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Abstract

Relevant Component Analysis (RCA) has been proposed
for learning distance metrics with contextual constraints for
image retrieval. However, RCA has two important disad-
vantages. One is the lack of exploiting negative constraints
which can also be informative, and the other is its inca-
pability of capturing complex nonlinear relationships be-
tween data instances with the contextual information. In
this paper, we propose two algorithms to overcome these
two disadvantages, i.e., Discriminative Component Analy-
sis (DCA) and Kernel DCA. Compared with other compli-
cated methods for distance metric learning, our algorithms
are rather simple to understand and very easy to solve. We
evaluate the performance of our algorithms on image re-
trieval in which experimental results show that our algo-
rithms are effective and promising in learning good quality
distance metrics for image retrieval.

1 Introduction

Machine learning algorithms have been popularly ap-
plied to image retrieval for bridging the semantic gap be-
tween low-level image features and high-level semantic
concepts [15]. Many machine learning algorithms, such
as k-Means and k-Nearest Neighbor, usually define some
distance metrics or functions to measure the similarity of
data instances. For example, Euclidean distance is often
used for distance measure in many applications. Typically, a
good quality distance metric can influence the performance
of the learning algorithm significantly. Thus, it is impor-
tant to choose appropriate distance metrics when applying a
learning algorithm to image retrieval under given different
contexts [2].

Many research tasks in image retrieval are required to
choose a good distance metric or function in order to solve
the problems effectively. The first widely studied task is
data clustering under unsupervised settings [9]. A suited
distance metric can importantly improve the performance of
the clustering algorithms, such as k-Means or graph based

techniques [13]. The second application is for supervised
classification tasks. Choosing a good distance metric is
also critical for these tasks. For example, face recogni-
tion or general image classification tasks usually use dis-
tance based techniques, such as k-Nearest Neighbor, whose
performance normally relies on the given distance metric.
Moreover, many retrieval tasks in multimedia information
retrieval also need to learn a good distance metric in order
to retrieve the users’ query targets effectively. In content-
based image retrieval (CBIR), images are usually repre-
sented by low-level features, such as color, texture, and
shape. It is simply too restricted to employ the rigid Eu-
clidean distance to measure distances of images. Learning
effective distance metrics for image retrieval has attracted
more and more attentions in recent years [5].

Here we illustrate an example to show that different dis-
tance metrics are important for the applications with differ-
ent contexts. Figure 1 shows an example of grouping the
data instances on different contextual conditions. Figure 1
(a) is the given data. Figure 1 (b)-(d) show three different
grouping results under different context environments, e.g.,
(b) groups by proximity, (c) groups by shape, (d) groups by
size. This example shows that it is important for the clus-
tering algorithms to choose the right distance metrics for
achieving the correct group results under different contex-
tual information.

(a) Original Data (b) By Proximity

(c) By Shape (d) By Size

Figure 1. Clustering with different contexts.



In general, the approach to find a good distance metric
for various learning algorithms is equivalent to looking for
a good data transformation functionf : X 7−→ Y , which
transforms the dataX into another representation ofY [2].
These two problems can be solved together in a unified
framework. Hence, our goal is to find a good distance met-
ric which not only can be used for similarity measure of
data, but also can transform the data into another better rep-
resentation of the original data.

For learning distance metrics and data transformation,
traditional techniques normally need to acquire explicit
class labels. However, in many real-world applications, ex-
plicit class labels might be too expensive to be obtained.
For example, in image retrieval, obtaining the exact class
label of images is usually quite expensive due to the dif-
ficulty of image annotation. However, it is much easier to
know the relevance relationship between images, which can
be obtained from the logs of user relevance feedback [6, 7].
Therefore, it is more attractive to learn the distance metrics
or data transformation directly from the pairwise constraints
without using explicit class labels.

In this paper we study the problem of learning dis-
tance metrics from contextual constraints among data in-
stances. We first propose Discriminative Component Anal-
ysis (DCA) to learn the linear data transformation for the
optimal Mahalanobis distance metric with contextual infor-
mation. Based on DCA, we further develop Kernel DCA
to learn the nonlinear distance metric by kernel transforma-
tions.

2 Related Work

The problems for learning distance metrics and data
transformation have become more and more popular in re-
cent research due to their broad applications. One kind of
approaches is to use the class labels of data instances to
learn distance metrics in supervised classification settings.
We briefly introduce several traditional methods. Hastie et
al. [4] and Jaakkola et al. [8] used the labeled data instances
to learn distance metrics toward classification tasks. Tishby
et al. [16] considered the joint distribution of two random
variablesX andY to be known, and then learned a com-
pact representation ofX that enjoys high relevance ofY .
Most recently, Goldberger et al. [3] proposed the Neigh-
borhood Component Analysis to learn a distance measure
for kNN classification by directly maximizing a stochas-
tic variant of the leave-one-out kNN score on the training
set. Zhou et al. proposed a kernel partial alignment scheme
to learn kernel metrics for interactive image retrieval [23].
Most of these studies need to explicitly use the class labels
as the side-information for learning the representations and
distance metrics.

Recently, some work has addressed the problems of
learning with contextual information in terms of pairwise

constraints. Wagstaff et al. [18] suggested the K-means
clustering algorithms by introducing the pairwise relations.
Xing et al. [21] studied the problem of finding an optimal
Mahalanobis metric from contextual constraints in com-
bination with constrained K-means algorithm. But their
method requires solving the convex optimization problem
with gradient descent and iterative projections which often
suffers from large computation cost. Later on, Bar-Hillel
et al. [2] proposed a much simpler approach called Rele-
vance Component Analysis (RCA), which enjoys compara-
ble performance with Xing’s method. As our approach is
motivated by RCA, we will discuss it in detail below.

Let us first introduce some basic concepts. Mathemati-
cally, the Mahalanobis distance between two data instances
is defined as:

dM (xi,xj) =
√

(xi − xj)>M(xi − xj) (1)

whereM must be positive semi-definite to satisfy the prop-
erties of metric, i.e., non-negativity and triangle inequality.
The matrixM can be decomposed asM = A>A, whereA
is a transformation matrix. The goal of RCA learning is to
find an optimal Mahalanobis matrixM and the optimal data
transformation matrixA using the contextual information.

The basic idea of RCA for learning the distance met-
ric is to identify and down-scale global unwanted vari-
ability within the data. RCA changes the feature space
used for data representation via a global linear transforma-
tion in which relevant dimensions are assigned with large
weights [2]. The relevant dimensions are estimated by
chunklets [2], each of them is defined as a group of data
instances linked together with positive constraints. More
specifically, given a data setX = {xi}N

i=1 andn chunklets
Cj = {xji}nj

i=1, RCA computes the following matrix:

Ĉ =
1
N

n∑

j=1

nj∑

i=1

(xji −mj)(xji −mj)> (2)

wheremj denotes the mean of thej-th chunklet,xji de-
notes thei-th data instance in thej-th chunklet andN is
the number of data instances. The optimal linear transfor-
mation by RCA is then computed asA = Ĉ−

1
2 and the

Mahalanobis matrix is equal to the inverse of the matrixC,
i.e., M = Ĉ−1. RCA is simple and effective for learn-
ing distance metrics and data transformation, yet it has two
critical disadvantages. One is the lack of including the nega-
tive constraints which can provide important discriminative
clues. The other is that RCA can learn only the linear re-
lation between data instances which may be too restricted
to discover the nonlinear relations in many applications. To
this end, we propose the Discriminative Component Analy-
sis (DCA) and Kernel DCA to overcome the two drawbacks.

Summary of Contributions. In this paper we study
the problem of learning data transformations for distance



metrics with contextual constraints with application to im-
age retrieval. We propose the Discriminative Component
Analysis and Kernel Discriminative Component Analysis
algorithms to learn both linear and nonlinear distance met-
rics. Our algorithms need no explicit class labels, which
can be applicable to many broad applications. The rest of
this paper is organized as follows. Section 3 formulates the
Discriminative Component Analysis and presents the algo-
rithm. Section 4 suggests kernel transformations to extend
DCA for learning nonlinear distance metrics. Section 5
discusses our experimental evaluations on image retrieval.
Section 6 concludes this work.

3 Discriminative Component Analysis

3.1 Overview

Let us first give an overview of the concept of Discrimi-
native Component Analysis (DCA). In the settings of DCA
learning, we assume the data instances are given with con-
textual constraints which indicate the relevance relationship
(positive or negative) between data instances. According
to the given constraints, one can group the data instances
into chunklets by linking the data instances together with
positive constraints. The basic idea of DCA is to learn an
optimal data transformation that leads to the optimal dis-
tance metric by both maximizing the total variance between
the discriminative data chunklets and minimizing the total
variance of data instances in the same chunklets. In the fol-
lowing part, we formalize the approach of DCA and present
the algorithm to solve the DCA problem.

3.2 Formulation

Assume we are given a set of data instancesX =
{xi}N

i=1 and a set of contextual constraints. Assume thatn
chunklets can be formed by the positive constraints among
the given constraints. For each chunklet, a discriminative
set is formed by the negative constraints to represent the dis-
criminative information. For example, for thej-th chunklet,
each element in the discriminative setDj indicates one ofn
chunklets that can be discriminated from thej-th chunklet.
Here, a chunklet is defined to be discriminated from another
chunklet if there is at least one negative constraint between
them. Note that RCA can be considered as a special case
of DCA in which all discriminative sets are empty sets that
ignore all negative constraints.

To perform Discriminative Component Analysis, two co-
variance matriceŝCb and Ĉw are defined to calculate the
total variance between data of the discriminative chunklets
and the total variance of data among the same chunklets re-
spectively. These two matriceŝCb andĈw are computed as

follows:

Ĉb =
1
nb

n∑

j=1

∑

i∈Dj

(mj −mi)(mj −mi)>

Ĉw =
1
n

n∑

j=1

1
nj

nj∑

i=1

(xji −mj)(xji −mj)>
(3)

wherenb =
∑n

j=1 |Dj |, | · | denotes the cardinality of
a set,mj is the mean vector of thej-th chunklet, i.e.,
mj = 1

nj

∑nj

i=1 xji, xji is thei-th data instance in thej-
th chunklet, andDj is the discriminative set in which each
element is one ofn chunklets that has at least one negative
constraint to thej-th chunklet.

The idea of Discriminative Component Analysis is to
look for a linear transformation that leads to an optimal dis-
tance metric by both maximizing the total variance of data
between the discriminative chunklets and minimizing the
total variance of data among the same chunklets. The DCA
learning task leads to solve the optimization as follows:

J(A) = arg max
A

|A>ĈbA|
|A>ĈwA| , (4)

whereA denotes the optimal transformation matrix to be
learned. When the optimal transformationA is solved, it
leads to obtain the optimal Mahalanobis matrixM = A>A.

3.3 Algorithm

According to the Fisher theory [11, 12], the optimal so-
lution in Equation (4) is corresponding to the transforma-
tion matrix that diagonalizes both the covariance matrices
Ĉb andĈw simultaneously [10]. To obtain the solution ef-
fectively, we propose an algorithm to find the optimal trans-
formation matrix, which was used to solve LDA in the pre-
vious study [22]. The details of our algorithm are shown in
Algorithm 1 .

In our algorithm, a matrixU is first found to diagonalize
the covariance matrix̂Cb of between-chunklets. After dis-
carding the column vectors with zero eigenvalues, we can
obtain ak ∗k principal sub-matrixDb of the original diago-
nal matrix. This procedure leads to obtain a set of projected
subspaces, i.e.,Z = RD

−1/2
b , that can best discriminate

the chunklets. Further, we form a matrixCz = Z>ĈwZ
and find a matrixV to diagonalize the matrixCz. If di-
mension reduction is required, such thatr is the desired
dimensionality, then we extract the firstr column vectors
of V with the smallest eigenvalues to form a lower rank
matrix V̂ . This leads to obtain the reduced diagonal ma-
trix Dw = V̂ >CzV̂ . Finally, the optimal transformation
matrix and the optimal Mahalanobis Matrix are given as
A = ZV̂ D

−1/2
w andM = A>A, respectively.



Algorithm 1:The DCA Algorithm
Input
- a set ofN data instances:X = {xi}N

i=1

- n chunkletsCj and discriminative setsDj , j=1,. . .,n
Output
- optimal transformation matrixA
- optimal Mahalanobis matrixM
Procedure
1. ComputeĈb andĈw by Equation (3) ;
2. DiagonalizeĈb by eigenanalysis

2.1. FindU to satisfyU>ĈbU = Λb andU>U = I, here
Λb is a diagonal matrix sorted in increasing order ;

2.2. Form a matrix̂U by the lastk column vectors ofU
with nonzero eigenvalues ;

2.3. LetDb = Û>ĈbÛ be thek ∗ k submatrix ofΛb ;
2.4. LetZ = ÛD

−1/2
b andCz = Z>ĈwZ ;

3. DiagonalizeCz by eigenanalysis
3.1. FindV to satisfyV >CzV = Λw andV >V = I, here

Λw is a diagonal matrix sorted in decreasing order ;
3.2. If dimension reduction is needed, assume the desired

dimension isr, then formV̂ by the firstr column
vectors ofV with the smallest eigenvalues and let
Dw = V̂ >CzV̂ ; otherwise, let̂V = V andDw = Λw ;

4. Final Outputs
A = ZV̂ D

−1/2
w andM = A>A .

End of Algorithm

4 Kernel DCA

4.1 Overview

Similar to the RCA learning [2], DCA is so far also a
linear technique that is insufficient to discover nonlinear re-
lationships among real-world data. In the machine learning
area, the kernel trick is a powerful tool to learn the com-
plex nonlinear structures from the input data [17, 14]. In
the literature, the kernel trick has been successfully applied
on many linear analysis techniques, such as Kernel Prin-
cipal Component Analysis (PCA) [19], Kernel Fisher Dis-
criminant Analysis [10, 12], Support Vector Machines [17],
Kernel Independent Component Analysis [1], etc. Similar
to these approaches, we can also apply the kernel trick on
DCA toward more powerful analysis performance in real-
world applications.

In general, the kernel technique first maps input data into
a high dimensional feature space. A linear technique ap-
plied on the data in the feature space is able to achieve the
goal of nonlinear analysis. For example, in Kernel PCA,
input data are first projected into an implicit feature space
via the kernel trick, then the linear PCA is applied on the
projected feature space to extract the principal components
in the feature space. This enables the Kernel PCA to extract
the nonlinear principal components in the input data space

using the kernel trick.
Similar to the kernel techniques, we propose the Kernel

Discriminative Component Analysis (KDCA) to overcome
the disadvantage of RCA and DCA by applying the ker-
nel trick. We first project input data into an implicit feature
space via the kernel trick. Then the linear DCA is applied on
the projected feature space to find the optimal linear trans-
formation in the feature space. Consequently, we are able
to find the nonlinear structures of the given data using the
Kernel DCA technique.

4.2 Formulation

Let us now formulate Kernel Discriminative Component
Analysis formally. Typically, a kernel-based analysis tech-
nique usually implicitly maps original data in input spaceI
to a high-dimensional feature spaceF via some basis func-
tion φ : x → φ(x) ∈ F . The similarity measure of data in
the projected feature space is achieved by the kernel func-
tion which is defined as an inner product between two vec-
tors in the projected spaceF as follows:

K(xi,xj) = (φ(xi), φ(xj)). (5)

Assume that a set ofN data instancesX = {xi}N
i=1 is given

in an original input spaceI. To do kernel DCA learning,
we first choose a basis functionφ to map the data in the
original input spaceI to a high-dimensional feature space
F . For any two data instances, we compute their distance
via the kernel function defined in the projected feature space
as follows:

dφ(xi,xj) =
√

(φ(xi)− φ(xj))>M(φ(xi)− φ(xj))
(6)

whereM is a full rank matrix that must be positive semi-
definite to satisfy the metric property and is often formed
by a transformation matrixW . The linear transformation
matrix W can be represented asW = [w1, . . . ,wm]> in
which each of them column vectors is a span of alll train-
ing samples in the feature space, such that

wi =
l∑

j=1

αijφj , (7)

whereαij are the coefficients to be learned in the feature
space. Therefore, for a given data instancex, its projec-
tion onto thei-th directionwi in the feature space can be
computed as follows:

(wi · φ(x)) =
l∑

j=1

αijK(xj ,x) . (8)

Hence, Equation (6) can be represented as

dφ(xi,xj) =
√

(~τi − ~τj)>M(~τi − ~τj) , (9)



where~τi = [K(x1,xi), . . . , K(x1,xl)]>, andA is the lin-
ear transformation matrix formed byA = [~α1, . . . , ~αm] in
which ~αi = [αi1, . . . , αil]>. Hence, we can similarly com-
pute the two covariance matrices in the projected feature
space as follows:

Kb =
1
nb

n∑

j=1

∑

i∈Dj

(~uj − ~ui)(~uj − ~ui)>

Kw =
1
n

n∑

j=1

1
nj

nj∑

i=1

(~τj − ~ui)(~τj − ~ui)>
(10)

where~uj = [ 1
nj

∑nj

i=1 K(x1,xi), . . . , 1
nj

∑nj

i=1 K(xl,xi)]>

denotes the mean vector. Consequently, the Kernel DCA
task leads to solve the optimization problem as follows:

J(A) = arg max
A

|A>KbA|
|A>KwA| . (11)

Solving the above optimization problem gives the optimal
linear transformationA in the projected space. It also leads
to the optimal Mahalanobis matrix in the projected space.

4.3 Algorithm

The method to solve the optimization of Kernel DCA is
similar to that for the linear DCA, i.e., to find the linear
transformation matrixA that can diagonalize bothKb and
Kw. For limited space, please kindly refer toAlgorithm 2
for the details of Kernel DCA algorithm.

5 Experimental Results

To evaluate the performance of our algorithms, we con-
duct empirical evaluation of learning distance metrics for
content-based image retrieval in comparisons with tradi-
tional methods in distance metric learning [21, 2]. We de-
scribe the details of our empirical evaluation below.

5.1 Experimental Testbed

To test the performance of DCA and Kernel DCA for
learning distance metrics for image retrieval, we employ an
image dataset from COREL image CDs. 10 image cate-
gories are selected to form our dataset, such asdogs, cats,
horses, etc. Each of them has a distinct semantic meaning
and contains 100 images. In total, 1000 images are engaged
in our dataset.

For image retrieval, low-level feature representation is
critical. In our experiment, three kinds of low-level fea-
tures are extracted: color, shape, and texture. For color, we
extract the color moments: color mean, color variance and
color skewness in each color channel (H, S, and V). Thus,
9-dimensional color moment features are used. For shape,

Algorithm 2:The Kernel DCA Algorithm
Input
- a set ofN data instances:X = {xi}N

i=1

- n chunkletsCj and discriminative setsDj , j=1,. . .,n
Output
- optimal transformation matrixA
- optimal Mahalanobis matrixM
Procedure
1. ComputeKb andKw by Equation (10) ;
2. DiagonalizeKb by eigenanalysis

2.1. FindU to satisfyU>KbU = Λb andU>U = I, here
Λb is a diagonal matrix sorted in increasing order ;

2.2. Form a matrix̂U by the lastk column vectors ofU
with nonzero eigenvalues ;

2.3. LetDb = Û>KbÛ be thek ∗ k submatrix ofΛb ;
2.4. LetZ = ÛD

−1/2
b andKz = Z>KwZ ;

3. DiagonalizeKz by eigenanalysis
3.1. FindV to satisfyV >KwV = Λw andV KzV = I, here

Λb is a diagonal matrix sorted in decreasing order ;
3.2. If dimension reduction is needed, assume the desired

dimension isr, then formV̂ by the firstr column
vectors ofV with the smallest eigenvalues and let
Dw = V̂ >KzV̂ ; otherwise, let̂V = V andDw = Λw ;

4. Final Outputs
A = ZV̂ D

−1/2
w andM = A>A .

End of Algorithm

we use the edge direction histogram. Canny edge detec-
tor is applied to obtain the edges. Then 18-dimensional
edge direction histogram features are computed to repre-
sent the shapes. For texture, we use the wavelet-based tex-
ture features. The Discrete Wavelet Transformation (DWT)
is applied on the gray images of original images by a
Daubechies-4 wavelet filter. In total, we perform 3-level
decompositions and extract 9-dimension wavelet-based tex-
ture features for each image. All together, we use 36 fea-
tures to represent images in our experiment.

5.2 Performance Evaluation

We now empirically evaluate our algorithms for learn-
ing distance metrics with contextual constraints in image
retrieval. Although our application is on image retrieval,
our algoirthms can also be beneficial to other information
retrieval tasks.

In our experiments, six different retrieval methods are
compared as follows: (1) Euclidean: retrieval by Euclidean
metric; (2) RCA: retrieval by the metric of RCA; (3) Xing:
retrieval by the metric of Xing’s method with nonlinear op-
timization [21]; (4) DCA: retrieval by the metric of DCA;
(5) KDCA: retrieval by the nonlinear metric of KDCA.

For a real-world image retrieval application, contextual
information can be obtained easily. For example, a CBIR



Table 1. Performance Evaluation for Image Retrieval (Average Precision on TOP 20 Returned Images.)

Category Euclidean RCA Xing DCA KDCA

Dogs 0.420 0.455 (+8.3%) 0.390 (-7.1%) 0.500 (+19.0%) 0.600 (+42.9%)
Cats 0.495 0.590 (+19.2%) 0.640 (+29.3%) 0.600 (+21.2%) 0.640 (+29.3%)
Horses 0.775 0.865 (+11.6%) 0.830 (+7.1%) 0.850 (+9.7%) 0.820 (+5.8%)
Eagles 0.575 0.595 (+3.5%) 0.665 (+15.7%) 0.590 (+2.6%) 0.625 (+8.7%)
Penguins 0.215 0.465 (+116.3%) 0.260 (+20.9%) 0.470 (+118.6%) 0.325 (+51.2%)
Roses 0.505 0.570 (+12.9%) 0.545 (+7.9%) 0.610 (+20.8%) 0.610 (+20.8%)
Mountain 0.505 0.605 (+19.8%) 0.570 (+12.9%) 0.635 (+25.7%) 0.670 (+32.7%)
Sunset 0.570 0.365 (-36.0%) 0.560 (-1.8%) 0.395 (-30.7%) 0.510 (-10.5%)
Butterfly 0.310 0.395 (+27.4%) 0.345 (+11.3%) 0.390 (+25.8%) 0.430 (+38.7%)
Balloon 0.260 0.240 (-7.7%) 0.265 (+1.9%) 0.240 (-7.7%) 0.320 (+23.1%)
MAP 0.463 0.515 (+11.1%) 0.507 (+9.5%) 0.528 (+14.0%) 0.555 (+19.9%)

system often provides the relevance feedback function for
users. The relevance feedback records can then be logged
for learning the distance metrics [6]. In our experiment,
to enable objective evaluation, we generate the contextual
constraints automatically according to the ground truth of
the image datasets. In total, we generate 1% positive con-
straints and 1% negative constraints. For performance eval-
uation, we employ the standard evaluation metric for image
retrieval [15, 6], i.e., retrieval precision, which is defined as
the ratio of the number of relevant images over the number
of returned images.

In our experiment, every image in each category is used
as the query for retrieval. In total, 100 queries are per-
formed for each category. We measure the average preci-
sion on the top returned images for each compared scheme.
Figure 2 shows the evaluation curves of average retrieval
performance on several semantic categories. For the exper-
imental results, we can see that the DCA slightly outper-
forms the RCA approach while the Kernel DCA achieves
the best performance in most cases.

More specifically, we make a comparison on the TOP
20 returned images for each category. Table 1 shows the ex-
perimental results. We can see that RCA and Xing’s method
are comparable, in which RCA achieves 11.1% average im-
provement over the baseline approach, while Xing’s method
achieves 9.5% average improvement over the baseline ap-
proach. Our DCA algorithm achieves better results than
both RCA and Xing’s method, i.e., 14.0% average improve-
ment over the baseline method. Our Kernel DCA method
achieves the best performance among all, i.e., 19.9% aver-
age improvement over the baseline method. Note that there
is an exceptional case, i.e., the “sunset” retrieval, in which
all metric learning methods were fail to improve the perfor-
mance. This may be caused by noisy features in the data.
In sum, the overall results demonstrate our proposed meth-
ods are empirically more effective to learn good quality dis-
tance metrics than the traditional approaches for improv-

ing the performance of image retrieval. In the future work,
we may compare our methods with other more complicated
distance function learning techniques, such as kernel target
alignments [20].

6 Conclusion

In this paper we studied the problem of learning dis-
tance metrics and data transformation using the contextual
information for image retrieval. We addressed two impor-
tant limitations in the previous approach of Relevance Com-
ponent Analysis. One is the lack of exploiting negative
constraints. Another is the limitation of learning the lin-
ear distance metrics which are not adequate for describ-
ing the complex nonlinear relations of real-world objects.
To address the first problem, we proposed the Discrimina-
tive Component Analysis (DCA), which can exploit both
positive and negative constraints in an efficient learning
scheme. For solving the second problem, the Kernel DCA
is proposed by applying the kernel trick on the linear DCA.
We conducted extensive experiments to evaluate the perfor-
mance of our algorithms on image retrieval. The promising
results show that our algorithms are simple but quite effec-
tive in learning good quality metrics for image retrieval. In
the future work, we will apply our methodology for other
applications, such as data clustering and dimension reduc-
tion problems.
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(a) “Dogs” retrieval
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(b) “Butterfly” retrieval
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(c) “Roses” retrieval
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(d) “Penguins” retrieval
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(e) “Mountain” retrieval
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Figure 2. Performance Evaluation for Image Retrieval (Average Precision on Top Returned Images).
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