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Abstract

Kernel machines have recently been considered as a
promising solution for implicit surface modelling. A key
challenge of machine learning solutions is how to fit im-
plicit shape models from large-scale sets of point cloud
samples efficiently. In this paper, we propose a fast solution
for approximating implicit surfaces based on a multi-scale
Tikhonov regularization scheme. The optimization of our
scheme is formulated into a sparse linear equation system,
which can be efficiently solved by factorization methods.
Different from traditional approaches, our scheme does not
employ auxiliary off-surface points, which not only saves
the computational cost but also avoids the problem of in-
jected noise. To further speedup our solution, we present a
multi-scale surface fitting algorithm of coarse to fine mod-
elling. We conduct comprehensive experiments to evaluate
the performance of our solution on a number of datasets of
different scales. The promising results show that our sug-
gested scheme is considerably more efficient than the state-
of-the-art approach.

1. Introduction
Machine learning has already achieved many successes

in a broad range of application domains, such as pat-
tern recognition, computer vision, and bioinformatics [14].
However, there is relatively little research attention on the
area of 3D visual learning research. Recently, applications
of machine learning techniques to 3D points cloud data
processing are attracting increasing research interest, es-
pecially in the task of surface reconstruction. One of the
successful paradigms applied in this area is to use kernel
machines for implicit surface modelling, such as Support
Vector Machines (SVM) [11, 19, 16].
The 3D objects are usually represented by triangulated

meshes explicitly derived from 3D scattered data [17]. Most
3D data acquisition techniques, such as range scanners,
stereo pairs and so on, always suffer from problems of in-
complete data and noise. Recently, implicit surface models

have received more and more attention for 3D object repre-
sentation. The goal of implicit surface modelling is to esti-
mate an embedding function f , whose zero level set f−1(0)
implicitly defines the hyper-surface. Implicit surface mod-
els enjoy many advantages compared with traditional meth-
ods using explicitly triangulated meshes. The implicit mod-
els generate smooth surfaces and are able to repair holes and
filter outliers in the data; these are often difficult to achieve
with the explicit models. Moreover, a number of deriva-
tives of the embedding function f will usually exist, which
are useful for further analysis. The implicit surface model
can even be used to reconstruct the time-varying scene [5].
Numerous approaches have been suggested for implicit

surface modelling. One popular solution is to use local
nature for inferring the implicit functions, such as level
set models [20, 15], local surface models [7], geomet-
ric flow [9] or implicit surfaces interpolated from polygon
data [13]. Due to the use of local nature for analysis, most
of these methods often require normal information about
the target surface in order to generate the implicit surfaces
correctly. Recently, kernel machines have been proposed as
another solution for implicit surface modelling [11]; the im-
plicit models are typically represented by a mixture of radial
basis functions, either fully supported [2] or compactly sup-
ported [8]. Thesemethods usually also need the surface nor-
mal information, except in the case of recent works [11, 19].
Although machine learning techniques have been shown

as a promising solution for implicit surface modelling, one
important challenge is the high computational cost, which
has so far received little consideration in previous work.
The number of scattered points for building a 3D object is
typically of the order of millions. Modelling such a 3D
object by machine learning is usually related to a large-
scale regression problem which often requires a very high
computational cost. Storing and rendering implicit surfaces
may also require high computational cost for a complex im-
plicit model. Hence, a concise representation of the implicit
model is vitally important for fast applications.
One way to reduce the computation cost is to avoid the

use of normal information. The normal information is of-



ten engaged in traditional methods which usually generate
two off-surface points along each normal vector of the sur-
face. The off-surface points are used to avoid intersection
with other parts and to make the fitting process simpler. For
example, in the ε−SVRmethod [16], off-surface points are
introduced to ensure non-trivial solutions of the optimiza-
tion. However, the use of off-surface points results in an
increase of the problem size, which will raise the compu-
tational cost. Moreover, using the normal information may
introduce additional noise due to the inaccurate estimation
of normal vectors by local methods. Hence, it is better to
avoid the use of normal information. To reduce compu-
tational cost, another key consideration is to formulate an
elegant optimization which can be solved very efficiently.
To this end, we present an efficient framework for im-

plicit surface modelling based on a hierarchical Tikhonov
regularization scheme, in which the optimization problem
can be solved efficiently by factorization methods. Our so-
lution needs no additional normal information, which not
only keeps the problem size small, but also avoids introduc-
ing additional noise. Moreover, our multi-scale algorithm
of coarse to fine fitting reduces the number of base points to
attain a concise representation of the implicit model.
The rest of this paper is organized as follows. Section 2

reviews recent advances of implicit surface modelling using
machine learning methods. Section 3 presents our proposed
scheme for implicit surface modelling based on a regular-
ization framework. Based on the regularization framework,
an efficient solution is proposed by the Tikhonov regular-
ization that can be solved efficiently by factorization meth-
ods. To deal with large-scale problems, a multi-scale fitting
algorithm is suggested for coarse to fine fitting. Section 4
discusses the details of our experimental implementations
and demonstrates our experimental results. Section 5 sets
out our conclusion.

2. Related Work

There are only a few reports of work on implicit sur-
face modelling using machine learning techniques. Most of
these can be divided into two categories:

• Not using normal. Methods such as Slab SVM [11]
and its extension [19] have recently shown promise for
implicit surface modelling.

• Using normal. The representative method is the ε-
SVR [16], in which the normal information is used to
simplify the problem and avoid trivial solutions.

Slab SVM method is a modified one-class SVM derived
by replacing the hinge loss function with the ε-insensitive
loss function. More specifically, it can be formulated as an

optimization problem as follows:

min
f∈H

1

n

nX
i=1

(f(xi))ε + λkfk2H − ρ

where kfk2H acts as a regularizer in which H denotes a re-
producing kernel Hilbert space (RKHS), λ > 0 is a reg-
ularization parameter, and ρ is a constant to avoid trivial
solutions of the optimization. Typically it uses a fully sup-
ported radial basis functions (RBF) kernel, which usually
engages a very heavy computational cost. In one reported
study [11], it required about 2 hours to build and render an
implicit model from around 40K scattered points. Further-
more, one disadvantage of Slab SVM is that it is not able to
fix holes conveniently since it adopts fixed kernel widths.
The work in [19] proposed a treatment for the Slab

SVM approach by introducing extra regularization terms
and multi-scale basis functions. Moreover, the ε-insensitive
loss function was replaced by a 2-norm loss function. More
specifically, the optimization problem becomes:

min
f∈H

1

n

nX
i=1

f(xi)
2 + λkfk2H −G(f)

whereG(f) denotes the summation of energy and gradients
terms. Although the optimization problem can be solved
efficiently by the way of an equivalent eigenvalue problem,
this approach still took about 40minutes to solve a problem
with around 35K samples, according to the study in [19].
Both Slab SVM and its extension are so far not computa-

tionally efficient for industrial applications. Recently, [16]
proposed another more efficient method using a modified
support vector regression. They suggested a Gauss-Seidel
method to solve the quadratic program with a positive def-
inite kernel matrix and a box constraint. However, the
Gauss-Seidel approach usually has a slow convergence rate
and may not always guarantee the correct solution. More-
over, they use the normal information, which will always
increase the problem size.
In contrast to previous work, our proposed scheme is

based on a hierarchical Tikhonov regularization scheme,
in which the optimization problem can be solved very ef-
ficiently by factorization methods. In addition to compu-
tationally highly competitive performance, our proposed
multi-scale solution, which does not use additional normal
information, is free from injected noise and enjoys a concise
representation of the implicit surface models.

3. Implicit Surface Modelling
3.1. Theoretical Foundation
In general, building an implicit surface model can be re-

garded as a regression problem, which approximates a mul-
tivariate function from scattered data. Such a problem is



usually ill-posed. One efficient way to solve the problem
is based on the theoretical framework of regularization net-
works [4]. This typically formulates the issue as a variation
of finding the embedded function f to solve the following
minimization problem:

min
f∈H

1

n

nX
i=1

V (yi, f(xi)) + λkfk2H (1)

where V (·, ·) is the loss function, and (xi, yi)ni=1 are the
n pairs of samples. There are various choices for the loss
function. For example, with the L2 norm, it becomes the
classical L2 regularization networks, which is also known
as the Tikhonov regularization:

V (y, f(x)) = (y − f(x))2 (2)

If V (·, ·) is an ε-insensitive function, the problem turns out
to be the ε-SVR

V (y, f(x)) = (y − f(x))ε (3)

For the implicit surfacemodelling task, our goal is to find an
embedding function f to approximate the signed distance
transformation function. According to the definition of the
signed distances, points on the surface lie in the zero level-
set f−1(0). Namely the value of yi is zero for all samples,
hence we reformulate Eqn. (2-3) into the following opti-
mizations:

min
f∈H

1

n

nX
i=1

f(xi)
2 + λkfk2H (4)

min
f∈H

1

n

nX
i=1

(f(xi))ε + λkfk2H (5)

Given the above regularization networks, much previous
work can be generalized into this framework. For example,
the Slab SVM [11] is equivalent to Eqn. (5) with a bias
term ρ, and the optimization problem of its extension [19]
can be viewed as Eqn. (4) with an extra regularization term
G(f). Our proposed solution is based on the same theoret-
ical framework. However, we use the Tikhonov regulariza-
tion scheme given in Eqn. (4) without any additional term,
in which the optimization problem can be solved very effi-
ciently by factorization methods.
Remark. The additional regularization terms in the pre-

vious approaches are usually to avoid the triviality issue,
which is not a problem in our scheme. Another function of
G(f) in [19] is to control the tradeoff between smoothness
and the fidelity to the data. In our scheme, we solve this
problem by a hierarchical fitting solution, which is much
more flexible and effective than the previous complicated
approach.

3.2. A Tikhonov Regularization Approach
Since all scattered data lie on the zero level-set, the

Tikhonov regularization scheme for the implicit surface
modelling turns out to be a one-class problem. According
to the Representer theorem [12], any f ∈ Hminimizing the
regularized risk function in Eqn. (1) will have a representa-
tion of the form

f(x) =
nX
i=1

αik(x,xi) + b (6)

where b is an offset term, and k(·, ·) is the kernel function.
Substituting the representation of Eqn. (6) into Eqn. (4), we
get the convex differentiable object function E(α) of the
variable α = [α1, · · · , αn]T as follows:

E = min
α∈Rn,λ

1

n
(Kα+eT b)T (Kα+eT b)+λαTKα (7)

where e denotes a vector with all elements equal to one. The
derivatives ofE(α)with respect to the variable α vanish for
optimality:

∂E

∂α
=
1

n
(Kα+ eT b)TK + λKα

which leads to the following solution:

α = −b(K + nλI)−1 (8)

where the kernel matrix K ∈ Rn×n is symmetric posi-
tive definite. The kernel function is either fully supported
or compactly supported. The support vectors of compactly
supported functions usually cover only a minor part of the
data. Thus, they can deal with very large-scale problem ef-
ficiently, making full use of sparsity of the system as local
portions of much larger problems. Using compactly sup-
ported radial basis functions will pay off with respect to
computational efficiency, while maintaining a comparable
level of accuracy in the reproduction. Typically, the require-
ments of computational cost and storage can be reduced by
using sparse basis functions of various widths. To enable
the sparsity, we use the following Wu function [10] as a
kernel in our scheme:

k(x1,x2) = k(r(x1,x2)) = (1−r)4+(4+16r+12r2+3r3)

where r(x1,x2) = kx1−x2k
σ , in which σ > 0 is the size of

compact support.
The problem in Eqn. (8) is a linear equation, which

can be solved by singular value decomposition (SVD), LU
factorization, Cholesky factorization, or LDLT factoriza-
tion [1]. The SVD method is usually quite stable. But it is
not suitable for this problem which is usually a large system
with a high sparsity ratio. Table 1 shows a comparison of



three factorization algorithms. We can see that the Cholesky
and the LDLT methods are more efficient than the LU fac-
torization when the matrix is symmetric and positive defi-
nite. Since the kernel matrixK is sparse, the computational
cost is determined by the number of base points n and the
number of non-zero elements of K. Normally a fast near-
est neighbor searching method can be used to compute the
kernel expansion in Eqn. (6), in which the total number of
nearest neighbors for all base points is equal to the number
of non-zero elements of K . Such an approach will usu-
ally decrease the complexity of computing K from O(n2)
to O(n logn). In this paper, we adopt the Cholesky and
the LDLT factorization algorithms to solve the optimiza-
tion problem.

Table 1. Comparison of factorization algorithms.
ALGORITHM REQUIREMENT COMPLEXITY
LU NON-SINGULAR ∼ (2/3)n3 FLOPS
CHOLESKY SPD ∼ (1/3)n3 FLOPS
LDLT SPD ∼ (1/3)n3 FLOPS

SPD denotes “Symmetric and Positive Definite.”

3.3. A Multi-Scale Implicit Surface Modelling Al-
gorithm

The method using compactly supported kernels always
suffers from the problem that the approximated function is
valid only in a bounded region. Hence, a multi-scale ap-
proach is a necessary treatment to achieve a global approx-
imation.
In order to decrease the computational cost and storage

requirements, the total number of base points should be re-
duced. Intuitively, the minimum number of base points can
be attained when the compact support size σi of each base
point xi takes different values:

f(x) =
nX
i=1

αikσi(x,xi) + b

However, it is almost impossible to tune such a large num-
ber of variables in the above formulation.
Instead of putting all samples into a large training set

with a fixed compact support size σ, we divide them into
m subsets: S = S1 ∪ S2 ∪ · · · ∪ Sm. Each subset Si with
ni samples is trained hierarchically. A recent study [18] has
proved that if the regularization parameter is fixed, the com-
pact support size decreases when the number of samples in-
creases. Thus, we can construct the subsets through a sub-
division scheme, in which the number of samples assigned
in the subset increases with the scale. The compact support
size σi for each subset Si will decrease, and its value can be
estimated from the previous level by a fixed damping ratio
η (0 < η < 1). Therefore, the hyper-surface f(x) can be

represented as follows:

f(x) =

n1X
i=1

α1ikσ1(x,xi) +

n2X
i=1

α2ikσ2(x,xi)

+ · · ·+
nmX
i=1

αmikσm(x,xi) + b (9)

where n0 < n1 < · · · < nm, σi = ησi−1 (2 ≤ i ≤m). Let
hl denote the embedded function at the level l:

hl(x) =

nlX
i=1

αlikσl(x,xi)

Substituting the above equations into Eqn. (6), we obtain a
concise form:

f(x) =
m−1X
j=1

hj(x) + b+ ym(x)

where the value of ym(x) is the fitting residual. For each
level l = 2, 3, . . . ,m, we have

l−1X
j=1

hj(x) + b+ yl(x) = 0

yl(x) = −
l−1X
j=1

hj(x)− b

Hence, the optimization problem at the level l can be for-
mulated as:

min
hl∈H

1

n

nX
i=1

(yl(xi)− hl(xi))
2 + λkhlk2H (10)

This is equivalent to minimizing the following objective of
El:

El = min
αl,λl

1

nl
(yl −Klαl)

T (yl −Klαl) + λlα
T
l Klαl

which leads to the following solution:

αl = (Kl + nlλlI)
−1yl (11)

Compared with a traditional SVM approach, the above
Tikhonov regularization scheme may not have a good per-
formance of basis shrinkage, i.e., only a few portions of αli
will vanish in the solution. To tackle this problem, we sug-
gest a treatment in the multi-scale solution. At each level l,
each data point x is tested for removal from the working set
if the residual yl(x) reaches the setting precision. For the
level l, we assign the precision with the value of p · σl and
denote the product of nlλl as γl.



Table 2. Results of computational cost on various datasets: number of data points, number of scales m, total number of base points and
average fitting time in seconds for ε-SVR and proposed methods, and relative fitting accuracy.

DATASET #POINTS #SCALEm #BASES-1 ε-SVR[S] #BASES-2 CHOLESKY[S] LDLT[S] ACCURACY
HAND 39.2K 4 37.0K 28.1 17.4K 1.7 1.7 5× 10−4
AMADILLO 173.0K 6 234.4K 131.2 121.9K 25.1 24.4 2× 10−4
BUNNY 28.0K 5 25.0K 17.3 19.0K 1.1 1.1 8× 10−4
SQUIRREL 76.3K 6 133.1K 120.7 70.1K 17.2 17.0 6× 10−4
IGEA 72.5K 6 63.9K 22.3 42.1K 2.9 2.8 5× 10−4
KNOT 28.7K 4 38.0K 37.7 12.3K 1.0 0.9 9× 10−4
DINO 56.2K 5 71.1K 33.4 42.9K 2.8 2.8 5× 10−4
FELINE 199.5K 6 202.8K 114.3 99.9K 11.6 11.5 4× 10−4
DRAGON 437.6K 7 346.3K 365.9 201.9K 79.8 77.9 8× 10−4

#BASES-1 denotes the number of base points by ε-SVR; #BASES-2 denotes the number of base points by the two factorization methods.

Remark. One can easily modify the algorithm above to
introduce off-surface points by adding them into the train-
ing set with estimated signed distance values. More specif-
ically, one can modify the second step of the algorithm as:

α1 = (K1 + γ1I)
−1(y− eT b)

and keep other parts of the original algorithm unchanged.
Hence, our scheme can deal with problems either with or
without normal information conveniently.
Empirically, in the above algorithm, the initial kernel pa-

rameter σ is typically set to the radius of the modelling ob-
ject, and b is usually set toσ. The damping ratio η is equal to
0.5. One can see that the total number of base points is con-
trolled by the number of scalesm and the precision thresh-
old p. The function smoothness is related to the weight γl
for the regularization term.

4. Experiments
In this section, we discuss the details of our experimen-

tal implementation and report the results of performance
evaluation of implicit surface modelling. We use a num-
ber of different 3D datasets in the experiments, in which
most of them are from the Stanford 3D Scanning Reposi-
tory. All the experiments reported in this paper were car-
ried out on a Pentium-4 3.0 GHz PC with 2GB RAM. A
standard marching cube algorithm is employed to visualize
the implicit surfaces [6], which roughly demonstrates the
embedding function over the entire view. The CHOLMOD
package [3] is used for both the Cholesky and the LDLT
factorizations in our experiment for solving the optimiza-
tion problems. We also implemented a multi-scale gradient
based ε-SVR method used in [11], which is regarded as the
state-of-the-art approach.

4.1. Evaluation of Computational Performance

To examine the performance of computational efficiency
of our proposed scheme, we evaluate the computational cost
of our methods on a number of different datasets. Table 2
shows the results of time cost of different methods on nine

3D datasets with different sizes of data points. In the ta-
ble, the relative fitting accuracy is calculated from the num-
ber of scales m and the given precision p. The time cost
of each method on every dataset includes the time for gen-
erating the multi-scale subsets and for modelling the im-
plicit surfaces. From the experimental results, we can see
that our proposed factorization methods significantly out-
perform the ε-SVRmethod by gradient based optimizations
in all test cases. The two factorization methods perform
very closely; the LDLT method is marginally better than
the Cholesky method.
More specifically, looking into the results in detail, we

observe that our solution can build the implicit surface
model of the Stanford bunny (28K points) with 19K base
points within 2 seconds. This is computationally highly
competitive relative to previous work. For example, the
state-of-the-art commercial solution of Fast RBF needed
around 70 seconds for modelling the bunny data with 29.7K
base points [2]. Compared with the performance reports
in [16], our solution is significantly more efficient than the
ε-SVR method.

4.2. Evaluation of Surface Fitting Performance

In addition to its highly competitive computational per-
formance, we want to examine whether our multi-scale
fitting method by the hierarchical Tikhonov regulariza-
tion scheme can obtain competitive implicit surface models
when applied to different data sets.
Multi-Scale Fitting. One important advantage of our so-

lution is the multi-scale fitting. Figure 1 illustrates a multi-
scale fitting example based on our hierarchical Tikhonov
regularization scheme. From the results, we can see that
the surface is smoother when the compact support size σ is
larger. The base points of the high level represents the detail
information of the surface. This multi-scale fitting solution
can be applied to many applications of multi-resolution sur-
face reconstruction.
Regularization. The regularization factor plays an im-

portant role in the implicit surfacemodelling. When the reg-
ularization term increases, the fitting function will become



Figure 1. Illustration of a multi-scale fitting example by the Tikhonov regularization approach. Armadillo (170K points, 24.4 seconds)
from the Stanford 3D Scanning Repository is employed as the point cloud data. The rendered implicit surfaces are plotted at six levels.

smoother, while the fitting error will usually increase. Gen-
erally speaking, using an appropriate regularization term
can avoid the over-fitting issue of implicit surface mod-
elling.

Figure 2. Example of the over-fitting problem. The left side is the
over-fitting case without using regularization.

Figure 3. Modelling the cases of incomplete data. The bunny (28K
points, 1.1 seconds) and the squirrel (76K points, 17 seconds) are
studied.

Figure 2 shows an example of avoiding the over-fitting
problem. The left sub-figure shows the overfitting case
without regularization in which holes occur in the intersec-
tion of fingers. To tackle this problem, one can increase the
regularization term at the low level in the multi-scale fitting
process. The fitting error caused by the large regularization
term at the low levels could be compensated at higher lev-

els. The right sub-figure shows the correct results using a
proper regularization parameter.
Interpolation of Incomplete Data. One important ad-

vantage of implicit surface models is able to interpolate in-
complete data conveniently so that it can repair the holes of
surfaces due to missing data. Figure 3 shows the bunny and
squirrel examples in which parts of the 3D data are missing
in the training sets shown in the left sub-figure. By applying
our proposed technique, we can reconstruct the smooth sur-
face without visual artifacts shown in the right sub-figure.
Moreover, our scheme is able to deal with irregularly sam-
pled cases. Figure 4 shows an example of an irregularly
sampled 3D object. We can see that our technique can ren-
der the correct 3D surface without visual artifacts. Finally,
Figure 5 shows several large-scale examples modelled by
our technique.

Figure 4. Modelling an irregularly sampled Stanford Igea (73K
points, 2.8 seconds). The right part of the original Igea is 90%
decimated.

5. Conclusion
In this paper we presented a novel and efficient solution

for the implicit surface modelling using machine learning
techniques. We first outlined a theoretical framework of
regularization networks in which the findings of several pre-
vious studies can be considered as special cases within the
given regularization framework. Based on the solid theo-
retical framework, we suggested to tackle the implicit sur-
face modelling problem using a Tikhonov regularization
scheme. The optimization problem of the Tikhonov regular-
ization scheme can be formulated into a sparse linear equa-
tion system, which can be efficiently solved by factorization
methods. To further save computational cost and achieve
good sparsity, we proposed a multi-scale fitting algorithm



Figure 5. Examples of large-scale implicit surface modelling. The Dino (56K points, 2.8s) with complex edge structures is modelled by
43K bases, and the Caltech feline (200K points, 11.5s) is modelled by 100K bases. The Stanford dragon contains more than 400K data
points.

for the implicit surface modelling problem, which can re-
duce the total number of base points of the resulting models.
Our empirical evaluations on a number of datasets of differ-
ent scales demonstrated that our proposed method is more
efficient than the state-of-the-art approaches. In addition to
the advantage of computational efficiency, our solution also
solves several challenging issues in surface modelling and
reconstruction, such as multi-resolution surface reconstruc-
tion, the absence of normal information, incomplete data
interpolation, and irregularly sampled cases.
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[17] D. Tubic, P. Hébert, and D. Laurendeau. 3d surface modeling
from range curves. In CVPR (1), pages 842–849, 2003. 1

[18] R. Vert and J.-P. Vert. Consistency and convergence rates of
one-class svm and related algorithms. In Advances in Neural
Information Processing Systems. MIT Press, 2006. 4

[19] C. Walder, O. Chapelle, and B. Schölkopf. Implicit surface
modelling as an eigenvalue problem. In S. W. De Raedt, L.,
editor, ICML 2005, pages 937 – 944, 2005. 1, 2, 3

[20] H.-K. Zhao, S. Osher, and R. Fedkiw. Fast surface recon-
struction using the level set method. In VLSM’01, page 194,
2001. 1


