query examples , and a set of video
shots to be ranked, where represents
the visual features of a video shot. The relevance value,

, is equal to 1 for a positive query example, and 0 for a
negative one. Let us construct a graph , where the
vertex set includes the set of query examples and
the set of unlabeled video shots to be ranked, and the edge set

is the set of pairwise links between any two examples in the
vertex set. We then construct a symmetric weight matrix to
characterize the data manifold structure. Specifically, the weight

between any two examples is computed below:

where is the k-th dimensional value of the visual example
and is the length scale parameter for each dimension. In

practice, we simply set all of them to a same constant value.

Now the ranking task is equivalent to assigning a relevance
value to each example in the set of unlabeled video shots .
Specifically, the goal is to learn some real-valued function

on the graph according to some criteria. To this
purpose, first of all, we constrain to take values

for the examples in the query set. Then, we look
for a function to ensure that is smooth with respect to the
constructed graph. Specifically, we consider a quadratic energy
function and find the smooth ranking function by minimizing
the quadratic energy as follows:

(1)

Let denote the objective energy function in the above
minimization. In order to assign a probability distribution on the
function , we employ the Gaussian random field approach by
formulating the Gaussian field as , where

is a well-known “inverse temperature” parameter [17], and
is a normalization factor. According to the theory of random
field and harmonic functions [17], it can be shown that the min-
imum energy function enjoys the harmonic property, i.e., the
function satisfies on unlabeled data set and is
equal to on the labeled set , where is the Laplace op-
erator, i.e., a second order differential operator. The harmonic
property means that the value of at each unlabeled example
is the average of at the neighboring examples, i.e.,

. According to the property of
harmonic functions, one can show that the optimal function
should be unique for the above optimization.

In order to solve the harmonic function using matrix opera-
tions, we calculate the diagonal matrix , where
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Fig. 3. Multimodal and multilevel ranking architecture.

, and is the weight matrix. Then let
and split the matrices , , and into four blocks

similar to the following structure:

(2)

Let us denote , where consists of the values of func-
tion on the set of unlabeled video shots , which is regarded as
the final desirable ranking function. Consequently, the harmonic
solution to this final ranking function can be represented by
the matrix operations as follows:

(3)

D. Multimodal Fusion Through Graphs

The previous discussion of ranking data over graphs con-
siders only the visual modality situation. We now investigate
how to fuse information from other modalities to learn the
ranking functions effectively. Since we have formulated the
ranking task as a graph based learning problem above, the
multimodal fusion problem can then be naturally handled
through the graph based learning approach, which can be prop-
erly interpreted in probability from a random walk viewpoint.
Specifically, in this section, we describe the method of fusing
information from two modalities, i.e., textual and visual, to
learn a multimodal ranking function based on the graph based
learning principle.

Let us consider the example given in Fig. 2 with two modal-
ities: textual and visual representations. If we first ignore the
text modality, we can directly apply the previous graph based
ranking method to learn a harmonic ranking function on the vi-
sual modality. If text information is included, each “S” node
(“video shot”) of the graph has two possible channels through
which it can be hit from the starting query nodes. Let us as-
sume the hitting probability from the text channel is given by

, the probability of the other channel will be

. Here, is also regarded as a fusion coefficient of multi-
modal combination. Thus, we can solve the multimodal fusion
problem by seeking the harmonic ranking function on this
enhanced graph , where
is a union of both visual and textual nodes, in which de-
notes the textual nodes of the query and denotes the textual
nodes of the unlabeled video shots. The extended edge set
only involves the additional links from every textual node to its
corresponding shots in the same video story. According to the
random walk theory, we can prove that the harmonic ranking
function of this multimodal fusion problem given the enhanced
graph should be:

��� (4)

where ��� is the ranking function based on the textual modality,
which is a known function of probabilistic ranking results. Note
that the graph-based fusion is not restricted to two modalities,
which can be easily extended for fusing information from other
modalities. In the subsequent part, we will discuss its extension
of including additional ranking information from a large margin
supervised learning stage.

E. Efficient Multilevel Ranking Scheme

We have outlined the semi-supervised ranking framework
of learning harmonic ranking functions with multimodal
resources through graphs. However, for a large-scale video
retrieval problem, directly applying the previous solution on the
whole data will be computationally prohibited. To develop an
efficient solution, we propose a multilevel ranking framework
to learn the ranking functions through multiple learning stages
with different computational cost. Fig. 3 shows the architecture
of our proposed multimodal and multilevel ranking framework.
The basic idea of our solution is to arrive a balance between
retrieval performance and computational efficiency by adopting
a learning strategy of lower computational cost in a low-level
ranking stage and employ more effective learning strategies in
a high-level ranking stage. Let us elaborate our framework in
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detail and discuss the methodology used in each ranking stage
as follows.

In general, our multilevel ranking framework consists of four
ranking stages: 1) Text-based Ranking, 2) Nearest Neighbour
Reranking, 3) Large Margin Supervised Reranking, and 4) Mul-
timodal Semi-Supervised Reranking. We discuss each of them
as follows.

1) Text-based Ranking. Let us consider a CBVR search task
given with both text and visual query samples. For video
retrieval tasks, particularly for TRECVID, text based
retrieval is usually more effective than a purely visual
based approach. Moreover, text based retrieval enjoys
the advantage of computational efficiency since efficient
indexing techniques have been extensively studied in
traditional communities of information retrieval and data-
base. Therefore, we consider text based ranking methods
in the first ranking stage. The retrieval performance of
text based approaches may suffer significantly for some
factors. One is the ill-defined text transcripts of video
data, which are usually obtained from Automatic Speech
Recognition (ASR) or video OCR techniques. Another is
the short query problem, in which a query topic is usually
formed by a few keywords or a short sentence. To alleviate
these challenges to some extent, we employ pseudo-rel-
evance feedback (PRF) (or query expansion) techniques
for overcoming the short query [22]. The main idea is to
assume the top retrieved documents are relevant and
then expand the original query using words selected from
these top documents. By PRF techniques, we can improve
the overall recall rate of text-based retrieval methods. For
example, some relevant shots without words from the text
content of original query can be retrieved through the PRF
approach.

2) Nearest Neighbour Reranking. In the second ranking
stage, we consider the nearest neighbour (NN) reranking
method of combining visual and textual information. This
may be one of the most efficient ways. For the textual
modality, we employ the normalized ranking scores from
the text based ranking stage for computing the ranking
scores. For the visual modality, in which data are often
represented in vector space, we calculate distances be-
tween data examples and query targets for dissimilarity
measure using some distance metric. Typically we simply
employ the Euclidean distance as the distance measure on
the normalized data and use for the nearest neighbor
approach. Consequently, we formulate the ranking func-
tion of combining both textual and visual ranking scores
as , where is the Eu-
clidean distance on visual features and the parameter
is the factor to balance the tradeoff of textual and visual
features (which is simply fixed to 0.5 in the experiments).
The performance may be improved by engaging other
advanced distance metrics [23], [24].

3) Large Margin Supervised Reranking. In the third
ranking stage, we consider a supervised reranking method
based on large margin learning techniques [25], which
enjoy excellent discriminative performances. In theory,

large margin learning balances between the structure risk
and the empirical risk (fitting error) via a regularized
learning framework:

(5)

where is some loss function measuring the empirical
fitting error, is a norm in a Reproducing Kernel
Hilbert Space (RKHS) [25] defined over the positive
definite kernel function , and is the regularization
parameter controlling the tradeoff. The supervised large
margin learning methods can be trained efficiently for
medium-scale learning tasks. In our solution, we adopt
Support Vector Machine (SVM), the most representative
large margin method, which has achieved many empirical
successes [25]. For a binary classification task, soft margin
SVM is often formulated via kernel tricks as follows:

(6)

where is a regularization parameter, is a kernel
mapping function, such that ,
and are labels of either 1 (positive) or 1 (negative).
The primal SVM problem usually can be formulated into
a dual form of quadratic program using Lagrange multi-
pliers [25]. By solving the dual, the decision function can
be obtained:

(7)

For a ranking task, one can simply rank the testing ex-
amples based on the SVM distance output values. To fur-
ther combining the textual information, we can express the
ranking function in the large margin ranking stage as
follows:

(8)

where is a normalized ranking function. To nor-
malize the SVM output to the range of [0,1] effectively, we
adopt the following approximation method of estimating
the probabilistic output of SVMs:

���

���

���

(9)
where ��� is the SVM distance output, and

are constant parameters. A more comprehensive
study for probabilistic output of SVMs can be found in
[26].
Finally we would like to remind a practical issue by ap-
plying SVMs (and similar machine learning techniques)
for solving the video ranking tasks. Typically, we will en-
counter a barrier, i.e., there is often no negative example
provided in a video retrieval task, which is a difficulty by
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using two-class SVMs. One way to solve this problem is
to engage the pseudo negative examples [10], [11]. Specif-
ically, to overcome the difficulty, we can form a set of
pseudo negative examples by sampling the examples from
the list of the least relevant results obtained from the pre-
vious ranking stage.

4) Multimodal Semi-Supervised Reranking. In the last
ranking stage, we propose the semi-supervised reranking
method to learn the ranking functions on both labeled
and unlabeled data. For a video retrieval task, there are
usually only a limited number of labeled examples. The
semi-supervised ranking method is able to exploit the
unlabeled data to effectively improve the ranking per-
formance. However, it often incurs much computational
cost using semi-supervised learning methods. To avoid
much computational cost, we only engage a small port of
the the most important unlabeled data by the multilevel
ranking principle. As a result, the semi-supervised ranking
function in (4) can be computed efficiently. Hence, we
can significantly reduce the computational cost of the
semi-supervised ranking step whilst without sacrificing
the overall retrieval performance much.

While the harmonic ranking function by the semi-supervised
learning has been shown with excellent performance for artifi-
cial and some UCI datasets [18], in practice, it may suffer from
noisy data in real-world applications. To avoid overfitting to the
unlabeled data, we suggest to integrate with the prior knowl-
edge learned from the large margin ranking stage. Specifically,
we fuse the SVM output into the semi-supervised ranking func-
tion based on the graph based fusion principle:

��� ��� (10)

where are fusion parameters that satisfy the con-
straint . Note that the SVM decision function
��� is a probabilistic function of SVM output.
Remark: It is clear that the multimodal ranking function in

(10) reduces to the semi-supervised ranking approach on single
modality in (3) when we set . On the other hand, if
we set , it becomes a traditional supervised ranking
solution without engaging any information from unlabeled data.

In summary, we propose a novel multilevel ranking frame-
work to learn multimodal ranking functions efficiently through
four ranking stages using different learning strategies. In the first
stage, the text-based ranking method yields a set of the top
ranked video stories, which are associated with a set of top
video shots. In the second stage, the NN ranking method reranks
the shots and outputs the top most relevant video shots. In
the third stage, the SVM ranking method reranks the shots
and outputs the top most relevant video shots. In the last
stage, the SSR ranking method reranks the top shots of
SVM output results. Finally, the multilevel ranking framework
returns the top shots for performance evaluation. It is clear
that .

F. Justification and Interpretation

This multilevel ranking framework is significant to making
the proposed SSR solution practical for large-scale applications.
In fact, the proposed multimodal ranking solution together with
the multilevel ranking scheme, not only significantly reduces
the computational cost, but also learns better ranking functions
than either the large margin supervised ranking method or the
semi-supervised ranking method individually. We justify the ef-
fectiveness of our ranking solution properly by a “global fil-
tering/local fitting” learning viewpoint.

Global Filtering: From a geometric viewpoint, a large
margin learning method, e.g., SVM, intuitively is to learn the
“separating” hyperplane maximizing the margin between the
boundaries of positive and negative examples. The margin
maximization principle is motivated by the “structure risk
minimization” (SRM) theory, which minimizes a bound on the
risk over the structure on some set of functions [25]. The SRM
theory enables the large margin learning methods to choose
the simplest model for fitting the training data. For a retrieval
task, the large margin learning method can “globally” filter
most irrelevant examples from the relevant set effectively, con-
sequently, we can obtain a smaller set of top ranked examples
with a high recall rate.

Local Fitting: However, large margin learning methods may
not improve the average precision performance effectively
when the number of labeled examples is limited. This problem
can be overcome through combining semi-supervised learning
methods. In our solution, the principle of our semi-supervised
ranking method is to learn harmonic ranking functions for
minimizing the fitting error of the approximated function on
the training data (including labeled and unlabeled data) through
fitting the “local” manifold structure smoothly. Therefore, it can
improve the average precision of the ranking results by taking
advantage of the local manifold information of both labeled
and unlabeled data. Since the semi-supervised ranking may
overfit the unlabeled data, we propose to engage a proper reg-
ularization term into the multimodal semi-supervised ranking
function through fusing the SVM result in (10). The similar
idea of regularization has also been studied for semi-supervised
learning in the recent machine learning community [21].

In sum, the proposed MMML ranking framework, without
incurring much computational cost, can improve the overall re-
trieval performance by combining the “global filtering” stage
with large margin supervised ranking methods and the “local fit-
ting” stage with graph based semi-supervised ranking methods.

V. EXPERIMENTAL TESTBED AND FEATURE REPRESENTATION

A. Overview of Testbed

The dataset in our experimental testbed is based on the news
video dataset of TRECVID 2005. The total amount of news
video data is about 169 hours of videos: 43 in Arabic, 52 in
Chinese, and 74 in English. These video data were collected by
the Linguistic Data Consortium during November of 2004, and
were digitized and transcoded to MPEG-1 format. The search
test collection contains 140 video files and 45 765 reference
shots. A suite of commercial software was used for automatic
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Fig. 4. Example of visual feature representation: (a) 3�3 Grid color moments; (b) 5�8 Gabor subimages.

speech recognition (ASR) and machine translation (MT) for tex-
tual extraction. We consider the automatic search task developed
by TRECVID, which consists of 24 query topics [27].

The success of a video retrieval task critically relies on the
effectiveness of feature representation of video data. In gen-
eral, video data contain various resources from multiple modal-
ities, including text, speech, audio, and visual images. In our
approach, we mainly focus on two types of information. One is
the textual resources extracted from automatic speech recogni-
tion. The other is visual information extracted from key frames
of video sequences. We discuss how to extract effective features
representing these two types of information.

B. Textual Processing

Textual information was extracted using the ASR and MT
procedures. The ASR transcripts are all time-stamped at the
word level, while the MT transcripts are time-stamped at the
sentence level. Since the retrieval unit of a video retrieval task is
the video shot, the problem arises of how to relate the text infor-
mation to the video shots. A possible intuitive solution may be to
consider relating text blocks to each video shot by partitioning
text blocks at the shot level. This may be somewhat difficult for
the transcripts time-stamped at the sentence level. Moreover, we
are aware the fact that shots in the same video story are usually
more likely to be relevant. Thus, a more reasonable method is to
relate the text information to video shots at the story level, i.e.,
video shots in a single story share the same text information.
To this purpose, we adopt a common automatic video story seg-
mentation method to detect the boundaries of video stories.

Once the text stories are obtained, all text stories and query
texts are then parsed by a text parser with a standard list of stop
words. The Okapi BM-25 formula is used as the retrieval model
together with pseudo-relevance feedback (PRF) for text search
[22]. In our implementation, the Lemur toolkit was adopt for
textual processing and indexing1.

C. Visual Feature Representation

We extract three kinds of visual features to represent the key
frames of video shots, including color, shape, and texture, which
have been extensively studied in CBIR [28].

For color, we use color moment. In our approach, we im-
plement a modified color moment, called grid color moment

1http://www.lemurproject.org/

(GCM). Specifically, for each given key frame, we split it into
3 3 equal grids and extract color moments for each of the nine
grids. Fig. 4(a) shows a grid based image example. Three types
of color moments are computed: mean, variance and skewness
in each color channel (H, S, and V), respectively. Thus, an 81-di-
mensional grid color moment is adopted as the color features for
each image.

For shape, we employ an edge direction histogram [29]. To
acquire the edge direction histogram, an input color image is
first converted into a gray image, and a Canny edge detector is
then applied to obtain its edge image. Based on the edge images,
the edge direction histogram can then be computed. Each edge
direction histogram is quantized into 36 bins of 10 degrees each.
In addition, we use a bin to count the number of pixels which
do not provide edge information. Hence, a 37-dimensional edge
direction histogram is employed to represent the shape features.

For texture, we employ Gabor feature representation [30]. In
our approach, each image is first scaled to the size of 64 64.
Then, the Gabor wavelet transformation is applied to the scaled
image at five scale levels and eight orientations, which results
in a total of 40 subimages for each input image. Fig. 4(b) shows
an example of Gabor subimages via Gabor transformation. For
each subimage, we calculate three types of statistical moments
to represent the texture features, including mean, variance, and
skewness. Therefore, we use a 120-dimensional feature vector
to represent the texture features of each image.

In total, a 238-dimensional feature vector is used to represent
the key frame of a video shot.

VI. EXPERIMENTAL RESULTS

A. Overview of Experimental Evaluations

To examine the effectiveness of our solutions, we performed
a set of extensive evaluations on video retrieval tasks. In partic-
ular, our empirical studies were conducted to address the fol-
lowing questions.

1) How effective is our text retrieval solution? Which retrieval
models perform more effective for video retrieval?

2) Can pseudo-relevance feedback (PRF) improve the re-
trieval performance in solving the short-query issue?

3) Can visual information improve the text based retrieval
method? How effective is a regular visual based reranking
method based on our extracted features?



HOI AND LYU: MULTIMODAL AND MULTILEVEL RANKING SCHEME 615

Fig. 5. Evaluation of text-based retrieval methods on TRECVID2005.

4) How effective is the MMML ranking solution? Can it com-
pete with existing methods?

5) How efficient is the MMML ranking solution? Can it
achieve a good tradeoff between retrieval performance and
computational efficiency?

For performance evaluation, we followed the benchmark
evaluation of an automatic search task in TRECVID. The
performance metric in our experiments is non-interpolated
average precision (AP) for a single query, which corresponds
to the area under an ideal (non-interpolated) recall/precision
curve. As the AP is only for a single query, we employ the mean
average precision (MAP), the mean of average precisions for
multiple queries, to evaluate the overall average performance
across the set of different queries in our testbed. More details
can be found in [4].

B. Performance Evaluation of Text-Based Retrieval

In this part, experiments were conducted to evaluate the per-
formance of text-only retrieval methods. This set of experiments
aimed to answer two of the questions set out above: one is to
examine which text retrieval model is more effective on the
testbed; the other is to evaluate whether the PRF approaches
exceed the retrieval performance of typical retrieval methods
without PRF. To find an effective text retrieval method, five rep-
resentative text retrieval approaches were compared in our per-
formance evaluation.

1) TF-IDF: the well-know term frequency and inverse docu-
ment frequency retrieval method [31].

2) Okapi: the Okapi BM25 retrieval algorithm [32].
3) KL-JM: the Kullback–Leibler (KL) divergence measure

using the Jelinek-Mercer smoothing approach [33].
4) KL-DIR: the KL-divergence measure with the Bayesian

smoothing using Dirichlet priors [22].
5) KL-ABS: the KL-divergence measure with the Absolute

discounting smoothing [34].
In the experiments, for each of the above method, we compare

two variants: one is without PRF and the other is with PRF. Let
us now examine their performance on automatic video search
tasks in TRECVID 2005. To ensure an objective evaluation of
the compared methods, we use a set of default parameters in the
smoothing models, which are empirically tuned from traditional
document retrieval tasks. Fig. 5 shows the MAP results of our
empirical evaluation. Let us first compare the results without
PRF. Among the five retrieval methods, the Okapi BM25 and

TABLE I
COMPARISON OF FOUR DIFFERENT RANKING

APPROACHES IN OUR IMPLEMENTATION

KL divergence based language modeling methods are signifi-
cantly better than the regular TF-IDF method. This is because
the TF-IDF method often suffers from some bias problem of
long documents. But the Okapi BM25 method can adjust the
weights of terms to balance the bias problem. Among the other
retrieval methods, the Okapi BM25 algorithm achieved the best
results in our evaluation, though some KL divergence based re-
trieval methods were reported with better results than the Okapi
BM25 method in some traditional text document retrieval tasks
[22].

Next, let us compare the performance of the retrieval methods
with and without PRF. From the average results shown in Fig. 5,
we can observe that the retrieval approaches with PRF always
outperform the methods without PRF in this evaluation. The
most evident case is the Okapi BM25 retrieval method, in which
the MAP result was boosted from 8.02% without PRF to 9.02%
after using PRF, which is the best retrieval result using text-only
retrieval approaches.

C. Performance Evaluation of the MMML Ranking Scheme

The previous experiments have shown the effectiveness of
our text retrieval solution for video retrieval tasks. In this part,
we will examine the effectiveness of visual reranking scheme
and the proposed multimodal and multilevel (MMML) learning
framework for ranking in video search tasks. In our implemen-
tation, we first employ the previous text based retrieval method
to retrieve a set of the top ranked video shots.
Based on the video shots, the basic NN ranking method
is engaged to rerank the video shots through a linear combi-
nation of text ranking scores and visual similarity scores. The
text ranking scores are normalized ranking values from the text
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Fig. 6. Evaluation of the proposed multimodal and multilevel ranking scheme on the 24 queries in TRECVID 2005.

based retrieval stage, while the visual similarity scores are nor-
malized scores by measuring Euclidean distances on visual fea-
tures. The basic NN reranking stage outputs a set of the top

ranked shots among the video shots. Next, the
SVM learning stage is conducted for reranking the
video shots, from which the top ranked shots are
returned. Finally, the semi-supervised ranking stage reranks the
top video shots of the SVM results. Fi-
nally, 1000 video shots of combined SVM and semi-supervised
reranking results are returned for performance evaluation.2 For
comparison, we also implement another multimodal ranking
scheme based on SVM learning, which has been regarded as
a promising solution in some previous work.

Let us first compare the overall performance of our MMML
ranking scheme to other two multimodal approaches, NN and
SVM. Table I shows the comparison results. From the results,
we can see that all three multimodal approaches are able to
achieve significant improvements over the state-of-the-art
text baseline retrieval approach. This shows that multimodal
solution is successful and promising for video retrieval tasks.
Comparing the three multimodal ranking approaches, the NN
ranking approach was the worst solution, achieving a MAP
improvement of 15.96% over the text baseline approach.
The SVM ranking solution obtained a MAP improvement of
29.82% over the text baseline, which is better than the NN one.
Finally, our MMML ranking achieved the best improvement of
40.47% over the text baseline.

In the TRECVID benchmark evaluation, top 1000 shots are
usually returned to be evaluated in a search task. However,
for real-world applications, users may be more interested in
obtaining a small number of relevant shots, rather than being
offered the top 1000 shots. To examine the performance with a
small number of top shots, we evaluate the average precision
with TOP ten, 15, 20, and 30 shots. From the results in Table I,
we can see that for most of compared methods, the precision
of top ranked results decreases when the number of ranked
examples increases. The only exceptional case is for the text
baseline approach where the precision of TOP 10 results is
lower than the TOP 15 results. This shows that a text-based
approach without accessing the visual content usually cannot

2This number of 1000 is the requirement for benchmark evaluation in
TRECVID 2005.

return very precise video shots in the top ranked results. Further,
we compare several visual ranking approaches, it is clear that
our MMML ranking approach consistently achieved the best
results among all the compared schemes. To examine details of
the performance on specific queries, we also list the comparison
results of all 24 query topics in Fig. 6. Similar observations
can be drawn from the results, i.e. our MMML ranking scheme
outperforms the other two approaches in most cases though
there are a few exceptional cases. For example, for the 0154
query topic, finding shots of “Mahmoud Abbas,” the MMML
ranking method is worse than the nearest neighbor and SVM
approaches. To figure out the reason, we examine the testbed
and find that there are a number of ambiguous examples in the
query set, which are not relevant to the query topic. Hence,
the MMML ranking approach may be overfitting to the noisy
labeled examples. Nonetheless, the average improvement by
the MMML solution is still rather significant, which shows the
proposed MMML ranking solution is effective at combining
resources from multiple modalities for the video retrieval tasks.

Finally, in order to examine whether our proposed scheme
is competitive with other approaches, we also compare the av-
erage performance of our solution to other existing approaches.
Fig. 7 shows the comparison of our results to the results reported
by TRECVID participators. From the comparison, we can ob-
serve that our MMML solution is among the best of all com-
pared schemes, which represent the state-of-the-art approaches
in TRECVID [12], [35]. While the improvements of our so-
lution over the best TRECVID approaches were not very sig-
nificant, we should address some differences between our so-
lution and other approaches. In our solution, we only consider
text and visual information, but some other schemes with best
results have included additional high-level features with visual
concept detectors. Nonetheless, these results are only presented
to show that our MMML approach is, if not better than, com-
petitive to the existing state-of-the-art solutions. We also want
to note that all combination coefficients used in our multimodal
fusion scheme are simply fixed to default values (0.5) for the two
modalities of normalized data without tuning. We believe that
better results could be achieved by our solution when including
additional information and better parameter selection schemes.
From these observations, we can conclude that our solution is
effective and promising toward video retrieval tasks.
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Fig. 7. Comparison of our solutions to other results in TRECVID 2005.

Fig. 8. Evaluation of computational time and retrieval performance with respect to the number of unlabeled examples.

D. Evaluation on Computational Efficiency

In this part, we empirically evaluate the time efficiency of
our scheme and investigate its relationship to the retrieval effec-
tiveness. In our multilevel ranking scheme, three ranking stages
account for the main computational cost, i.e., the NN ranking,
the SVM ranking, and the semi-supervised ranking. For the
NN ranking, it is of linear computational complexity, which
may be solved more efficiently by adopting some existing
indexing techniques [36]. For SVM training, as it is essentially
a quadratic program, there are efficient algorithms to solve it
with global optima for a medium scale dataset, such as Se-
quential Minimal Optimization (SMO) techniques [26] whose
empirical complexity is about . Since the number of
training examples is usually small in a video retrieval task, the
SVM training usually can be conducted efficiently. For the
semi-supervised ranking, the semi-supervised learning scheme
requires the matrix inversion, which results in an time
complexity. Therefore, it is important to choose the number of
unlabeled examples in the SSR stage carefully in order to
reduce the overall computational performance of the MMML
ranking scheme.

To examine how is the influence of the number of unlabeled
examples engaged in the SSR stage with respect to the compu-
tational efficiency and the retrieval performance, we conducted
experiments to evaluate the performance impact with different
values of in the retrieval tasks. Fig. 8 shows the evaluation
results. From the Figure, we can see that when the number of
unlabeled examples was equal to 0, the MMML ranking
scheme was reduced to the supervised SVM ranking solution.
When was smaller than 300, the MAP retrieval performance

improved when was increased further. This is because the
more unlabeled data are included, the better performance can
be achieved by the SSR approach. Specifically, we can see that
when was equal to the default value 100 used in our pre-
vious experiments, the MAP result reached 12.67%, which is
significantly better than the regular SVM based approach. The
best retrieval performance was obtained when was selected
between the range of 200 to 300, at which points the MMML
ranking scheme achieved the maximum MAP result of 12.80%.
When was greater than 300, we found some interesting and
a bit surprising results: the retrieval performance tended to de-
grade slightly when the number of unlabeled data was increased
beyond the threshold value of 300. This phenomenon can be ex-
plained in terms of overfitting and noisy data issues. When large
amount of unlabeled data are engaged, much noisy data may
be included. Consequently, the performance of the SSR scheme
may degrade, caused by overfitting to the local data without
proper regularization.

In terms of efficiency, we can see that the computational time
consistently increased when the number of unlabeled examples
increased. In particular, when the number of unlabeled exam-
ples was greater than 200, the computational time dramatically
increased. This shows that large-scale semi-supervised ranking
would be infeasible without a proper deployment. However,
we were able to find that the SSR scheme can be conducted
efficiently when the number of unlabeled examples is smaller
than 200. Therefore, to ensure an efficient solution, we should
consider a number of unlabeled examples smaller than 200. In
our previous experiments, our default scheme engaging 100 un-
labeled examples can be conducted efficiently, whilst its av-
erage retrieval performance is close to the best results we ob-
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served. Based on the observations, we can see that our pro-
posed MMML ranking scheme is able to achieve a good bal-
ance between the retrieval performance and the computational
efficiency.

VII. FUTURE DIRECTIONS

In this section, we address the limitations of our current ap-
proach and point out several future directions.

First of all, we mainly use text and visual information in the
ranking tasks. In future, we will include additional information
from other modalities. For example, we can study high-level
concept detection techniques [12] and investigate some con-
cept models to improve the ranking performance [37], [38]. It is
likely that the proposed scheme could be improved by engaging
additional information.

Second, in our current implementation, the fusion parameters
are simply set to default parameters. In future work, we could
study more intelligent solutions to determine the optimal param-
eters for multimodal fusion.

Third, in our current ranking solution, we consider only the
query-independent approach for automatic search tasks. For fu-
ture work, the query-class dependent weighting methods [37]
can also be extended to our solution for further improving the
retrieval performance. How to develop an effective query-class
dependent algorithm using the graph based ranking framework
will be an interesting research issue in future work.

Moreover, we will apply our solution to solving other prob-
lems of content-based video retrieval, such as interactive video
retrieval [39] and image/video annotation [40]. To these prob-
lems, we will explore the proposed multimodal and multilevel
framework together with active learning techniques [41], [42] to
overcome these open challenges. We may also study more effec-
tive kernel learning methods, such as the nonparametric kernel
learning for improving the retrieval performance [43].

Lastly, we may study more efficient indexing techniques in
our current solution. For large-scale video retrieval applications,
determining how to index the data is important, a topic which
was excluded in the previous discussion. To enable efficient so-
lution of queries, some emerging indexing techniques, such as
Locality-Sensitive Hashing [36] and SVM indexing [44], can
be investigated when building an efficient ranking and indexing
scheme for large-scale content-based video search engines.

VIII. CONCLUSIONS

In this paper we proposed a novel multimodal and multilevel
ranking scheme for large-scale video retrieval. The proposed
framework not only achieves considerably better retrieval per-
formance than traditional approaches, but also is practically ef-
ficient for large-scale applications. The main contributions of
this work can be summarized as follows.

First of all, we modeled the ranking problem of video retrieval
through graph representation and formulated the retrieval task
as a graph based learning problem. The suggested graph based
ranking scheme can smoothly fuse a variety of resources from
multiple modalities, which enjoys a nice interpretation from the
random walk view.

Second, we proposed the semi-supervised ranking (SSR)
method to resolve the video retrieval tasks. Different from tradi-

tional supervised ranking approaches, the SSR solution is able
to exploit both labeled and unlabeled data for the retrieval tasks
effectively. The proposed method can be naturally extended
to learn a multimodal ranking function by fusing multimodal
contents smoothly.

Further, we suggested an efficient multilevel ranking solu-
tion to solve the scalability problem of the SSR method. The
proposed multilevel ranking scheme not only significantly im-
proves the computational efficiency of our ranking solution, but
also avoids the overfitting problem by combining large margin
ranking and semi-supervised ranking in a unified scheme. To the
best of our knowledge, this may be the first effective semi-su-
pervised ranking scheme applicable for large-scale applications.

Finally, we conducted an extensive set of experiments to em-
pirically evaluate every aspect of the algorithms and techniques
proposed in our solution. While our methodology was studied
for video retrieval, we expect some ideas of our proposed tech-
niques can be applicable to other similar problems in the field
of multimedia, and may offer some valuable insights to other
research areas.
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